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Learning Minimum-Time Flight
in Cluttered Environments

Robert Penicka, Yunlong Song, Elia Kaufmann, Davide Scaramuzza

Abstract—We tackle the problem of minimum-time flight for
a quadrotor through a sequence of waypoints in the presence
of obstacles while exploiting the full quadrotor dynamics. Early
works relied on simplified dynamics or polynomial trajectory
representations that did not exploit the full actuator potential
of the quadrotor, and, thus, resulted in suboptimal solutions.
Recent works can plan minimum-time trajectories; yet, the
trajectories are executed with control methods that do not
account for obstacles. Thus, a successful execution of such
trajectories is prone to errors due to model mismatch and in-
flight disturbances. To this end, we leverage deep reinforcement
learning and classical topological path planning to train robust
neural-network controllers for minimum-time quadrotor flight in
cluttered environments. The resulting neural network controller
demonstrates substantially better performance of up to 19% over
state-of-the-art methods. More importantly, the learned policy
solves the planning and control problem simultaneously online to
account for disturbances, thus achieving much higher robustness.
As such, the presented method achieves 100% success rate of
flying minimum-time policies without collision, while traditional
planning and control approaches achieve only 40%. The proposed
method is validated in both simulation and the real world, with
quadrotor speeds of up to 42 kmh−1 and accelerations of 3.6g.

Index Terms—Integrated Planning and Learning, Motion and
Path Planning, Reinforcement Learning

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/wR1niZvI3pI

I. INTRODUCTION

QUADROTORS are among the most agile and maneu-
verable flying machines [1] and have recently shown a

substantial increase in autonomy capabilities [2]. This renders
quadrotors the ideal platform for first responders to search
for survivors as quickly as possible after natural disasters like
earthquakes, forest fires, or floods. Though the astonishing
agility of autonomous quadrotors has been demonstrated in
many research labs [2]–[10], planning minimum-time trajec-
tories in cluttered environments and navigating them without
collision remains an open problem. To push research in
the field of agile navigation and minimum-time planning,
autonomous drone racing has emerged as a research field, with
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Fig. 1: Our quadrotor races through a complex race track in
the real world while avoiding a set of obstacles made from
transparent foil. While racing, the quadrotor reaches speeds
of up to 42 km h−1 and accelerates with up to 3.6g.

international competitions being organized, such as the Au-
tonomous Drone Racing series at the recent IROS and NeurIPS
conferences [11]–[13] and the AlphaPilot challenge [10], [14].
Drone racing requires flying a drone through a sequence of
gates or doorways in minimum time while avoiding collisions
with the environment, which is an ideal benchmark scenario
for autonomous quadrotors being deployed in search and
rescue scenarios.

By definition, the minimum-time objective requires the
navigation and planning algorithm to constantly push the
platform to its limits and operate the vehicle near the boundary
of its physical envelope. Furthermore, the presence of 3D ob-
stacles results in a highly nonconvex optimization problem that
quickly becomes intractable to solve with traditional methods.
These two aspects render minimum-time flight in cluttered
environments very challenging as any slight disturbance or
model mismatch could lead to a catastrophic crash. To this
end, a planning and control method that tackles this task has
to be robust against disturbances and needs to be able to adapt
the trajectory online.

Previous work in the field of trajectory planning and control
for autonomous quadrotors has solved only a subset of the
problems imposed by minimum-time flight in cluttered envi-
ronments. Existing methods either do not consider obstacles in
time-optimal planning [4], [15], or cannot exploit the full ac-
tuation of the platform due to a simplification of the quadrotor
dynamics [16]. Other methods do not support multi-waypoint
scenarios in combination with a time-optimal objective [17],
or rely on polynomial trajectory representations [18], that
cannot represent time-optimal maneuvers due to their inherent
smoothness. A recently proposed sampling-based method [19]
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can plan minimum-time trajectories in cluttered environments;
however, it is decoupled from the model predictive controller
(MPC) [20] used to track the planned trajectory. This makes
flying such a trajectory vulnerable to disturbances or model
mismatches as the MPC does not account for the obstacles.

In light of recent successes in deep reinforcement learn-
ing (RL) [15], [21]–[24], we propose to address the problem
using deep RL. RL has the advantage of automatically opti-
mizing a parametric controller via trial and error and the ability
to handle highly nonlinear dynamical systems and nonconvex
objectives that are otherwise intractable to solve by conven-
tional robotics methods. However, successful applications of
RL have been largely limited to video games [21], [22], ground
robots [23], or simple hovering of a quadrotor [24]. Applying
RL to our problem remains a significant challenge due to the
high sample complexity and nonconvexity of the task.

