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Minimum-Time Quadrotor Waypoint Flight
in Cluttered Environments

Robert Penicka and Davide Scaramuzza

Abstract—We tackle the problem of planning a minimum-time
trajectory for a quadrotor over a sequence of specified waypoints
in the presence of obstacles while exploiting the full quadrotor
dynamics. This problem is crucial for autonomous search and
rescue and drone racing scenarios but was, so far, unaddressed
by the robotics community in its entirety due to the challenges
of minimizing time in the presence of the non-convex constraints
posed by collision avoidance. Early works relied on simplified
dynamics or polynomial trajectory representations that did not
exploit the full actuator potential of a quadrotor and, thus,
did not aim at minimizing time. We address this challenging
problem by using a hierarchical, sampling-based method with
an incrementally more complex quadrotor model. Our method
first finds paths in different topologies to guide subsequent
trajectory search for a kinodynamic point-mass model. Then,
it uses an asymptotically-optimal, kinodynamic sampling-based
method based on a full quadrotor model on top of the point-mass
solution to find a feasible trajectory with a time-optimal objective.
The proposed method is shown to outperform all related baselines
in cluttered environments and is further validated in real-world
flights at over 60km/h in one of the world’s largest motion capture
systems. We release the code open source.

Index Terms—Aerial Systems: Applications, Motion and Path
Planning

SUPPLEMENTARY MATERIAL

Code: https://github.com/uzh-rpg/sb_min_time_quadrotor_planning
Video: https://youtu.be/TIvvHtzZRwSo

I. INTRODUCTION

UADROTORS are among the most agile and maneu-

verable flying machines [I]. This renders them the
ideal platform for first responders after disasters, such as
earthquakes, forest fires, or floods, to search for survivors as
quickly as possible. To push research in this field, autonomous
drone racing has emerged as a research field, with international
competitions being organized, such as the Autonomous Drone
Racing series at the recent IROS and NeurIPS conferences [2]],
[31, [4] and the AlphaPilot challenge [3], [6]. A key re-
quirement in autonomous drone racing is to plan a trajectory
that minimizes the time to fly through a sequence of gates
or doorways while avoiding collisions with the environment.
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Fig. 1:
waypoint trajectory planned by the proposed method in a rac-
ing track with virtual obstacles, reaching speeds over 60km/h.
The picture was taken in our large indoor drone-testing arena
(30 x 30 x 8m?) equipped with a motion capture system. The
photo was augmented with virtual obstacles simulating a two-
floor cluttered environment.

Our quadrotor executes a near time-optimal multi-

This makes drone racing an ideal benchmark scenario for the
humanitarian use of drones in search and rescue.

Both drone racing and search and rescue motivate the
tackled problem of minimum-time trajectory planning through
a sequence of waypoints in cluttered environments. This
problem has not been previously solved in its entirety. Existing
methods either do not consider obstacles in time-optimal
planning [[7]], or cannot use full actuation due to simplification
of the quadrotor dynamics [8]. Other methods do not support
multi-waypoint scenarios and time-optimal objective [9], or
rely on polynomials [10]], that cannot represent time-optimal
trajectories due to their inherent smoothness.

The proposed method uses a hierarchical, sampling-based
approach that follows three high-level steps with an incremen-
tally more complex quadrotor model. First, topological paths
between the individual waypoints are found using a variant of
the Probabilistic Roadmap (PRM) [11]]. Paths with different
homotopy classes (e.g., going from different sides around an
obstacle) are found in the roadmap using a combination of iter-
ative shortest path search and roadmap pruning. In the second
step, we use the topological paths to guide trajectory planning
for 3D kinodynamic point-mass model. A trajectory primitive
between two waypoints of the point-mass with limited accel-
eration is found using a gradient descent method. A dynamic
programming graph search algorithm is then employed to find
a minimum-time collision-free trajectory for the point-mass
by searching over the topological paths in different homotopy
classes. In the final step, a trajectory exploiting the full quadro-
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tor model is planned using a kinodynamic sampling-based
Stable Sparse RRT (SST) [12] algorithm, extended for time-
optimal objective and multi-waypoint planning. The sampling
is guided using the point-mass trajectory to effectively explore
the quadrotor input and state spaces. The proposed hierarchical
method differs from existing approaches by considering not
only the correct actuation limits and the full quadrotor model
but also by planning in presence of obstacles with a minimum-
time objective.

To the best of our knowledge, this is the first multi-waypoint
quadrotor planner for cluttered environments that focuses
solely on the minimum-time objective. The contributions of
this paper are considered as follows. We propose a new
topological path search to find distinct paths through multiple
waypoints. We extend the point-mass trajectory search [J5] to
use acceleration norm constraints and account for gravity to
better approximate the quadrotor translation dynamics. Finally,
we extend the SST [12] for multi-waypoint scenarios with
minimum-time objective, and for sampling guided by the
point-mass trajectory. The proposed hierarchical method is
shown to outperform all related baselines in cluttered envi-
ronments, and is further validated in real-world flights at over
60km/h in one of the world’s largest motion capture systems.
The source code is released as an open-source package.

