
Autonomous, Vision-based Flight and Live Dense 3D
Mapping with a Quadrotor Micro Aerial Vehicle

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli, and Davide Scaramuzza∗
Robotics and Perception Group, University of Zurich, 8050 Zurich, Switzerland

Received 14 June 2014; accepted 22 January 2015

The use of mobile robots in search-and-rescue and disaster-response missions has increased significantly in
recent years. However, they are still remotely controlled by expert professionals on an actuator set-point level,
and they would benefit, therefore, from any bit of autonomy added. This would allow them to execute high-
level commands, such as “execute this trajectory” or “map this area.” In this paper, we describe a vision-based
quadrotor micro aerial vehicle that can autonomously execute a given trajectory and provide a live, dense
three-dimensional (3D) map of an area. This map is presented to the operator while the quadrotor is mapping,
so that there are no unnecessary delays in the mission. Our system does not rely on any external positioning
system (e.g., GPS or motion capture systems) as sensing, computation, and control are performed fully onboard
a smartphone processor. Since we use standard, off-the-shelf components from the hobbyist and smartphone
markets, the total cost of our system is very low. Due to its low weight (below 450 g), it is also passively safe and
can be deployed close to humans. We describe both the hardware and the software architecture of our system.
We detail our visual odometry pipeline, the state estimation and control, and our live dense 3D mapping, with
an overview of how all the modules work and how they have been integrated into the final system. We report
the results of our experiments both indoors and outdoors. Our quadrotor was demonstrated over 100 times at
multiple trade fairs, at public events, and to rescue professionals. We discuss the practical challenges and lessons
learned. Code, datasets, and videos are publicly available to the robotics community. C© 2015 Wiley Periodicals, Inc.

SUPPLEMENTARY MATERIAL

This paper is accompanied by videos demonstrating the ca-
pabilities of our platform in outdoor and indoor scenarios:

� Indoor evaluation (disturbance and autonomous, vision-
based live 3D mapping): http://youtu.be/sdu4w8r_fWc

� Outdoor autonomous, vision-based flight over disaster
zone: http://youtu.be/3mNY9-DSUDk

� Outdoor autonomous, vision-based flight with live 3D
mapping: http://youtu.be/JbACxNfBI30

More videos can be found on our Youtube channel:
https://www.youtube.com/user/ailabRPG/videos

Our visual odometry code (called SVO) for vision-
based navigation has been released open source and is freely
available on the authors’ homepage.

∗The authors are with the Robotics and Perception Group, Univer-
sity of Zurich, Switzerland—http://rpg.ifi.uzh.ch.
Direct correspondence to: Matthias Faessler, e-mail; faessler@
ifi.uzh.ch

1. INTRODUCTION

1.1. Motivation

For search-and-rescue, disaster response, and surveillance
missions, it is crucial for human rescuers to get an overview
of the situation in order to take appropriate measures. In
this paper, we present a vision-based quadrotor that can
autonomously execute a trajectory, build a dense 3D map
of an unknown area in real-time, and present it live to a
user during the mission. Live feedback is, indeed, crucial to
avoid any unnecessary delays during a rescue operation.

When robots are deployed in disaster situations, an
average of three expert professionals are required for each
robot to control them (Murphy, 2014). Additionally, they are
teleoperated on an actuator set-point level, which makes the
execution of tasks slow and cumbersome.

At the current state, all micro aerial vehicles
(MAVs) used in search-and-rescue and remote-inspection
scenarios are controlled under direct line of sight with the
operator (Murphy, 2014). If wireless communication can be
maintained, there is the possibility to teleoperate the MAV
by transmitting video streams from the onboard cameras to
the operator. However, teleoperation from video streams is
extremely challenging in indoor environments.

Since such systems exhibit very limited or no auton-
omy at all, the stress level on the operator is very high,

Journal of Field Robotics 00(0), 1–20 (2015) C© 2015 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21581

http://youtu.be/sdu4w8r_fWc
http://youtu.be/3mNY9-DSUDk
http://youtu.be/JbACxNfBI30
https://www.youtube.com/user/ailabRPG/videos
http://rpg.ifi.uzh.ch


2 • Journal of Field Robotics—2015

which limits the mission time drastically. Operator errors
could harm the robot or, even worse, cause further damage.
For these reasons, there is a large need for flying robots that
can navigate autonomously, without any user intervention,
or execute high-level commands, such as “execute this trajec-
tory” or “map this area.” This would bring several advantages
over today’s disaster-response robots. First, the robot could
easily be operated by a single person, who could focus on
the actual mission. Secondly, a single person could operate
multiple robots at the same time to speed up the mission.
Finally, rescuers could operate such systems with very lit-
tle training. These advantages, in combination with the low
cost of the platform, will soon make MAVs become standard
tools in disaster response operations.

1.2. System Overview

Our system consists of a quadrotor and a laptop base
station with a graphical user interface for the operator
(see Figure 1). The quadrotor is equipped with a single,
down-looking camera, an inertial measurement unit (IMU),
and a single-board computer. All required sensing, com-
putation, and control is performed onboard the quadrotor.
This design allows us to operate safely even when we
temporarily lose wireless connection to the base station. It
also allows us to operate the quadrotor beyond the range
of the wireless link as, for instance, inside buildings. We do
not require any external infrastructure such as GPS, which
can be unreliable in urban areas or completely unavailable
indoors.

