Automatic Re-Initialization and Failure Recovery

High-resolution photos can be found here.

With drones becoming more and more popular, safety is a big concern. A critical situation occurs when a drone temporarily loses its GPS position information, which might lead it to crash. This can happen, for instance, when flying close to buildings where GPS signal is lost. In such situations, it is desirable that the drone can rely on fall-back systems and regain stable flight as soon as possible.

We developped a new technology to automatically recover and stabilize a quadrotor from any initial condition. On the one hand, this new technology can allow a quadrotor to be launched by simply tossing it in the air, like a "baseball ball". On the other hand, it allows a quadrotor to recover back into stable flight after a system failure. Since this technology does not rely on any external infrastructure, such as GPS, it enables the safe use of drones in both indoors and outdoors environments. Thus, our new technology can become relevant for commercial use of drones, such as parcel delivery.

Our quadrotor is equipped with a single camera, an inertial measurement unit, and a distance sensor (Teraranger One). The stabilization system of the quadrotor emulates the visual system and the sense of balance within humans. As soon as a toss or a failure situation is detected, our computer-vision software analyses the images looking for distinctive landmarks in the environment, which it uses to restore balance.

All the image processing and control runs on a smartphone processor onboard the drone. The onboard sensing and computation renders the drone safe and able to fly unaided. This allows the drone to fulfil its mission without any communication or interaction with the operator.

The recovery procedure consists of multiple stages, in which the quadrotor, first, stabilizes its attitude and altitude, then, re-initializes its visual state-estimation pipeline before stabilizing fully autonomously. To experimentally demonstrate the performance of our system, in the video we aggressively throw the quadrotor in the air by hand and have it recover and stabilize all by itself. We chose this example as it simulates conditions similar to failure recovery during aggressive flight. Our system was able to recover successfully in several hundred throws in both indoor and outdoor environments.


M. Faessler, F. Fontana, C. Forster, D. Scaramuzza

Automatic Re-Initialization and Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor

IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015.

PDF YouTube

M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, D. Scaramuzza

Autonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle

Journal of Field Robotics, 2015.

PDF YouTube1 YouTube2 YouTube3 YouTube4 Software