II. RELATED WORK

The existing approaches for quadrotor trajectory planning
can be mostly categorized as polynomial approaches, discrete-
time search-based methods, sampling-based approaches, and
optimization methods.

The polynomial methods [10], [13], [6], [14] represent
trajectories as continuous-time polynomials. They exploit
quadrotors’ differential flatness property [15] that allows
planning for only four flat outputs, with their high order
derivatives, to get the quadrotor states and control inputs.
The polynomial trajectory planning is widely used for its
computational efficiency, however, it can not minimize time
by design due to the inherent smoothness of polynomials.
Therefore, polynomial trajectories cannot represent the bang-
bang input changes required for using full quadrotor actuation
and can reach maximal motor forces only in a limited number
of times by either scaling time of the found trajectory [10] or
by sampling boundary conditions [14].

Other methods [16]], [17], [18], [19] that also leverage
the differential flatness property use B-spline representa-
tion for trajectory optimization. These methods jointly op-
timize smoothness, dynamic feasibility, collision cost, and
also safety [[18] or visual tracking objectives [[19]. The com-
putational efficiency of the methods is suitable for online
replanning, however, they can not be used for minimum-time
flight due to the different objectives. Furthermore, using full
actuation of the quadrotor is limited as the dynamic feasibility
is enforced as a soft constraint and mostly in a per-axis form.
Similarly to our method, [18]], [16] use topological path search
to find distinct paths, however, using a different algorithm with
guard nodes in PRM.

The search-based methods [20], [21] use discrete-time and
discrete-state representations and convert the trajectory plan-

ning to a graph search problem. The search-based approaches
optimize time up to discretization, however, they suffer from
the curse of dimensionality. Furthermore, the employed per-
axis acceleration limits have to be set pessimistically to plan
feasible but suboptimal trajectories for the full quadrotor
model. The existing search-based methods support planning
only between two states, and extension to multi-waypoint sce-
narios would be challenging with additional search dimensions
for already computationally demanding methods.

The sampling-based kinodynamic methods [12]], [22] plan
for a dynamic system like quadrotor by growing a tree of
states where in each iteration a random state is selected and
forward integrated using random inputs for a random time.
Alternatively, RRT* algorithm [9] can be used for linear
systems or linearized quadrotor model around hover condi-
tions, however, this prohibits fast and aggressive flights. Other
methods randomly sample polynomial primitives 23] or states
of simplified quadrotor kinodynamic point-mass model [5]. All
above sampling-based methods, with the exception of [5], fo-
cus on minimizing trajectory length. This requires only a slight
deviation from the quadrotor hover inputs. However, the time-
optimal inputs lie on the boundary of the input space, which is
more challenging to sample using uniform random sampling.
Furthermore, the typically much faster rotational dynamics of
the quadrotor, compared to the translational dynamics, render
the existing sampling-based planners with Voronoi bias [12],
[22] unusable for the minimum-time objective. The Voronoi
bias causes preferred expansion of states on the boundary of
already explored space, which can block the planning algo-
rithms when a state on the boundary is repeatedly selected and
expanded to the unfeasible state, e.g., due to the quadrotor’s
rotation speed constraints. This motivated the proposed method
to use the hierarchical approach to guide quadrotor input
sampling using the previously found point-mass solution. Such
point-mass solution has approximate information about the
state and input of the full quadrotor dynamics, and can be used
to effectively decrease the sampling complexity and mitigate
the effects of the Voronoi bias.

Finally, a method that solves the most similar problem
is the optimization-based planning for quadrotor waypoint
flight [7]. The method finds time-optimal trajectories for
the full quadrotor model through a sequence of waypoints,
however, it does not consider environments cluttered with
obstacles. This renders the method mostly unusable when
additional non-convex constraints are introduced to prevent
collisions. The proposed sampling-based method is able to
plan minimum-time trajectories for the cluttered environments
by checking collisions in all levels of hierarchical planning
and by guiding the planning using already found collision-
free paths from the previous level.

III. PROBLEM STATEMENT

We formulate the tackled minimum-time motion planning
problem through a sequence of waypoints in a cluttered
environment using the classical notion of the configuration
space C [24]. Having the world W = R? with the obstacles
O ={04,...,0,,} CW, the motion planning problem is to
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determine a collision free-path for a robot A C VW between
two locations in W such that the path avoids O. In this
paper, multiple waypoints P, = {pwi,i € [1,...,N]} have
to be visited with certain proximity 7, in a given order, e.g.
corresponding to the gate centers in the drone racing.