This work contributes a novel learning algorithm for
minimum-time flight in cluttered environments. The key is to
combine classical path planning with model-free deep rein-
forcement learning to optimize a neural network policy. The
resulting policy directly outputs optimal control commands
from high-dimensional observations. We show that the neural
network policy outperforms state-of-the-art methods in terms
of flight time in all tested scenarios that feature complex
geometries. Our results indicate that the learned policy has
obtained an implicit knowledge about the risk of navigating
in close proximity of obstacles when being exposed to distur-
bances. This ability leads to more robust control performance
and higher success rates when dealing with model mismatches.
Our proposed approach is validated in real-world flights at
speeds beyond 42 km h−1 and accelerations up to 3.6g.

II. RELATED WORK

State-of-the-art methods for agile quadrotor flight mainly
use the conventional approach to decouple trajectory planning
and control. Given a planned trajectory, accurate trajectory
tracking by the controller is instrumental for the vehicle to
navigate through the environment safely. Hence, the final
performance and success rate depend highly on both the
quality of the planned trajectory as well as the robustness of
the controller. One of the most popular paradigms to quadrotor
trajectory generation exploits the differential flatness [25] of
the platform using polynomial [10], [18], [26], [27] or B-
spline [5], [28], [29] representations. However, those repre-
sentations are suboptimal for minimum-time flight, since they
are inherently smooth and cannot represent the rapid state or
input changes at a reasonable order, and only reach the input
limits for infinitesimal short durations [4].

Search-based planning methods [30], [31] use discrete-time
and discrete-state representations and convert the trajectory
planning to a graph search problem. These methods can
optimize time up to discretization, however, they suffer from
the curse of dimensionality and utilize simplified point-mass
models instead of the full quadrotor dynamics. Furthermore,
the existing search-based methods support planning only be-
tween two states. Algorithms like RRT* [17] can be used
for a linearized quadrotor model around hover conditions, but

the linearization around the hover operating point prohibits
planning minimum-time trajectories.

More advanced trajectory planning methods frame the task
as a constrained optimization problem and solve it via non-
linear programming. As such, trajectory optimization can be
used for offline trajectory planning [4] or online tracking of
a fixed reference path in a receding horizon fashion [32].
Optimization-based methods have the advantage of being
able to incorporate nonlinear dynamics and constraints into
the optimization framework. However, those methods either
require long computation times (in the order of hours [4]) or
rely on a series of approximations for the solver, which in turn
results in sub-optimal performance. Neither of [4], [32] can
solve the problem for environments that contain obstacles. In
contrast, the sampling-based method [19] can find minimum-
time trajectories also for cluttered environments. However, also
this method plans a trajectory offline and therefore relies on a
controller for tracking.

Modern control frameworks for trajectory tracking include
nonlinear model predictive control (MPC) and differential
flatness control [33]. However, most approaches struggle to
handle disturbances during high-speed flight such as aerody-
namic drag, thrust mismatches, and system delays. When the
platform is at its actuation limit, the slightest deviation from
the pre-planned trajectory may result in a suboptimal flight
path, and even catastrophic crashes due to the presence of
obstacles. There exist several MPC approaches that can handle
obstacles adaptively online. However, they either consider
simplified spherical obstacles [34], or a limited number of
obstacles [35], [36] at a control frequency of only 10-20 Hz.

Learning-based methods address the aforementioned is-
sues by learning an end-to-end policy that predicts control
commands directly from high-dimensional observations. For
example, imitation learning (IL) methods [2], [7] train neural
network policies that can achieve agile flight in the wild using
only onboard sensing and computing. IL is data-efficient, but
not scalable since it requires designing an expert system for
data collection. Recent works have demonstrated the usage of
reinforcement learning to achieve superhuman performance in
car racing [22], near-time-optimal flight in drone racing [15],
and high-speed trajectory tracking using a learned policy [37].
Inspired by [15], [19], this work combines the topological path
planning approach with deep RL to achieve minimum-time
flight in complex cluttered environments.