We chose quadrotors because of their high maneuver-
ability, their ability to hover on a spot, and their simple
mechanical design. To make the system self-contained, we
rely only on onboard sensors (i.e., a camera and an IMU).

For operating in areas close to humans, safety is a
major concern. We aim at achieving this passively by
making the quadrotor as lightweight as possible (below 450
g). Therefore, we chose passive sensors, which are typically
lighter and consume less power. However, when using
cameras, high computational power is required to process
the huge amount of data. Due to the boost of computational
power in mobile devices (e.g., smartphones, tablets),
high-performance processors that are optimized for power
consumption, size, and cost are available today. An addi-
tional factor for real-world applications is the cost of the
overall system. The simple mechanical design and the use
of sensors and processors produced millionfold for smart-
phones makes the overall platform low cost (1,000 USD).

1.3. Contributions and Differences with Other
Systems

The main contribution of this paper is a self-contained, ro-
bust, low-cost, power-on-and-go quadrotor MAV that can
autonomously execute a given trajectory and provide a live

dense 3D mapping without any user intervention and us-
ing only a single camera and an IMU as the main sensory
modality.

The most similar to our system is the one which re-
sulted from the European project SFLY Weiss et al. (2013);
Scaramuzza et al. (2014). However, in SFLY, dense 3D maps
were computed offline and were available only after several
minutes after landing.

Another difference with the SFLY project lies in the
vision-based motion-estimation pipeline. Most monocular,
visual-odometry algorithms used for MAV navigation (see
Section 3.2) rely on PTAM Klein & Murray (2007), which is
a feature-based visual SLAM algorithm, running at 30 Hz,
designed for augmented reality applications in small desk-
top scenes. In contrast, our quadrotor relies on a novel vi-
sual odometry algorithm [called SVO, which we proposed
in Forster, Pizzoli, & Scaramuzza (2014b)] designed specif-
ically for MAV applications. SVO eliminates the need of
costly feature extraction and matching as it operates di-
rectly on pixel intensities. This results in high precision,
robustness, and higher frame-rates (at least twice that of
PTAM) than current state-of-the-art methods. Additionally,
it uses a probabilistic mapping method to model outliers
and feature-depth uncertainties, which provide robustness
in scenes with repetitive, and high-frequency textures.

In SFLY, a commercially available platform was used,
with limited access to the low-level controller. Conversely,
we have full access to all the control loops, which allows
us to tune the controllers down to the lowest level. Further-
more, we propose a one-time-per-mission estimation of sen-
sor biases, which allows us to reduce the number of states
in the state estimator. In addition, the estimated biases are
also considered in the low-level controller (body rate con-
troller), while in SFLY, they were only used in the high-level
controller (position controller). Furthermore, we propose a
calibration of the actually-produced thrust, which ensures
the same control performance regardless of environmental
conditions such as temperature and air pressure.

1.4. Outline

The paper is organized as follows. Section 3 reviews the re-
lated work on autonomous MAV navigation and real-time
3D dense reconstruction. Section 4 presents the hardware
and software architecture of our platform. Section 5 de-
scribes our visual odometry pipeline, while Section 6 details
the state estimation and control of the quadrotor. Section 7
describes our live, dense 3D reconstruction pipeline. Finally,
Section 8 presents and discusses the experimental results,
and Section 9 comments on the lessons learned.

2. RELATED WORK

To date, most autonomous MAVs rely on GPS to navigate
outdoors. However, GPS is not reliable in urban settings and

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 3

Figure 1. Our system (a) can autonomously build a dense 3D map of an unknown area. The map is presented to the operator
through a graphical user interface on the base station laptop while the quadrotor is mapping (b, right inset) together with the
onboard image (b, bottom left inset) and a confidence map (b, top left inset).

Journal of Field Robotics DOI 10.1002/rob



4 • Journal of Field Robotics—2015

is completely unavailable indoors. Because of this, most
works on autonomous indoor navigation of flying robots
have used external motion-capture systems (e.g., Vicon or
OptiTrack). These systems are very appropriate for testing
and evaluation purposes (Lupashin et al., 2014; Michael,
Mellinger, Lindsey, & Kumar, 2010), such as prototyping
control strategies or executing fast maneuvers. However,
they need pre-installation of the cameras, and thus they
cannot be used in unknown yet unexplored environments.
Therefore, for truly autonomous navigation in indoor envi-
ronments, the only viable solution is to use onboard sensors.
The literature on autonomous navigation of MAVs using
onboard sensors includes range (e.g., laser rangefinders or
RGB-D sensors) and vision sensors.

2.1. Navigation Based on Range Sensors

Laser rangefinders have been largely explored for simul-
taneous localization and mapping (SLAM) with ground
mobile robots (Thrun et al., 2007). Because of the heavy
weight of 3D scanners [see, for instance, the Velodyne sen-
sor (more than 1 kg)], laser rangefinders currently used on
MAVs are only 2D. Since 2D scanners can only detect objects
that intersect their sensing plane, they have been used for
MAVs in environments characterized by vertical structures
(Achtelik, Bachrach, He, Prentice, & Roy, 2009; Bachrach,
He, & Roy, 2009; Shen, Michael, & Kumar, 2011, 2012b) and
less in more complex scenes.