Let A(x) C W denote the geometry of the robot at a
configuration x. The robot can move in free space Cyree =
C\ Cops, Where Cops = {x € C|0(A(x),0) < d.} CCisa
set of configurations where the robot is in collision, i.e. the
shortest distance d(-, -) between the robot and any obstacle is
below a given threshold d.. For the considered quadrotor, the
robot’s configuration = [p, q,v, w} r consists of its position
p € R3, velocity v € R3, unit quaternion rotation q € SO(3),
and body rates w € R3. The dynamic equations with total
collective thrust f7 and body torque 7 inputs are

p=v i=ga0 ]
. Q)
v=_Rlafr+tg o= (r-wxJw),
where ® denotes quaternion multiplication, R(q) quaternion
rotation, m quadrotor mass, J its inertia, and g is gravity.

However, the real quadrotor inputs are single rotor thrusts

[f1, f2, f3, f4] which are used to calculate fr and T as

0 UN2(fi = fo— f3+ fa)
fr=| 0 | 1= I/N2(~fi—fatfat+fi)|. @
> fi k(f1— fo+ f3— fa)

using torque constant x and arm length /. The single rotor
thrusts are further constrained by minimal f,,;, and
maximal f,,,, values. The body rates are limited @]) by a
per-axis maximal allowed value wy,q;-

fmin Sfigfmaw: fori€{17~-~>4} (3)

T
~Winae SW; < Winaa, for w = w1, wa, ws] (4)

The solution to the studied multi-waypoint motion planing
between specified start s € Cfree and end T, € Cjrree
configurations is a continuous sequence of trajectories 7; :
[0,1] — Cfree for ¢ € {0,..., N} that pass through P,.
The sequence has the given start 79(0) = s and end
7n(1) = @, the initial positions of the trajectories 7;(0),
have to be in waypoints’ proximity ||7;(0), — Puwill < Tiol

for i € {1,..., N}, and the sequence has to be continuous
Ti—1(1) = 7;(0) for ¢ € {1,...,N}. The objective of the
problem is then to minimize the time T = ZZN:O t; of

reaching the end configuration, where ¢; corresponds to the
time duration of 7; given (I)-(@). The whole multi-waypoint
minimum-time planning problem can be summarized as

N
nimize T S
minimize =)
s.t. 7; € Cpree fori € {0,..., N},
70(0) = @5, T (1) = e, o)

[17:(0)p — Puill < reor fori € {1,..., N},
7i-1(1) = 7:(0) for i € {1,..., N},
. @. @). @.

IV. METHOD

The proposed method uses a hierarchical approach that
initially finds diverse topological paths with a variant of
Probabilistic Roadmap (PRM) [[L1]. Then, the fastest trajectory
for 3D point-mass model is found by searching over the
topological paths. Finally, the SST method is used to find
a minimum-time trajectory over multiple waypoints for the
full model of the quadrotor using the point-mass solution
to guide the exploration. The whole method uses Euclidean
Signed Distance Field (ESDF) as a priory known map of the
environment. The method is visualized in Figure [2]

A. Topological path search

The topological path search is used to find distinct paths
with different homotopy classes, e.g. passing around an obsta-
cle from a different side. This is necessary as the typically
sought minimum-length path does not necessarily translate
to the minimum-time trajectory for the dynamic point-mass
model and further for the full quadrotor model.

The method described in Algorithm [I] plans sequentially
for pair of adjacent goals in G = [ps, Wy € Py, Pe], where
ps and p. are positions of the start and goal configurations,
respectively. The PRM is used to create a roadmap (V, E)
by sampling ellipsoid between two goals similarly to the
Informed-RRT* [25]. The number of samples and ellipsoid
major axis are iteratively increased by a constant factor if no
path is found. Once at least one path can be found in the
roadmap, method FindDistinctPaths is used to find distinct
paths between the goals as described in Alg. [2]

The distinct paths are further shortened (similarly to [18]])
in forward and backward pass. Afterward, paths with the same
homotopy class are removed. The homotopy is approximated
using uniform visibility deformation (UVD) [18]], where tra-
jectories 7! : [0,1], 72 : [0,1] belongs to same UVD class if
the straight line connection 7! (s) — 72(s) is collision free for
all s € [0,1]. Finally, the paths are filtered by keeping only
paths shorter than a fixed factor of the shortest one and by
limiting the number of totally kept paths. Additionally, paths
with the wrong angle of reaching a waypoint, i.e., the direction
of flying through a gate, can be filtered out.