III. PROBLEM STATEMENT

A. Quadrotor Dynamics

The quadrotor is modeled with state x =
[
p, q,v,ω,Ω

]T
which consists of position p ∈ R3, velocity v ∈ R3, unit
quaternion rotation q ∈ SO(3), body rates ω ∈ R3, and the
rotors’ rotational speed Ω. The dynamics equations are

ṗ = v

v̇ =
R(q)(fT + fD)

m
+ g

q̇ =
1

2
q �

[
0
ω

]
ω̇ = J−1(τ − ω × Jω)

(1)

where � denotes the quaternion multiplication, R(q) is the
quaternion rotation, m is the mass, J is diagonal inertia ma-
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trix, and g denotes Earth’s gravity. The speeds of the propellers
Ω are modeled as a first-order system, Ω̇ = 1

kmot
(Ωc −Ω)

with Ωc being the commanded speed and kmot the time
constant.

The collective thrust fT and torque τb are calculated as:

fT =

 0
0∑
fi

 , τ =

 l/
√

2(f1 − f2 − f3 + f4)

l/
√

2(−f1 − f2 + f3 + f4)
κ(f1 − f2 + f3 − f4)

 , (2)

where κ is the torque constant and l is the arm length. Here,
individual motor thrusts fi are functions of the motor speeds
using the thrust coefficient cf as in (3),

fi(Ω) =
[
cf · Ω2

]
. (3)

The drag force fD is modeled as a linear function
of velocity in body frame vB [38] with drag coefficients
(kvx, kvy, kvz):

fD = −
[
kvxvB,x kvyvB,y kvzvB,z

]T
. (4)

The motors have a limited thrust range [fmin, fmax]:

fmin ≤fi ≤ fmax, for i ∈ {1, . . . , 4} . (5)

B. Minimum-time Planning Problem

The minimum-time planning problem is defined using the
classical notion of configuration space C [39]. We assume
an environment W = R3, which contains obstacles O =
{O1, . . . ,Om} ⊂ W . The quadrotor with state x and geom-
etry A(x) ⊂ W has to find a collision-free trajectory in C.
To this end, it can move in free space Cfree = C \ Cobs,
where Cobs = {x ∈ C|δ(A(x),O) ≤ dc} ⊆ C is a set
of configurations (quadrotor states) where the robot is in
collision, i.e., having shortest distance δ(·, ·) to any obstacle
below a given threshold dc.

We formulate the multi-waypoint minimum-time planning
problem as an optimization problem (6) to find trajectories τi
and their durations ti for the dynamics (1)-(5).

minimize
τ0...τN

T =

N∑
i=0

ti

s.t. τi ∈ Cfree for i ∈ {0, . . . , N},
τ0(0) = xs, τN (1) = xe,
‖τi(0)p − pwi‖ ≤ rtol for i ∈ {1, . . . , N},
τi−1(1) = τi(0) for i ∈ {1, . . . , N},
(1), (2), (3), (4), (5).

(6)

For the multi-waypoint scenario, the quadrotor has to fly
through a given sequence of waypoints Pw = (pwi, i ∈
[1, . . . , N ]) while reaching their position pwi with a certain
proximity rtol. The whole multi-waypoint trajectory can be
described as a continuous sequence of N trajectories τi :
[0, 1] → Cfree for i ∈ {0, . . . , N}. The trajectory is assumed
to have a given start τ0(0) = xs and end τN (1) = xe.
Furthermore, the initial positions of the trajectories τi(0)p
have to be in the waypoints’ proximity ‖τi(0)p − pwi‖ ≤ rtol
for i ∈ {1, . . . , N}, and the sequence has to be continuous
τi−1(1) = τi(0) for i ∈ {1, . . . , N}. The goal of the planning

problem is then to minimize the final time T =
∑N
i=0 ti of

reaching xe, where ti denotes the time duration of τi.

IV. METHODOLOGY

The key ingredients of our approach to minimum-time flight
in cluttered environments are three-fold: 1) generation of a
topological guiding path using a probabilistic roadmap [40],
2) a novel task formulation that combines progress maxi-
mization along the guiding path with obstacle avoidance, and
3) a curriculum training strategy to train a neural network
policy using deep reinforcement learning.

A. Topological Path Planning

We first find the topological paths that connect individual
waypoints to guide the subsequent learning process. The
topological guiding paths are found using a variant of the
Probabilistic Roadmap [40] described in [19]. The algorithm
searches for multiple distinct paths with different homotopy
classes, e.g., going around obstacles from different sides.
It uses random sampling in ellipsoids between individual
waypoints and keeps enlarging each ellipsoid and number of
samples until at least one path between waypoints is found.