RGB-D sensors are based upon structured-light tech-
niques, and thus they share many properties with stereo
cameras. However, the primary differences lie in the range
and spatial density of depth data. Since RGB-D sensors il-
luminate a scene with a structured-light pattern, contrary
to stereo cameras, they can estimate depth in areas with
poor visual texture but are range-limited by their projec-
tors. RGB-D sensors for state estimation and mapping with
MAVs have been used in Bachrach et al. (2012) as well as
in Shen, Michael, & Kumar (2012a, 2012b), where a multi-
floor autonomous exploration and mapping strategy was
presented.

2.2. Navigation Based on Vision Sensors

Although laser rangefinders and RGB-D sensors are very
accurate and robust to illumination changes, they are too
heavy and consume too much power for lightweight MAVs.
In this case, the alternative solution is to use vision sen-
sors. Early works on vision-based navigation of MAVs fo-
cused on biologically inspired algorithms (such as opti-
cal flow) to perform basic maneuvers, such as takeoff and
landing, reactive obstacle avoidance, and corridor and ter-
rain following (Hrabar, Sukhatme, Corke, Usher, & Roberts,
2005; Lippiello, Loianno, & Siciliano, 2011; Ruffier &
Franceschini, 2004; Zingg, Scaramuzza, Weiss, & Siegwart,
2010; Zufferey & Floreano, 2006). Since optical flow can only

measure the relative velocity of image features, the position
estimate of the MAV will inevitably drift over time. This
can be avoided using visual odometry or visual simultane-
ous localization and mapping (SLAM) methods, in monoc-
ular (Forster et al., 2014b; Scaramuzza et al., 2014; Weiss,
Scaramuzza, & Siegwart, 2011; Weiss et al., 2013) or stereo
configurations (Achtelik et al., 2009; Schmid, Lutz, Tomic,
Mair, & Hirschmuller, 2014; Shen, Mulgaonkar, Michael, &
Kumar, 2013). Preliminary experiments for MAV localiza-
tion using a visual extended Kalman filter (EKF) -based
SLAM technique were described in Ahrens, Levine, An-
drews, & How (2009). However, the first use of visual SLAM
to enable autonomous basic maneuvers was done within
the framework of the SFLY European project, where a sin-
gle camera and an IMU were used for state estimation and
point-to-point navigation over several hundred meters in
an outdoor, GPS-denied environment (Scaramuzza et al.,
2014; Weiss et al., 2013).

Most monocular visual odometry (VO) algorithms
for MAVs (Bloesch, Weiss, Scaramuzza, & Siegwart, 2010;
Engel, Sturm, & Cremers, 2012; Scaramuzza et al., 2014;
Weiss et al., 2013) rely on PTAM (Klein & Murray, 2007).
PTAM is a feature-based SLAM algorithm that achieves ro-
bustness through tracking and mapping several hundreds
of features. Additionally, it runs in real time (at around
30 Hz) by parallelizing the motion estimation and map-
ping tasks and by relying on efficient keyframe-based bun-
dle adjustment (BA) (Strasdat, Montiel, & Davison, 2010).
However, PTAM was designed for augmented reality appli-
cations in small desktop scenes, and multiple modifications
(e.g., limiting the number of keyframes) were necessary to
allow operation in large-scale outdoor environments (Weiss
et al., 2013).

2.3. Real-time Monocular Dense 3D Mapping

In robotics, a dense reconstruction is needed to interact with
the environment—as in obstacle avoidance, path planning,
and manipulation. Moreover, the robot must be aware of
the uncertainty affecting the measurements in order to
intervene by changing the vantage point or deploying dif-
ferent sensing modalities (Forster, Pizzoli, & Scaramuzza,
2014a).

A single moving camera represents the most general
setting for stereo vision. Indeed, in stereo settings a fixed
baseline constrains the operating range of the system, while
a single moving camera can be seen as a stereo camera with
an adjustable baseline that can be dynamically reconfigured
according to the requirements of the task.

Few relevant works have addressed real-time, dense
reconstruction from a single moving camera, and they shed
light on some important aspects. If, on the one hand, esti-
mating the depth independently for every pixel leads to ef-
ficient, parallel implementations, on the other hand Gallup,
Frahm, Mordohai, Yang, & Pollefeys (2007), Stühmer et al.

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 5

(2010), Newcombe et al. (2011), and Wendel, Maurer, Graber,
Pock, & Bischof (2012) argued that, similar to other com-
puter vision problems, such as image denoising (Rudin,
Osher, & Fatemi, 1992) and optical flow estimation (Werl-
berger, Pock, & Bischof, 2010), a smoothing step is required
in order to deal with noise and spurious measurements.
In Stühmer et al. (2010), smoothness priors were enforced
over the reconstructed scene by minimizing a regularized
energy functional based on aggregating a photometric cost
over different depth hypothesis and penalizing nonsmooth
surfaces. The authors showed that the integration of mul-
tiple images leads to significantly higher robustness to
noise. A similar argument is put forth in Newcombe et al.
(2011), where the advantage of photometric cost aggrega-
tion (Szeliski & Scharstein, 2004) over a large number of
images taken from nearby viewpoints is demonstrated.

However, despite the groundbreaking results, these ap-
proaches present some limitations when addressing tasks
in robot perception. Equally weighting measurements from
small and large baselines, in close and far scenes, causes the
aggregated cost to frequently present multiple or no min-
ima. Depending on the depth range and sampling, these
failures are not always recoverable by the subsequent opti-
mization step. Furthermore, an inadequate number of im-
ages can lead to a poorly constrained initialization for the
optimization and erroneous measurements that are hard to
detect. It is not clear how many images should be collected,
depending on the motion of the camera and the scene struc-
ture. Finally, the number of depth hypotheses controls the
computational complexity, and the applicability is thus lim-
ited to scenes bounded in depth.