Algorithm 1: Topological PRM

Input: G — goals

Out : Ilp,...,IIx — found topological paths
1 foreachic1,...,||G| —1do
2 (V, E) + PRM(G[i — 1], G[4])
3 II¢ | « findDistinctPaths((V, P), {G[i — 1]}, G[1])
4 IT;_, < shortenPaths(TI¢_,)
5
6

IT¥_, < removeEquivalentPaths(II}_,)
Hi— 1< ﬁlterPaths(H';L 1 )

The distinct path search in Algorithm [2] iteratively searches
for the shortest path using Dijkstra’s algorithm between given
start nodes S and end nodes F' in the roadmap. For each
path, a node v,, with smallest clearance d,, from obstacles is
found. Additionally, nodes V,, that are connectable to v,, using
collision-free path with length within d,, are found. Nodes V,,
and v,, are then removed from the roadmap and saved among
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(a) Distinct paths

(d) Point-mass solution

(b) Shortened paths

(e) Planning tree

(c) Filtered unique paths

(f) Final trajectory

Fig. 2: Visualization of the individual stages of the hierarchical approach. Distinct topological paths are firstly found between
goals (a) and are consequently shortened (b). Filtered paths (c) are then used to find the minimum-time trajectory for the
point-mass model (d). Finally, the sampling-based method uses the point-mass solution to guide exploration of the solution
space (e) to find the final trajectory (f). The start and goal are colored black and red, respectively.

deleted nodes V. The shortest path search is repeated until
no new path can be found. This is either if no alternative path
exists or vertices in some narrow passages were removed. To
address the second case, the algorithm is recursively called
from both S to V; and from V; to F. Finally, paths between
original S and F' nodes are connected using the found paths
with corresponding nodes in V.

Algorithm 2: Distinct Path Search
Input: (V, E) — roadmap, S - start nodes, F' — end nodes

Out : II — found distinct topological paths
1 Vg=10 // set of deleted nodes
2 do

IT < TIU < findShortestPaths((V, E), S, E)
foreach 75 € II; do
Un, dn, < nearestNodeToObstacle()
Vo {veV||lon—v| <dn—dc}
V=V\{vun}UW)
Vg VgUu {Un} UVy

9 while II; #

10 if Vy # O then

1 I1, + FindDistinctPaths((V, P), S, V)
12 I1, <+ FindDistinctPaths((V, P), Vg, E)
13 IT + IT U connectPaths(I1y, IT,, V)

O I 7 )

B. Point-mass trajectory planning

The found topological paths are further used to plan a
trajectory for 3D point-mass model that approximates the
translation part of the quadrotor dynamics. A minimum-
time motion primitive is created between any two states of
the point-mass model. A dynamic programming search, that
utilizes the primitive, is then used to find a collision-free
point-mass trajectory between multiple waypoints. The distinct
topological paths are used during the search to constraint the
position of the primitives to the already found collision-free
topological paths.

1) Point-mass motion primitive: We use the 3D point-mass
model with state consisting of position p and velocity v, and
with input on acceleration 4 = a. The motion primitive is a
trajectory from given start position p* = (p$, p3,p35)” and start

velocity v® = (v5,v3,v5)T to end position p¢ = (p$, ps, p§)T
and end velocity v¢ = (v§, v§,v$)T. For a single axis, without
loss of generality for the z-axis, it could be shown that for
dynamics p1(t) = uy(t) the time-optimal control input using
Pontryagin’s Maximum Principle (PMP) is a bang-bang using
a given maximal per-axis acceleration a;. The optimal control

has form
ay
—a;

or with switched inputs of —a; followed by a;. The minimum
final time T} = T} (a1, p§, v§, p§, v§) can be found in closed-
form as a solution to a set of four classical kinematic equations
that describe position and velocity for both bang-bang parts.
The only unknowns are then the ¢], 77, and the position and
velocity in ¢7.

A similar approach was proposed in [5]] where the authors
used per-axis acceleration limits. In this work, the point-mass
primitive is extended by constraining the acceleration norm
Gmaz = 4fmaz/m over joint axes and by accounting for
gravity. This corresponds to point-mass thrust acceleration
a; = (am,at,g,ang)T, lla:|| = @maz with body acceleration
used for the per axis closed-form solutions in (6) as a =
a; + g. Finally, to minimize the time 7" (a, p*, v*®, p®, v°) =
max;—(1,2,.3} 1; (as, . ..) of the coupled 3D point-mass prim-
itive, we optimize over the thrust acceleration a; as