The created roadmaps between waypoints are then searched
for the shortest path using Dijkstra’s algorithm. Samples
within the shortest path with the smallest distance to obstacles
are then removed from the roadmap and the shortest path
search is repeated to obtain multiple distinct paths. Such
distinct paths are then shortened, and the paths within the same
homotopy class are removed. The resulting topological paths
then represent the connectivity of the Cfree between waypoints
(as shown in Fig. 2(a)). For more details about the topological
path search, we refer to [19].

B. Reinforcement Learning for Minimum-time Flight

In the following, we present the policy architecture, reward
formulation, and strategy employed in our approach to train a
policy for high-speed flight in cluttered environments.
Policy Architecture. The neural network policy uses an
observation space that consists of three main parts: the
quadrotor state, the next waypoint position, and the relative
position of the farthest collision-free position on the guid-
ing path. Specifically, we denote the observation vector as
o = [p(t), R(q(t)),v(t),W,γ(t)], where p(t), R(q(t)), v(t)
are the quadrotor’s position, rotation matrix and velocity,
respectively. Matrix W ∈ R4,3 contains four positions cor-
responding to the bounding box of the currently targeted
waypoint with edge size of 2rtol. The bounding box is used
to convey information not only about the waypoint position,
but also about the size and orientation of the target gate (see
Fig. 1). Finally, the γ(t) is the farthest point on the guiding
path connectable using a collision-free line segment from
the current position p(t) (see Fig. 4). The γ(t) is used for
indicating the flight direction of the quadrotor to maximize
the progress. Throughout the development of the method, we
found by ablating the observation components that all the
components are necessary to learn minimum-time flight in all
tested scenarios.
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(a) Topological guiding paths (b) Slow speed trajectory (c) Final minimum-time trajectory
Fig. 2: Three main steps of our method (shown in Slalom environment) include: (a) finding topological guiding paths between
the waypoints (gates), (b) learning slow policy that flies through all the waypoints, and (c) learning minimum-time policy.
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⍵
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Command
⍵x ⍵y ⍵z

Fig. 3: Illustration of the observation and action produced by
the neural network policy.

The action produced by the policy a(t) = [fT ,w] is the
collective thrust fT in body-z axis and the commanded body
rates w. This action modality has been identified in [37] as
the best performing for learning-based control policies. A low-
level controller then tracks the desired collective thrust and
body rates to produce the speed command for each rotor.
Figure 3 illustrates the observation and action spaces, as
well as the neural network architecture, which is a 2-layer
multilayer perception (MLP).
Path Progress Maximization and Obstacle Avoidance. The
objective of the studied problem is to minimize the time of
reaching the last waypoint, which however, represents a very
sparse signal that is difficult to optimize. This is why prior
works opted for a dense proxy reward using the projected
progress along the center line of a race track in car racing [22],
or progress along the straight line segments between gates [15]
for the task of drone racing. We further extend this progress-
based reward for the task of minimum-time planning in
cluttered environments by calculating the progress along the
topological guiding path.

Figure 4 illustrates how the progress is computed between
two consecutive states with positions p(t−1) and p(t). We as-
sume the guiding topological path between start waypoint and
end waypoint consists of a sequence of n points (g1, . . . , gn)
that form a sequence of line segments (l1, . . . , ln−1). To
calculate the progress at position p, we need to find the closest
point ψ(p) on the guiding path and its line segment index l(p)
as:

l(p),ψ(p) = arg min
l(p),ψ(p)

‖p−ψ(p)‖

s.t. ψ(p) = gl(p) + t(gl(p)+1 − gl(p)),

t =
(p− gl(p)) · (gl(p)+1 − gl(p))∥∥gl(p)+1 − gl(p)

∥∥2 ,

l(p) ∈ {1, . . . , n− 1} , t ∈ [0, 1].

(7)

𝜓(t-1)

𝜓(t)
𝛾(t)

𝛾(t-1)

p(t-1)

p(t)

g1g2

g3

g4

g5g6
𝓦

Fig. 4: Illustration of the collision-free topological guiding
path between waypoints. The nearest point on the guiding path
ψ from quadrotor position p is used to calculate progress
reward. The farthest collision-free point γ and waypoint
bounding box W are used as a part of observation.