Therefore, in Pizzoli, Forster, & Scaramuzza (2014) we
presented the REMODE framework that overcomes these
limitations by using a probabilistic approach handling mea-
surement uncertainty. We build on the Bayesian depth esti-
mation proposed in Vogiatzis & Hernández (2011) for per-
pixel depth estimation and introduce an optimization step
to enforce spatial regularity over the recovered depth map.
We propose a regularization term based on the weighted
Huber norm, but, differently from Newcombe et al. (2011),
we use the depth uncertainty to drive the smoothing and ex-
ploit a convex formulation for which a highly parallelizable
solution scheme has been recently introduced (Chambolle
& Pock, 2011).

3. SYSTEM OVERVIEW

We propose a system consisting of a quadrotor equipped
with a monocular camera and a laptop serving as the
ground station. The quadrotor is able to navigate fully au-
tonomously without requiring any communication with the
ground station. On the ground station, we can compute
a dense 3D reconstruction from the images taken by the
quadrotor in real time. In the following, we describe the
aerial platform and the software modules.

Figure 2. A closeup of our quadrotor: 1) down-looking cam-
era, 2) Odroid U3 quad-core computer, 3) PIXHAWK autopilot.

3.1. Aerial Platform

We built our quadrotor from selected off-the-shelf compo-
nents and custom 3D printed parts (see Figure 2). The com-
ponents were chosen according to their performance and
their ability to be easily customized.

Our quadrotor relies on the frame of the Parrot
AR.Drone 2.01 including their motors, motor controllers,
gears, and propellers. To reduce play and vibrations on the
platform, we replaced the bushings of the propeller axes by
ball bearings. The platform is powered by one 1,350 mA h
LiPo battery, which allows a flight time of 10 min.

We completely replaced the electronic parts of the
AR.Drone by a PX4FMU autopilot and a PX4IOAR adapter
board developed in the PIXHAWK Project (Meier et al.,
2012). The PX4FMU consists, among other things, of an IMU
and a micro controller to read the sensors, run a body rate
controller, and command the motors. In addition to the PX4
autopilot, our quadrotors are equipped with an Odroid-U3
single-board computer.2 It contains a 1.7 GHz quad-core
processor running XUbuntu 13.103 and ROS.4 The PX4 mi-
cro controller communicates with the Odroid board over
UART, whereas the Odroid board communicates with the
ground station over 5 GHz WiFi.

To stabilize the quadrotor, we make use of the gyros
and accelerometers of the IMU on the PX4FMU as well as
a downward-looking MatrixVision mvBlueFOX-MLC200w
(752 × 480)-pixel monochrome camera with a 130-degree
field-of-view lens.5

Our platform is easily reparable due to off-the-
shelf components, inexpensive (1,000 USD; cf. Table I),

1http://ardrone2.parrot.com/
2http://www.hardkernel.com/main/products/prdt_info.php?g_
code=G138745696275
3http://www.xubuntu.org/
4http://www.ros.org/
5http://www.matrix-vision.com/USB2.0-single-board-camera-
mvbluefox-mlc.html

Journal of Field Robotics DOI 10.1002/rob

http://ardrone2.parrot.com/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
http://www.xubuntu.org/
http://www.ros.org/
http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html


6 • Journal of Field Robotics—2015

Table I. Weight and price of the individual components of our
quadrotors.

Component Weight (g) Price (USD)

Frame, Gears, Propellers 119 63
Motors, Motor Controllers 70 214
PX4FMU, PX4IOAR 35 181
Hardkernel Odroid-U3 49 65
Camera, Lens 16 326
1350mA h Battery 99 44
Other Parts 54 110
Total 442 1,003

lightweight (below 450 g), and, due to its flexible propellers,
safe to use.

3.2. Software Modules

The software used in our system runs on three different
processing units (see Figure 3), namely the PX4 micro con-
troller, the Odroid computer, and a laptop, which serves as
the ground station. All the computations required to stabi-
lize the quadrotor are performed onboard. On the ground
station (a W530 Lenovo laptop), only the dense 3D recon-
struction is computed using its graphics processing unit
(GPU).

The PX4 micro controller reads the IMU and controls
the desired body rates and collective thrust that it receives
from the high-level controller running on the Odroid.

The Odroid processes the camera images by means of
our semidirect visual odometry [SVO (Forster et al., 2014b)]

pipeline (see Section 5). The visual odometry pipeline out-
puts an unscaled pose, which is then fused with the IMU
readings in an extended Kalman filter framework [multisen-
sor fusion (MSF) (Lynen, Achtelik, Weiss, Chli, & Siegwart,
2013)] to compute a metric state estimate. From this state
estimate and a reference trajectory, we compute the desired
body rates and collective thrust, which are then sent to the
PX4. Alongside this pipeline, we send the images from the
camera together with the corresponding pose estimate to
the ground station.

On the ground station, we run a dense 3D reconstruc-
tion (Pizzoli et al., 2014) in real time using the camera images
with their corresponding pose estimate (see Section 7).