0<t<tr,

6
<t <717, ©

ajy

minimize T*(a,p®,v®, p°,v°)
o @
st. a=a;+g,|at|| = amaz-

We use a Gradient Descent (GD) on a sphere with radius
amaz and project the gradient onto the sphere to keep maximal
acceleration norm. The gradient of individual axes can be
found in closed-form similarly to the solution of (6). After
the GD, the primitive is calculated by stretching the times of
the axes 7" to match time 7™, which can be done in closed-
form by lowering the per-axis accelerations, and is necessary
to keep the desired p°® and v°.
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2) Multi-waypoint point-mass trajectory search: The point-
mass motion primitive is further used to plan a multi-waypoint
trajectory utilizing the previously found topological paths II.
As the positions are known, the search converts to finding
velocities for a given sequence of positions, initially G =
(Ps, Pwls - - PwN, Pe)s that minimize the time of reaching
Pe. In [5] this task is solved (without considering obstacles) by
randomly sampling velocities in G with consequent shortest-
time search in the computed graph of motion primitives. This,
however, has quadratic complexity in the number of velocity
samples per position. Therefore, we opted for deterministic
sampling with a small number of velocity samples, i.e., having
only 27 velocity samples in a cone with 3 X 3 x 3 samples
corresponding to yaw, pitch, and velocity norm dimensions.
Dijkstras algorithm is used to find the shortest-time path in
such a graph using the point-mass motion primitive between
individual samples. Afterward, the cones are refocused around
the found shortest-time path, and the search is repeated until
the time converges. When refocused, the cones are adjusted
individually for each dimension. The samples are either re-
centered if a boundary sample is used, or the distance between
samples is halved if the center sample is used. This way, the
number of primitive evaluations is limited while iteratively
focusing the search toward the minimum-time solution.

The above described velocitySearch method computes
point-mass trajectory over the positions in G without con-
sidering the obstacles. An additional graph search over the
topological paths, described in Algorithm [3] is used to find a
collision-free point-mass trajectory. It uses dynamic program-
ming search with priority queue to always test collisions in
the currently shortest-time trajectory. In case of a collision,
a new position is added to G between nodes where the first
collision occurred. A new sequence with an additional position
is created for each possible topological path between such
nodes. This way, the algorithm keeps attaching the point-
mass trajectory to the collision-free topological paths until the
shortest feasible path is found.

Algorithm 3: Point-mass trajectory search

Input: IT - topological paths, G — goals
Out : 7,y — found point-mass trajectory

m; < velocitySearch(G)

Oy + (mi, G)

while II # 0 do

(7, Gp) < findAndRemoveBestTrajectory(I1;,)

if 7y, is collision-free then
| Tpm < mp; break

// initial path
// initialize heap

N S I S

// trajectory found

else

8 9b, ga < getNodesOfFirstCollision ()

9 for 7 between gy, gq found in 11 do

10 Grnew < add goal between gy, gq in 7 to G,
11

12

Tnew <— velocitySearch(Grew)
C. Full quadrotor model sampling-based planning

N

Hh — Hh U (ﬂ'neuﬂ Gnew)

This part extends the original kinodynamic sampling-based
method called SST [12] to the multi-waypoint scenario guided
by the point-mass trajectory. The minimum-time cost is em-
ployed instead of the easier-to-sample shortest-path objective

used in the original method. The SST is implemented as
the final planning step that uses the full quadrotor dynamics
and creates a feasible solution compared to the point-mass
approximation. The guiding with the point-mass solution is,
however, used not only to reduce the volume of sampled
configuration space but is needed to avoid blocking the SST
by Voronoi bias when sampling on the edge of feasible input
space for the minimum-time objective.

The SST works by protecting the configuration space with
a set of witnesses 5;, each containing its center configuration
and a representative configuration that contains the node with
the best cost within d, radius of the center. A new node is
added to the SST tree and to active nodes V,; only if it
reaches unexplored space and forms a new witness, or its cost
is better than the cost of its witness representative. The old
representative is replaced in the latter case by the better one
and moved to inactive nodes V,, ;. This way, the SST keeps
only minimum-time trajectories and explores the configuration
space until the desired goal is reached. We extend the original
SST to multi-waypoint scenarios by considering .S;, V, ; and
Vu,i for all i = 0,...,||G|| — 2, i.e. goals in the sequence
G. The planning tree starts in x, and in each iteration, a
random goal is selected among the already reached goals. The
tree is allowed to grow to the next goal if the previous goal
is reached with tolerance 74,;. The multi-waypoint trajectory
is thus planned using one tree that keeps expanding towards
unreached goals until the stopping conditions are met.

The proposed guided multi-goal SST (Algorithm [)) uses the
point-mass trajectory 7, to create a non-continuous trajectory
primitive that has the translational dynamics part of 7,,,. The
rotational parts are added to match the acceleration changes
of the point-mass using PMP bang-bang or bang-singular-bang
rotational inputs. The inputs are found by calculating quater-
nion errors in the body x-y plane in the changes of the point-
mass accelerations. The error is used to find rotational axis
and maximal angular acceleration producible given the motor
constraints (3). Finally, the rotational parts along the found
axis are calculated similarly to single-axis motion (6) using
the maximal angular acceleration, zero initial and final angular
velocities, and angular position from the error quaternions.
The bang-singular-bang solution is used to satisfy the angular
velocity constraints (@) and is calculated similarly to (6)
in closed-form. This trajectory primitive assumes decoupled
rotational and translational dynamics, however, it serves as a
guiding reference for the SST that uses the full quadrotor dy-
namics and couples the dynamics while randomizing quadrotor
inputs around the primitive.