The reached distance s(p) along the guiding path is then
calculated using (8) as the length of the topological path until
the closest point ψ(p). The progress reward rp(t) at time t is
then computed using equation (9) as a difference in reached
distance between the current and previous time step.

s(p) =

l(p)−1∑
i=1

‖gi+1 − gi‖+
∥∥ψ(p)− gl(p)

∥∥ (8)

rp(t) = s(p(t))− s(p(t− 1)) (9)

The total reward r(t) at time t then equals

r(t) = kprp(t) + kss(p(t)) + kwprwp + rT − kω ‖ω‖ , (10)

where kp, kω , and kwp are hyperparameters that define the
contribution of each reward component. The reached distance
s(p(t)) with parameter ks is used as part of the reward mainly
to counteract the fact that the progress along the line segments
can have many singularities. Such singularities emerge due
to the sharp corners of the guiding path (see Fig. 4) and
minimum-distance projection, which can block learning a
policy that flies through all waypoints when negative progress
occurs in the singularities.

The total reward also values passing of a waypoint kwprwp
and discourage high body rates kω ‖ω‖. When a new waypoint
is passed within distance dw ≤ rtol a positive reward of
rwp = e−dwp/rtol is added to prioritize passing close to the
waypoint center and thus to increase robustness during real
flight with disturbances. The terminal reward rT = −10 is
only added when the quadrotor collides with an obstacle.
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During the development of the method, we tested several
reward components and their ablation, rendering only the
presented variant able to learn policies for all tested scenarios.
Training Strategy. Naive optimization of the reward formu-
lation specified in (10) results in suboptimal performance due
to local minima and a higher probability of collisions in high-
speed flight. This is caused by the decoupled nature of the
topological path planning and the reinforcement learning of
minimum-time flight for the dynamic quadrotor model. Such
decoupling makes the learning of high-speed flight along the
topological paths a challenging problem.

We overcome this limitation by employing a curriculum
strategy, where the racing policy is trained in two stages. In the
first stage, a slow policy (see Fig. 2(b)) is trained to fly closely
along the guiding path while the minimal vmin and maximal
vmax speeds are limited through a scaled reward. This helps to
find a policy that flies through the waypoints without collision
as the guiding paths are known to be collision free and the
high velocities would decrease the relative size of narrow
passages. Specifically, in the initial slow flight training stage,
the parameters of progress reward kp and reached distance
reward ks are scaled down by a factor of s computed as:

s = svmax
svmin

sgd, (11)

svmax
=

{
10vmax−‖v‖ if ‖v‖ > vmax,
1 otherwise,

(12)

svmin
=

{
10‖v‖−vmin if ‖v‖ < vmin,
1 otherwise,

(13)

sgd =

{
e−‖p−ψ(p)‖+dmax if ‖p−ψ(p)‖ > dmax,
1 otherwise.

(14)

This adapted reward formulation forces the policy to find
only slow trajectories with speed vmin < ‖v‖ < vmax and
distance from the guiding paths ‖p−ψ(p)‖ < dmax, which
in turn helps finding a trajectory around an already known
collision-free guiding path.

The limited maximal speed in the slow flight training stage
is also used to calculate the initial value of the parameter
ks as ks = 2(vmax · dt)/

∑n−1
i=1 ‖gi+1 − gi‖, where dt is the

simulation time step. This limits the collected reward from
reached distance to be approximately the same as the progress
reward in the slow flight learning phase. While during the
later minimum-time learning phase, the progress reward is, in
comparison, significantly more prominent.

After the trained slow flight policy is able to navigate
through all waypoints, the speed limits and the constrained
distance to the guiding path are removed to enable training a
minimum-time policy as shown in Fig. 2(c).
Training Details. The policy is trained using Proximal Pol-
icy Optimization (PPO) [41], which has demonstrated good
performance in benchmarks for continuous control tasks. We
utilize 100 parallel agents to train the policy entirely in
simulation, which increases the speed of collecting data and di-
versifies the experienced states and observations among agents.
The simulation uses the dynamics 1-5 and forward integrates
them using a 4th order Runge-Kutta scheme. Additionally, the
linear drag coefficients (kvx, kvy, kvz) are randomized with

normal distributions N(0, kvx), N(0, kvy), N(0, kvz) for each
agent after restart, to make the policy robust against unknown
and possibly random aerodynamic effects.