4. SEMIDIRECT VISUAL ODOMETRY (SVO)

Using visual odometry with a single downward-looking
camera, we can simultaneously estimate the motion of the
vehicle (up to an unknown scale and rigid-body transfor-
mation) and the local structure of the scene in the form of
a sparse point-cloud. In Forster et al. (2014b), we proposed
a novel VO algorithm called SVO that is two times faster
in terms of processing time compared to previous methods.
The motivation to increase the frame-rate is twofold: first,
it allows the MAV to fly faster and more agilely; second,
as we will show in the experimental results, it allows the
MAV to localize in environments of highly repetitive and
high-frequency texture (see Figure 11).

Figure 4 provides an overview of SVO. The algorithm
uses two parallel threads, one for estimating the camera
motion with respect to the local map, and a second one for
extending the map as the environment is being explored.
This separation allows fast and constant-time tracking in

Figure 3. System overview: the PX4 and Odroid U3 communicate with each other over a UART interface. Communication to the
Laptop is over WiFi. Gray boxes are sensors and actuators; software modules are depicted as white boxes.

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 7

Figure 4. SVO system overview. Two concurrent threads are used, one for estimating the motion of the camera with respect to the
map and the second one for extending the map.

one thread, while the second thread extends the map, de-
coupled from hard real-time constraints. In the following,
we provide an overview of both motion estimation and
mapping. We refer the reader to Forster et al. (2014b) for
more details.

4.1. Motion Estimation

Methods that estimate the camera pose with respect to a
map (i.e., a set of key-frames and 3D points) can be divided
into two classes:

(A) Feature-based methods extract a sparse set of salient
image features in every image, match them in successive
frames using invariant feature descriptors, and finally
recover both camera motion and structure using epipolar
geometry (Scaramuzza & Fraundorfer, 2011). The bottle-
neck of this approach is that approximately 50% of the
processing time is spent on feature extraction and matching,
which is the reason why most of the VO algorithms still
run at 20–30 fps despite the availability and advantages of
high-frame-rate cameras.

(B) Direct methods (Irani & Anandan, 1999), on the
other hand, estimate the motion directly from intensity val-
ues in the image. The rigid-body transformation is found
through minimizing the photometric difference between
corresponding pixels, where the local intensity gradient
magnitude and direction are used in the optimization. Since
this approach starts directly with an optimization, increas-
ing the frame-rate means that the optimization is initialized
closer to the optimum, and thus it converges much faster.
Hence, direct methods in general benefit from increasing the
frame-rate (Handa, Newcombe, Angeli, & Davison, 2012) as
the processing time per frame decreases.

In Forster et al. (2014b), we proposed a semidirect
visual odometry (SVO) that combines the benefits of
feature-based and direct methods. SVO establishes feature
correspondence by means of direct methods rather than fea-
ture extraction and matching. The advantage is increased
speed (up to 70 fps onboard the MAV and 400 Hz on a
consumer laptop) due to the lack of feature extraction at ev-
ery frame and increased accuracy through subpixel feature
correspondence. Once feature correspondences are estab-
lished, the algorithm continues using only point-features,

Journal of Field Robotics DOI 10.1002/rob



8 • Journal of Field Robotics—2015

hence the term “semidirect.” This switch allows us to rely
on fast and established frameworks for bundle adjustment,
i.e., joint optimization of both 3D points and camera poses
(Triggs, McLauchlan, Hartley, & Fitzgibbon, 2000).

4.2. Mapping

The mapping thread estimates the depth at new 2D fea-
ture positions [we used FAST corners (Rosten, Porter, &
Drummond, 2010)] by means of a depth filter. Once the depth
filter has converged, a new 3D point is inserted in the map
at the found depth and immediately used for motion esti-
mation. The same depth filter formulation is used for dense
reconstruction, and its formulation is explained in more de-
tail in Section 7.1.

New depth-filters are initialized whenever a new
keyframe is selected in regions of the image where few 3D-
to-2D correspondences are found. A keyframe is selected
when the distance between the current frame and the previ-
ous keyframe exceeds 12% of the average scene depth. The
filters are initialized with a large uncertainty in depth and
with a mean at the current average scene depth.

At every subsequent frame, the epipolar line segment
in the new image corresponding to the current depth con-
fidence interval is searched for an image patch that has
the highest correlation with the reference feature patch (see
Figure 6). If a good match is found, the depth filter is up-
dated in a recursive Bayesian fashion [see Eq. (31)]. Hence,
we use many measurements to verify the position of a 3D
point, which results in considerably fewer outliers com-
pared to triangulation from two views.

4.3. Implementation Details

The source-code of SVO is available open-source at https://
github.com/uzh-rpg/rpg_svogithub.com/uzh-rpg/rpg_
svo. No special modifications are required to run SVO
onboard the MAV. For all experiments, we use the fast
parameter setting that is available online. The fast setting
limits the number of features per frame to 120, main-
tains always at a maximum 10 keyframes in the map
(i.e., older keyframes are removed from the map), and
for processing-time reasons no bundle adjustment is
performed.

5. STATE ESTIMATION AND CONTROL

In this section, we describe the state estimation and control
used to stabilize our quadrotor. Furthermore, we explain
how we estimate sensor biases and the actually produced
thrust. The control and calibration sections are inspired by
Lupashin et al. (2014).

Figure 5. Quadrotor with coordinate system and rotor forces.