In each iteration of the Alg. A a random goal index g; is
selected from the already reached goals. The bestNearSelec-
tion method first generates a state ¢,q,q Using a random state
from the guiding reference between g; and g;4; with additional
uniform random noise with variance (022,07, 07, 02,) for each
part of the state. Selection of a node that lies within 74
distance of goal g;_1 is randomly biased with probability p, to
focus exploration around goals. Then a node gs.; with smallest
cost from the start within J;, radius from q,.,q is selected
for expansion. If none is found, the nearest node from V g4,
t0 Grang 1S used instead.
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B sampling-based

polynomial

(a) Forest

(b) Office

I search-based @ start @ goal

(c) Racing

Fig. 3: Maps of the environments used for evaluating the proposed method and comparison with related algorithms. Example
trajectories are shown for the proposed sampling-based planner, the polynomial method [10]], and the search-based method [20].

Algorithm 4: Guided multi-goal SST

Input: 7., — point-mass trajectory, G — goals
Out : 7 — found quadrotor trajectory

1 Va,i «— 0, Vu,i «—0,8; <—®,Vi:0,...,|lGH -2

2 Voo« {zs}, E <+ 0, so « xs, S0.7€p < Ts, So < 51

3 while stopping conditions not met do

gi + randomGoalIndex(G)

gsel < bestNearSelection(Vz g, , 0pr,)

qnew < propagate(qser, Tpm)

if isPassing(qnew) then
if 7401 radius of g; reached by qsel, qnew then g; +=1
if isLocalBest(qnew, Sy, , 0s) then

10 Va,gi <~ Va,gi U {Qnew}

1 E+ EU {qsel — Qnew,j}

12

e % N A Uu R

pruneNodes(qnew, Va,g; Vu,g;)

The state gs.; is further propagated to g, using a 4th-
order Runge-Kutta integration of the quadrotor dynamics ()
for a random time in range [tmin, tmaz ). The motor inputs are
calculated based on the guiding reference, and the nominal
time of applying individual inputs is randomly scaled in the
range [Symin, Srmaz|- Furthermore, the rotational parts have an
additionally randomized rotation axis with variance agmt. The
randomized time of propagation is a standard way of exploring
the solution space by SST, while the randomized scale of
reference inputs and the rotation axis is used to account for the
artificially added non-continuous rotational parts in the point-
mass reference. The new state ¢, is checked in the isPassing
method to have 1) distance from the reference below a given
threshold d, ¢, 2) time-cost from the start below a certain ratio
Tpmm Of the closest state in the reference, and 3) collision-free
trajectory between ¢se; and gpne. The method thus removes
both colliding trajectories and expansions that are far from the
point-mass reference in time or in position. If the goal g; is
reached by the propagated trajectory, the next goal is selected.

Afterwards, method isLocalBest finds nearest witness
Snew € Sy, 10 Gnew- If the distance ||gnew — Snew| 1S above
0s @ NEW WItNess Speq centered in gpeq is added to Sy,. The
method allows the algorithm to continue if the representative
of s,ew has not been set or the representative’s time-cost
is lower than the one of the @,e.. In both cases, gnew 1S
added among active nodes V, 4, and trajectory gsei — Gnew
is added among the edges E. Finally, method pruneNodes
sets the representative of S,ey tO Gnew and moves the old
representative from V, 4, to Vj, 4,. Furthermore, if the old
representative is an inactive leaf node, it is removed from the
tree, and the removal is repeated for its parent node recursively

until a non-leaf or active node is found. The algorithm keeps
expanding the tree until the stopping conditions are met,
consisting of a maximal number of iterations and a limited
number of iterations without improvement.

V. RESULTS

The proposed planning method is evaluated on three en-
vironments shown in Figure 3] It is compared with related
algorithms for single and multi-waypoint scenarios. Further-
more, the method is validated in real-world racing track at over
60km/h in one of the worlds largest motion capture systems
(30 x 30 x 8m?). The flight is captured in Figure

All trajectories are found using C++ implementation of the
method and a single-core Intel Xeon Gold 6252 CPU with
2.10 GHz. The parameters of the considered quadrotor and
of the algorithms are summarized in Table [ The stopping
conditions used for the method are the maximal number of
2-100 iterations and 2-10° of iterations without improvement.