Initialization of the agents is randomized among all spec-
ified waypoints and guiding paths to encourage diversity of
experienced states. Each agent keeps a vector of valid states,
i.e., states that are reached by running the policy from the start
position without collision. In the first learning stage, the valid
states are required to be within the speed limit vmin < ‖v‖ <
vmax and close to the guiding path ‖p−ψ(p)‖ < dmax.
The guiding paths are discretized into 1 m parts based on the
distance along the path s(p), and each such part is mapped to
one valid state in the vector of agent’s valid states. These valid
states are then used to randomly initialize the state after an
agent collides with an obstacle or reaches the final waypoint.

All policies are trained using 12 threads on a laptop featur-
ing an Intel Xeon W-10885M CPU and a Quadro RTX 4000
Mobile GPU.

V. RESULTS

The proposed method has been evaluated concerning the
following performance criteria: (i) lap time performance of
the planned trajectory in a simple simulation scenario without
model mismatch, (ii) success rates of navigating the vehicle
through a cluttered environment using high-fidelity simulation,
and (iii) validation of the learned policy in the real world.

We identify a powerful race drone using real world flight
data. The physical properties of the quadrotor, along with
hyperparameters of the proposed and baseline methods, are
summarized in Table I. The hyperparameters of the reward
components were tuned such that the collected rewards from
the individual components follow a particular priority, i.e.
−rT � kprp(t) ≈ kwprwp � kss(p(t)) ≈ −kω ‖ω‖.
The evaluation of the method is done in four environments.
The Slalom environment is shown in Figure 2. The For-
est, Office, and Racing environments, including the Multi-
Waypoint (MW) Racing environment, are illustrated in Fig-
ure 5. The environments are represented as an Euclidean
Signed Distance Field [42] with precision of 0.05 m. We
use Flightmare [43] for the simulation and the Stable Base-
lines [44] for policy training.

TABLE I: Parameters of the quadrotor and the algorithms.
Variable Value Variable Value

Q
ua

dr
ot

or

m [kg] 0.85 l [m] 0.15
fmin [N] 0 fmax [N] 7

diag(J) [gm2] [1, 1, 1.7] κ [-] 0.05
wmax [rad s−1] 15 cf 1.563× 10−6

kvx [Nsm−1] 0.26 kvy [Nsm−1] 0.28
kvz [Nsm−1] 0.42

[18] kT 105000 Npoly 10

[30] amax [ms−2] 31.4

R
L

kp[-] 5.0 kω[-] 0.01
kwp[-] 5.0 dt [s] 0.02

vmax [ms−1] 2 vmin [ms−1] 1
dmax [m] 0.3 dc [m] 0.15
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(a) Forest (b) Office (c) Racing / Racing MW
Fig. 5: Example trajectories found by the proposed method in the selected environments used for evaluation.

A. Lap Time Performance of Planned Trajectories in Simple
Simulation

In the simple simulation, we analyze the quality, such as
duration, of the planned trajectories and compare it with
related baseline algorithms. The first baseline algorithm is the
polynomial method [18] that jointly minimizes snap and time
(using time penalty kT ) of a trajectory that is represented by
an Npoly-th order polynomial. The search-based method [30]
for quadrotor planning uses a discretized state of a point-mass
up to acceleration to plan minimum-time trajectories using
a graph-search algorithm. The search-based method uses an
acceleration limit of amax = 31.4 m s−2, which represents
the optimistic, yet infeasible, limit corresponding to achiev-
able acceleration along one axis in horizontal motion. The
optimization method presented in [4] plans truly time-optimal
trajectories between given waypoints, however, the original
variant had to be extended to allow planning in cluttered
environments. Lastly, the sampling-based method [19] uses
a hierarchical approach of increasing model complexity to
plan minimum-time trajectories for the full quadrotor model
in cluttered environments.

To allow for a fair comparison, the motor dynamics Ω̇
and the aerodynamic drag forces fd are not considered
in the simple simulation. This corresponds to the baseline
methods [4], [18], [19], [30], which all do not account for
both phenomena, except for [4] that can include a simple
linear drag model. The comparison of the planning methods
is presented in Table II. The trajectory duration is reported
as the best-found duration Tb. Additionally, we show the
average duration with standard deviation Ta from 30 different
runs for the methods that are randomized and have non-zero
deviation. We report the computation times for the baseline
methods. For the proposed method, we show the inference
time (including the time for preprocessing observations) of the
trained neural network during evaluation. For each scenario, a
different policy is learned with training time of approximately
45 minutes with a standard laptop.