5.1. Dynamical Model

For state estimation and control, we make use of the follow-
ing dynamical model of our quadrotor:

ṙ = v, (1)

v̇ = g + R · c, (2)

Ṙ = R · ω̂, (3)

ω̇ = J−1 · (τ − ω × Jω) , (4)

where r = [x y z]T and v = [vx vy vz]T are the position
and velocity in world coordinates, R is the orientation
of the quadrotor’s body coordinates with respect to the
world coordinates, and ω = [p q r]T denotes the body rates
expressed in body coordinates. The skew symmetric matrix
ω̂ is defined as

ω̂ =
⎡
⎣ 0 −r q

r 0 −p

−q p 0

⎤
⎦. (5)

We define the gravity vector as g = [0 0 − g]T , and J =
diag

(
Jxx, Jyy, Jzz

)
is the second-order moment-of-inertia

matrix of the quadrotor. The mass-normalized thrust vector
is c = [0 0 c]T , with

mc = f1 + f2 + f3 + f4, (6)

where fi are the four motor thrusts as illustrated in Figure 5.
The torque inputs τ are composed of the single-rotor thrusts
as

τ =

⎡
⎢⎢⎢⎢⎢⎣

√
2

2
l(f1 − f2 − f3 + f4)

√
2

2
l(−f1 − f2 + f3 + f4)

κ(f1 − f2 + f3 − f4)

⎤
⎥⎥⎥⎥⎥⎦

, (7)

where l is the quadrotor arm length and κ is the rotor-torque
coefficient.

Journal of Field Robotics DOI 10.1002/rob

https://github.com/uzh-rpg/rpg_svogithub.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svogithub.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svogithub.com/uzh-rpg/rpg_svo


Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 9

Table II. Parameters and control gains used for the
experiments.

Parameter Description Value Unit

Jxx x-axis Moment of Inertia 0.001 Kg m2

Jyy y-axis Moment of Inertia 0.001 Kg m2

Jzz z-axis Moment of Inertia 0.002 Kg m2

m Quadrotor Mass 0.45 kg
l Quadrotor Arm Length 0.178 m
κ Rotor Torque Coefficient 0.0195 m
pxy Horizontal Position Control Gain 5.0 s−2

pz Vertical Position Control Gain 15.0 s−2

dxy Horizontal Velocity Control Gain 4.0 s−1

dz Vertical Velocity Control Gain 6.0 s−1

prp Roll/Pitch Attitude Control Gain 16.6 s−1

pyaw Yaw Attitude Control Gain 5 s−1

ppq Roll/Pitch Rate Control Gain 33.3 s−1

pr Yaw Rate Control Gain 6.7 s−1

The used coordinate systems and rotor numbering are
illustrated in Figure 5, and the used parameter values are
listed in Table II.

5.2. State Estimation

To stabilize our quadrotor, we need an estimate of the metric
pose as well as the linear and angular velocities. We com-
pute this state estimate by fusing the sensor data from the
IMU and the output of the visual odometry in an extended
Kalman filter. To do so, we make use of an open-source mul-
tisensor fusion package (Lynen et al., 2013). Since we did not
modify this package, we are not describing the sensor fusion
in more detail here.

5.3. Controller

To follow reference trajectories and stabilize the quadrotor,
we use cascaded controllers. The high-level controller run-
ning on the Odroid includes a position controller and an
attitude controller. The low-level controller on the PX4 con-
tains a body rate controller. The used control gains are listed
in Table II.

5.3.1. High-level Control

The high-level controller takes a reference trajectory as input
and computes desired body rates that are sent to the low-
level controller. A reference trajectory consists of a reference
position rref, a reference velocity vref, a reference acceleration
aref, and a reference yaw angle ψref. First, the position con-
troller is described followed by the attitude controller. The
two high-level control loops are synchronized and run at
50 Hz.

Position Controller. To track a reference trajectory, we
implemented a PD controller with feedforward terms on
velocity and acceleration:

ades = Ppos · (rref − r̂) + Dpos · (vref − v̂) + aref, (8)

with gain matrices Ppos = diag
(
pxy, pxy, pz

)
and Dpos =

diag
(
dxy, dxy, dz

)
. Since a quadrotor can only accelerate in

its body z direction, ades enforces two degrees of the desired
attitude. Now we want to compute the desired normalized
thrust such that the z component of ades is reached with the
current orientation. To do so, we make use of the last row
of Eq. (2) to compute the required normalized thrust cdes as

cdes = ades,z + g

R3,3
. (9)

The output of the position controller is composed of the
desired accelerations ades, which, together with the reference
yaw angle ψref, encodes the desired orientation as well as a
mass normalized thrust cdes .

Attitude Controller. In the previous paragraph, we
computed the desired thrust such that the desired accelera-
tion in the vertical world direction is met. Since a quadrotor
can only produce thrust in the body z direction, the attitude
controller has to rotate the quadrotor in order to achieve the
desired accelerations in the world x-y plane with the given
thrust. The translational behavior of the quadrotor is inde-
pendent of a rotation around the body z axis. Therefore, we
first discuss the attitude controller for roll and pitch and,
second we present the yaw controller.

For the x-y plane movement, we restate the first two
rows of (2) and insert the normalized thrust from Eq. (9),[

ades,x

ades,y

]
=

[
R1,3

R2,3

]
cdes, (10)

where Ri,j denotes the (i, j ) element of the orientation ma-
trix R. Solving for the two entries of R which define the x-y
plane movement, we find[

Rdes,1,3

Rdes,2,3

]
= 1

cdes

[
ades,x

ades,y

]
. (11)

To track these desired components of R, we use a pro-
portional controller on the attitude error,

[
Ṙdes,1,3

Ṙdes,2,3

]
= prp

[
R1,3 − Rdes,1,3

R2,3 − Rdes,2,3

]
, (12)

where prp is the controller gain and Ṙ is the change of the
orientation matrix per time step.