TABLE I: Quadrotor and algorithm parameters

| Variable Value | Variable Value
5 m [kg] 0.85 ! [m] 0.15
e Fmin [N] 0 fmaz [N] 7
2| diag(J) [gm?]  [1,1,1.7] K [] 0.05
5 Wmaz [rads_l] 15
[10] | kr 105000 | Npoly 10
dig [m] 0.3 dc [m] 0.2
- ds 0.5 bn (1 1.3
£ | (03,02)m%rad?] (1.3,0.08)| o2 [rad’]  0.013
= 2 2
S (02,0212, 72%85] (8.3,8.3) |[Srmin, Srmaz](] [0.6,14]
[tmin, tmaz]ls]  [0.004,1.2] Tpmml] 1.05
Oreflm] 2 pgll 0.05

Computational time of the proposed method is mostly influ-
enced by dp, and J, that increase the complexity of nearest-
neighbor search for larger J3,, and increase number of created
witnesses with smaller d,. Values of (03,072,027, 07,) were
scaled to have approximately same scale in encountered states
during planning. The solution quality is mainly influenced by
Ores and 7p,,,, that bind the quality of the final solution to the
quality of the point-mass trajectory. Other parameters of the
method were empirically tuned for the best solution quality.

A. Single goal planning

The first set of experiments is for single target scenarios
where a trajectory is planned between start and goal states
only. This allows comparison between all considered baseline
algorithms. The first baseline algorithm is the polynomial



PENICKA et al.: MINIMUM-TIME QUADROTOR WAYPOINT FLIGHT IN CLUTTERED ENVIRONMENTS 7

TABLE II: Comparison of the baseline methods and the proposed method in single target scenarios

Env Test Polynomial [10] Search-based [20] CPC [7] Ours
case ¢, timels] Tals] Tpls] c. time[s]P T[s]P c.time[s]® T[s]® c. time[s] 7T[s] c. time[s] Teals] Ty(s]
0 041 4.6740.63 3.86 5.82 1.80 10.39 1.60 70.23 0.95 1492 1.1010.13 0.96
Forest 1 0.30  3.4340.00 343 0.73 1.60 5.67 1.40 67.40 0.96 2.85 0.9740.00 0.96
2 0.30 3.74+0.93 3.22 0.73 1.40 1.65 1.40 65.49 0.95 8.03 0.9840.01 0.96
3 147  7.2041.17 5.25 3.85 2.00 24.84 1.80 - - 135.83  1.5040.17 1.30
0 1.36  8.6441.03 7.34 3.15 2.80 22.41 2.60 - - 139.19  2.38+0.28 1.93
Office 1 0.65 7.5040.44 6.49 13.18 2.60 77.16 2.20 - - 103.64  1.7440.06 1.69
2 0.89 9.014+0.77 6.38 11.37 2.60 39.70 2.20 - - 155.23  2.204+0.13 1.93
3 047 5.2640.35 5.14 5.40 2.40 35.29 2.00 - - 223.64 1.81%0.11 1.58
0 1.98  6.5640.66 5.79 - - - - - - 36591 1.611+0.29 1.34
Racin 1 2.06 6.2140.88 5.13 - - - - - - 428.02  1.63%+0.15 1.36
g 2 1.87 6.26+0.42 4.94 - - - - - - 138.17  1.4540.12 1.37
3 191 5.2740.69 473 - - - - - - 604.55 2.144+0.74 1.57

method [10] which jointly minimizes snap and final time of
reaching the goal (using time penalty kr) with polynomials
of order N,. Contrary to the original method, we employ
the PRM* algorithm to find paths between individual way-
points. The second baseline is the search-based minimum-time
method [20]], where we limit the point-mass state to include
position derivatives only up to acceleration due to computa-
tional complexity. Method [20] is evaluated for pessimistic
22.2ms~2 and for optimistic (though unfeasible) 31.4ms~2
maximal acceleration per axis, denoted with ‘p’ and ‘o’,
respectively. The first is is derived from the maximal motor
thrust in diagonal lateral motion, while the second as maximal
acceleration in lateral motion along single axis. Finally, the
time-optimal CPC optimization method [7] is extended to a
variant for cluttered environments using position constrained
by the ESDF map of the environment.

The results for the single goal planning are summarized
in Table [ for all three environments with four test cases
(i.e., different start-goal positions) for each environment. We
report the computational time of each algorithm and the time
duration (i.e., solution quality) 7' of found trajectories. For
the polynomial method and the proposed method, we show
the average duration with standard deviation T, and the best
duration 73 found within 30 conducted runs per test case.
The results show that the proposed method is able to find the
highest quality trajectories for the majority of the test cases.
The computational times of our methods, however, render it
only as an offline planning method similarly to [7]], [20].
The polynomial method, although fast in finding solutions,
is by far the one with the highest trajectory durations. This
demonstrates the inherent inability of the polynomial trajectory
planning to represent the minimum-time trajectories. The
search-based method is 14%-66% worse in solution quality for
even the optimistic (‘0’) acceleration limit than the proposed
sampling-based method and has comparable computational
times. The comparably lower solution quality of the search-
based method is caused jointly by the time discretization and
the per-axis acceleration limit that restricts exploitation of the
full quadrotor actuation. The search-based method is able to
find solutions only for the Forest and Office scenarios with
2D planning problems. In the Racing environment, where
planning in 3D is required, the method is not able to find
a solution before reaching the memory limit of 32 GB. This is
caused by the curse of dimensionality of the state discretization
which requires exponential growth of memory for additional
searched dimensions. On the other hand, the time-optimal CPC

method is able to find a solution only for the three easiest
scenarios in the Forest environment. In other environments,
the CPC is not able to find a feasible solution due to the
introduced collision constraints that add non-convexities that
the optimization-based method can not handle. However, the
comparison with the solutions found by CPC shows the very
small gap in duration between time-optimal solutions and the
best trajectories found by the proposed method. Furthermore,
our method is faster approximately by a factor of ten compared
to the CPC.