Table II shows that the polynomial method has the highest
trajectory duration while being the fastest in computation.
In contrast, the search-based method generates substantially
faster trajectories; however, it requires longer computation
times. The search-based method is severely limited by the state
space discretization, which limits finding truly time-optimal
continuous-space trajectories. Furthermore, the method only
returns valid solutions in the 2D Forest and Office environ-
ments, while it failed to find valid solutions for the 3D Racing
environment and multi-waypoint scenarios. The optimization-

based method can find the time-optimal trajectories only for
the three simple Forest test cases. It fails in the other environ-
ments due to the introduced non-convex collision avoidance
constraints. The sampling-based method is capable of finding
high-quality solutions for all considered test cases; however,
the computational time is comparable to [4], [30].

Finally, our learning-based method can achieve on par,
mostly better, solutions compared to the conventional methods.
In test cases where the baselines slightly outperform our ap-
proach, the difference is within, or close to, the time precision
dt = 0.02 s of the RL policy. We observe that the performance
margin of our approach compared to the baselines increases
with increasing environment complexity.

In simplistic environments, our learning-based method has
lower performance than the best baseline. This is due to the
trade-off between flying safe and flying fast. As a result, our
approach opts for safer, however slower, actions in cases where
a time-optimal trajectory almost touches the obstacles. This
effect is difficult to be modeled when using the optimization-
based or the sampling-based method. The risk-awareness
property of our neural network policy plays an essential role
in achieving a high success rate in the presence of a model
mismatch.

In more complex Office and Racing environments, our
approach finds significantly faster trajectories than all base-
lines. This is because the sampling-based method uses a
hierarchical approach where a point-mass trajectory guides
the final trajectory for the quadrotor. It leads to rather bang-
bang body rate behavior, which is favorable for the simple
Forest scenarios. In contrast, for the Office scenarios, smooth
body rates produced by RL are favorable. Finally, the inference
time of the neural network policy is on average less than one
millisecond, which allows fast online adaptation.

B. Success Rate of Minimum-time Flight in High Fidelity
Simulation

To validate the success rate of navigating through given
waypoints in a cluttered environment, we utilize a high-fidelity
simulation which is based on Bade-Element-Momentum
(BEM) theory [45]. Compared to the simple simulation, the
BEM simulation can accurately model lift and drag produced
by each rotor from the current ego-motion of the platform
and the individual rotor speeds. Our proposed approach is
compared with trajectories planned using the sampling-based
method and tracked at 100 Hz using Model Predictive Control
(MPC) [46] that outputs the same thrust and body rates
commands as the RL policy. The output of the MPC is then
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TABLE II: Comparison of baseline algorithms and our learning-based method.

Environment Test
case

Polynomial [18] Search-based [30] CPC [4] Sampling-based [19] RL (ours)

c. time[s] Ta[s] Tb[s] c. time[s] Tb[s] c. time[s] Tb[s] c. time[s] Ta[s] Tb[s] i. time[s] Tb[s]

Forest

0 0.41 4.67±0.63 3.86 17.52 1.60 70.23 0.95 14.92 1.10±0.13 0.96 0.00042 0.98
1 0.30 3.43±0.00 3.43 9.34 1.40 67.40 0.96 2.85 0.97±0.00 0.96 0.00042 1.00
2 0.30 3.74±0.93 3.22 3.12 1.40 65.49 0.95 8.03 0.98±0.01 0.96 0.00042 1.00
3 1.47 7.20±1.17 5.25 41.90 1.80 - - 135.83 1.50±0.17 1.30 0.00052 1.28

Office

0 1.36 8.64±1.03 7.34 28.35 2.60 - - 139.19 2.38±0.28 1.93 0.00040 1.62
1 0.65 7.50±0.44 6.49 100.16 2.20 - - 103.64 1.74±0.06 1.69 0.00043 1.64
2 0.89 9.01±0.77 6.38 47.08 2.20 - - 155.23 2.20±0.13 1.93 0.00045 1.56
3 0.47 5.26±0.35 5.14 48.02 2.00 - - 223.64 1.81±0.11 1.58 0.00040 1.40

Racing

0 1.98 6.56±0.66 5.79 - - - - 365.91 1.61±0.29 1.34 0.00039 1.20
1 2.06 6.21±0.88 5.13 - - - - 428.02 1.63±0.15 1.36 0.00042 1.20
2 1.87 6.26±0.42 4.94 - - - - 138.17 1.45±0.12 1.37 0.00039 1.38
3 1.91 5.27±0.69 4.73 - - - - 604.55 2.14±0.74 1.57 0.00039 1.34

Racing MW 0 8.12 27.54±0.62 26.98 - - - - 734.65 7.10±0.06 7.01 0.00037 6.92

TABLE III: Comparison of success rates of navigating through
waypoints while avoiding obstacles.