We can write the first two rows of Eq. (3) as
[

Ṙdes,1,3

Ṙdes,2,3

]
=

[ −R1,2 R1,1

−R2,2 R2,1

]
·
[

pdes

qdes

]
. (13)

Finally, the desired roll and pitch rate can be computed by
plugging Eq. (12) into Eq. (13) and solving for pdes and qdes.

Journal of Field Robotics DOI 10.1002/rob



10 • Journal of Field Robotics—2015

The yaw-angle control does not influence the transla-
tional dynamics of the quadrotor and thus it can be con-
trolled independently. First, we compute the current yaw
angle ψ from the quadrotor orientation R. Second, we com-
pute the desired angular rate in the world z direction with
a proportional controller on the yaw angle error,

rworld = pyaw (ψref − ψ) . (14)

The resulting desired rate can then be converted into
the quadrotor body frame using its current orientation

rdes = R3,3 · rworld. (15)

5.3.2. Low-level Control

The commands sent to the low-level control on the PX4 are
the desired body rates ωdes and the desired mass-normalized
thrust cdes. From these, the desired rotor thrusts are then
computed using a feedback linearizing control scheme with
the closed-loop dynamics of a first-order system. First, the
desired torques τdes are computed as

τdes = J

⎡
⎣ppq (pdes − p)

ppq (qdes − q)
pr (rdes − r)

⎤
⎦ + ω × Jω. (16)

Then, we can plug τdes and cdes into Eqs. (7) and (6) and
solve them for the desired rotor thrusts which has to be
applied.

5.4. Calibration

5.4.1. Sensor Bias Calibration

For the state estimation and the control of our quadrotors,
we make use of their gyros and accelerometers. Both of
these sensor units are prone to having an output bias that
varies over time and that we, therefore, have to estimate. We
noticed that the changes of these biases during one flight
are negligible. This allows us to estimate them once at the
beginning of a mission and then keep them constant. Thus,
we do not have to estimate them online and can therefore
reduce the size of the state in the state estimation. In the
following, we will present a procedure that allows us to
estimate the biases during autonomous hover. Note that the
quadrotor can hover autonomously even with sensor biases.
However, removing the biases increases the state estimation
and tracking performance. For the sensor bias calibration,
we look at the gyros and the accelerometers separately.

The gyro measurement equation reads

ω̃ = ω + bω + nω, (17)

where ω̃ denotes the measured angular velocities, ω is the
real angular velocities, bω is the bias, and nω is the noise of
the gyros. This, in hover conditions, becomes

ω̃ = bω + nω. (18)

We assume the noise nω to have zero mean and can
therefore average the gyro measurements over N samples
to estimate the gyro bias bω as

b̂ω = 1
N

N∑
k=1

ω̃k. (19)

The accelerometer measurement equation reads

ã = c + adist + bacc + nacc, (20)

where ã denotes the measured accelerations, c is the mass
normalized thrust, adist are the accelerations due to exter-
nal disturbances, bacc is the bias, and nacc is the noise of
the accelerometer. In hover conditions, c = −g and we as-
sume to have only small and zero mean disturbances, so the
equation simplifies to

ã = −g + bacc + nacc. (21)

As for the gyro bias, we assume the noise nacc to have
zero mean and can therefore average the accelerometer mea-
surements over N samples to estimate the accelerometer
bias bacc as

b̂acc = 1
N

N∑
k=1

ãk + g. (22)

When performing the sensor bias calibration, we sam-
ple the IMU readings over a 5 s period, which is enough to
provide an accurate estimate of their biases.

5.4.2. Thrust Calibration

When flying our quadrotors under very different conditions
indoors and outdoors, we noticed that the produced rotor
thrust can vary substantially. This can significantly reduce
the control authority and hence the flight performance in
situations in which the produced thrust is low. To overcome
this limitation, we estimate the actually produced thrust in
flight.

The thrust f of a single rotor can be computed as

f = 1
2

· ρ · �2 · C · A, (23)

where ρ is the air density, � is the rotor speed, C is the lift
coefficient, and A is the rotor area. The rotor speed � is the
input parameter, through which we control the thrust. We
assume that the rotor speed is controlled by the motor con-
trollers such that we can neglect differences of the battery
voltage. However, the density of the air ρ is not constant as
it depends on the air pressure and temperature. Addition-
ally, wear and possible damages to the rotors might cause
unexpected changes in C and A. These three values are diffi-
cult to measure, but we can estimate them together in hover
flight. To do so, we first combine the three parameters and
write Eq. (23) as

f = G�2. (24)

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 11

We refer to this equation as thrust mapping, i.e., the
mapping of the rotor speed to the resulting rotor thrust.
Under nominal conditions, this thrust mapping can be es-
timated (e.g., with a load cell) to obtain the nominal coef-
ficient Ǧ leading to a nominal thrust mapping f̌ = Ǧ�2.
Due to the multiplicative nature of Eq. (23) and correspond-
ingly Eq. (24), we can express the real thrust mapping coef-
ficient as

G = λǦ, (25)

and hence the real produced thrust as

f = λf̌ . (26)