B. Multi-waypoint planning

The second set of evaluations focuses on the multi-waypoint
scenarios. The scalability of the method is tested for a variable
number of targets and density of the obstacles in the environ-
ment. Furthermore, the related algorithms are compared for the
multi-waypoint drone-racing task in both environments with
and without obstacles.

Computation time and solution quality are shown in Ta-
ble [[II| to demonstrate the scalability of the method in multi-
waypoint planning. It is tested in an environment similar to
the Forest with an increasingly larger number of ran-
domly placed columns and targets (NT). The number of
tested columns [50, 100, 150, 200] corresponds, respectively, to
[3.5%, 6.6%, 10%, 13%] portion of occupied environment.

TABLE III: Scalability evaluation with increasing number of
waypoints and obstacles

NT N. Col. 50 N. Col. 100  N. Col. 150 N. Col. 200

c.t.[s] T[s] c.t.[s] TIs] c.t.[s] T[s] c.t.[s] TIs]
2 26.5 0.74 88.8 0.74 1582 0.79 220.6 0.76
3 1559 190 389.2 1.98 5249 254 10442 2.79
4 248.0 290 421.1 340 491.3 4.38 - -
5 1095.8 4.77 958.1 488 11255 6.38 - -

The presented data shows the expected trend of higher
computational times and larger trajectory durations for both
higher number of targets and obstacles. For the highest number
of columns and targets, the method was unable to find a
solution within the limited number of iterations. This is mainly
due to a high number of narrow passages that have a low
probability of being sampled, especially for high-speed multi-
waypoint planning.

The multi-waypoint planning is also tested in a racing
environment (Fig. that features seven gates. Our method
is compared with the polynomial trajectory planning and the
CPC. The search-based method is not considered as it allows
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only single target planning. Both trajectory durations and com-
putational times are presented in Table [[V] for environments
with and without obstacles.

TABLE 1V: Comparison for the drone racing task
Poly. [10] CPC [7] Ours
c.t.[s] Tals] Tpls] ctfs] T[s] c.t[s] Tals] Tyls]

w/o 434 1533£0.00 15.33 1009.34 6.53 919.84 6.99+0.06 6.88
w 8.12 27.5440.62 26.98 - - 734.65 7.10£0.06 7.01

Similar to the single target scenarios, the solution quality of
the polynomial trajectories is significantly lower. Comparison
of the CPC and our method shows similar computational time.
Our method is able to find solutions with only 5.3% higher
trajectory duration than the optimal CPC. Most importantly,
unlike the CPC, our method can find the trajectory for the
cluttered environment while the solution quality is comparable
to the one without obstacles.

The planned trajectory has been finally validated in real-
world flights in multi-waypoint racing track depicted in
Figure The used quadrotor platform is based on the
open-hardware and open-software Agilicious quadrotor frame-
work [26] with the same parameters as listed in Table m
A Model Predictive Control with Incremental Nonlinear Dy-
namic Inversion low-level controller [27]] were used to follow
the planned trajectory. Figure |1| and the attached video show
the flight of successfully executed trajectory reaching veloci-
ties over 60km/h. The root-mean-square error of tracking the
trajectory is 0.55m, which is similar to the ones measured
in [7]], [26] for the same platform. This shows that our method
is able to plan feasible high-speed and near time-optimal
trajectories in cluttered environments.

VI. CONCLUSIONS

This paper introduced a novel hierarchical, sampling-based
method that plans with an incrementally more complex
quadrotor model. The method is used to find minimum-time
trajectories over a given sequence of waypoints in cluttered
environments, which is a problem that had not been previ-
ously solved in its entirety. We showed that the proposed
method outperforms all existing baselines in finding minimum-
time trajectories for cluttered environments and achieves near
time-optimal solutions for scenarios without obstacles. The
planned trajectories were validated in a real-world racing
track at speeds over 60km/h. For future work, we plan to
include perception-awareness to allow onboard gate detection
and visual-inertial odometry in drone racing. We want to
investigate optimality guarantees of our method and further
study methods suitable for minimum-time online planning.
Finally, we believe the method could be extended for different
vehicles as a general framework for hierarchical planning with
increasing model fidelity.
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