Env. Test
case

SB [19] + MPC [4] RL (ours)

success[%] Ta[s] Tb[s] success[%] Ta[s] Tb[s]

Forest

0 25 1.22 1.13 100 1.23 1.21
1 0 - - 100 1.21 1.18
2 27 1.14 1.11 100 1.20 1.18
3 16 1.70 1.42 100 1.57 1.56

Office

0 41 2.38 2.12 100 1.91 1.89
1 28 1.86 1.78 100 1.84 1.82
2 56 2.29 1.97 100 1.74 1.72
3 70 2.16 1.70 100 1.99 1.96

Racing

0 57 1.61 1.46 100 1.41 1.39
1 51 1.64 1.45 100 1.47 1.44
2 76 1.72 1.51 100 1.51 1.49
3 54 1.80 1.62 100 1.46 1.43

Racing MW 0 25 7.22 7.17 100 7.22 7.18

tracked using the same low-level BetaFlight controller as used
for tracking the policy actions. The sampling-based method
is the only other method capable of computing collision-free
trajectories for all test cases. We use MPC for the trajectory
tracking, since it has been shown to successfully track truly
time-optimal trajectories [4]. The MPC has been tuned to
maximize position tracking performance to stick to the planned
trajectory collision-free positions and thus avoid obstacles. The
thrust limit of the considered platform is increased from the
fmax = 7 N used for planning and learning the policies, to
fmax = 8.5 N to have control margins for the MPC. Fur-
thermore, the BEM simulation uses, in contrast to the simple
simulation, both the motor dynamics and the aerodynamics.

Table III shows the comparison of the success rate, mea-
sured over 30 runs per test case. A successful run is defined
if the quadrotor passes all waypoints within given tolerance
rtol and avoids all obstacles. The obstacle tolerance dc is
decreased by the ESDF precision to remove the influence of
the discretized ESDF map representation. We also show the
average Ta and best Tb duration of all tested flights for both
methods.

Table III indicates that our learned policy can be trans-
ferred to a different simulator without fine-tuning. The policy
successfully navigates the quadrotor through all environments
without collisions while achieving faster flight trajectories.
By contrast, the sampling-based method combined with MPC

has significantly lower success rates. This is because the
MPC struggles to handle disturbances during high-speed flight.
When the platform is at its actuation limit, the slightest devia-
tion from the pre-planned trajectory results in a suboptimal
flight path, and eventually catastrophic crashes due to the
presence of obstacles.

C. Real-world Validation

We validate our policy in the real world, where the quadrotor
has to navigate through the Slalom environment. Figure 1
shows a successful deployment of the policy. The used
platform is based on the open-hardware and open-source
Agilicious quadrotor framework [46]. We use the BetaFlight
controller to track the commanded collective thrust and body
rates. We conducted our experiment in the world’s largest
indoor drone-testing arena (30 × 30 × 8 m3) equipped with
a motion capture system with 400 Hz operation frequency.
The attached video shows the flight with thrust limits of
fmax = 4 N and fmax = 7 N where in the second case
the maximal velocity reached 42 km h−1. Our policy achieved
a flight duration of 7.68 s in simulation, while the duration
of the real flight was 7.90 s, when using the thrust limit of
fmax = 7 N.

VI. CONCLUSIONS

This paper introduced a novel method that combines deep
reinforcement learning and classical topological path plan-
ning to train robust neural network controllers for minimum-
time quadrotor flight in cluttered environments. We showed
that the proposed method outperforms existing state-of-the-art
approaches in the majority of the test cases, with improved
trajectory quality of up to 19%. More importantly, we showed
that the trained neural network controller can adapt online
to counteract disturbances and model mismatches, and thus
fly robustly. The presented method achieves 100% success
rate of flying minimum-time policies without collision, while
approaches relying on the traditional planning and control
pipeline achieve only 40%. Our findings suggest that model-
free deep RL is a promising method for addressing challenging
tasks in agile flight, such as dynamic obstacle avoidance or
vision-based minimum-time flight in cluttered environments.
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