This formulation allows us to estimate λ in hover and
therefore calibrate the thrust mapping. For the quadrotor

to hover, we know that τ
!= 0 and c

!= g. Thus, from Eqs. (7)
and (6) we obtain the following matrix equation:⎡

⎢⎢⎣
d −d −d d

−d −d d d

κ −κ κ −κ

1/m 1/m 1/m 1/m

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f̌1λ1

f̌2λ2

f̌3λ3

f̌4λ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
g

⎤
⎥⎥⎦, (27)

where d =
√

2
2 l. This system of equations can be solved for

λ1,...,4. The nominal thrusts f̌i are obtained by averaging the
applied nominal thrusts over N samples,

f̌i = 1
N

N∑
k=1

f̌i,k . (28)

To perform the thrust calibration, we sample the ap-
plied thrust commands over a 5 s period, which is sufficient
to get a robust thrust estimation. Note that the nominal
thrust mapping is stored on the vehicle and the nominally
applied rotor thrusts f̌i,k are computed on the vehicle us-
ing the actually commanded rotor speeds and the nominal
thrust mapping.

When controlling the vehicle, we first compute the
actual desired rotor thrusts, as described in Section 6.3.2,
which we then have to convert into the corresponding nom-
inal rotor thrusts,

f̌i,des = fi,des

λi

. (29)

These nominal rotor thrusts are then converted into mo-
tor commands using the nominal thrust mapping onboard
the vehicle.

6. REAL-TIME DENSE 3D RECONSTRUCTION

The MAV streams, through WiFi, the images Ik and cor-
responding poses Tk,w computed by SVO to the ground
station at a rate of 5 Hz.6 The observations are used to

6Although in our lab, we can transmit uncompressed, full-
resolution images at rates of up to 50 Hz, we observed, during

Figure 6. Probabilistic depth estimate d̂i for feature i in the
reference frame r . The point at the true depth projects to similar
image regions in both images (blue squares). Thus, the depth
estimate is updated with the triangulated depth d̃k

i computed
from the point u′

i of highest correlation with the reference patch.
The point of highest correlation lies always on the epipolar line
in the new image.

compute a dense reconstruction in real-time on the GPU.
Therefore, we use the REMODE (“Regularized Monocu-
lar Depth”) algorithm that we proposed in Pizzoli et al.
(2014) and that we summarize in the following. REMODE
computes dense depth maps for automatically selected ref-
erence frames. New reference frames are selected when the
Euclidean distance to the previous reference frame, normal-
ized by the average depth in the scene, exceeds a threshold.
A depth map is computed by initializing a depth-filter for
every pixel in a reference view r . We use the same depth-
filter formulation as in the SVO algorithm, with the differ-
ence that now every pixel of the image has a depth-filter
(rather than only salient features) and that the computation
is performed highly parallelized on the GPU.

Finally, smoothness on the resulting depth map is en-
forced by minimizing a regularized energy functional. In
the following, we give an overview of the depth-filter for-
mulation and the smoothing step.

6.1. Depth Filter

The depth computation for a single pixel is formalized as
a Bayesian estimation problem. Let the rigid body transfor-
mation Tw,r ∈ SE(3) describe the pose of a reference frame
relative to the world frame. We initialize a depth-filter at
every pixel in the reference view with high uncertainty in
depth and a mean set to the average scene depth of the
previous reference frame. The depth filter is described by a
parametric model (30) that is updated on the basis of every
subsequent frame k.

Given a new observation {Ik, Tk,w}, we project the 95%
depth-confidence interval [dmin

i , dmax
i ] of the depth filter

corresponding to pixel i into the image k, and we find
a segment of the epipolar line l (see Figure 6). Using the

public exhibitions and outdoor experiments with more than 20-m
height, that a lower bound of 5 Hz can usually be assumed.

Journal of Field Robotics DOI 10.1002/rob



12 • Journal of Field Robotics—2015

cross-correlation score on a 5 × 5 patch, we search the pixel
on the epipolar line segment u′

i that has the highest corre-
lation with the reference pixel ui . A depth hypothesis d̃k

i is
generated from the observation by triangulating ui and u′

i

from the views r and k, respectively.
Let the sequence of d̃k

i for k = r, . . . , r + n denote a set
of noisy depth measurements. As proposed in Vogiatzis &
Hernández (2011), we model the depth filter as a distribu-
tion that mixes a good measurement (normally distributed
around the true depth di) and an outlier measurement
(uniformly distributed in an interval [dmin

i , dmax
i ], which is

known to contain the depth for the structure of interest):

p
(
d̃k

i | di, ρi

)

= ρiN
(
d̃k

i |di, τ
k
i

2
)

+ (1 − ρi)U
(
d̃k

i |dmin
i , dmax

i

)
, (30)

where ρi and τ k
i

2 are the probability (i.e., inlier ratio) and
the variance of a good measurement, respectively. Assum-
ing independent observations, the Bayesian estimation for
di on the basis of the measurements d̃r+1

i , . . . , d̃k
i is given by

the posterior

p(di, ρi |d̃r+1
i , . . . , d̃k

i ) ∝ p(di, ρi)
∏

k

p(d̃k
i |di, ρi), (31)

with p(di, ρi) being a prior on the true depth and the ratio
of good measurements supporting it. A sequential update
is implemented by using the estimation at time step k − 1
as a prior to combine with the observation at time step k. To
this purpose, the authors of Vogiatzis & Hernández (2011)
show that the posterior in Eq. (31) can be approximated by
the product of a Gaussian distribution for the depth and a
Beta distribution for the inlier ratio:

q(di, ρi | ak
i , b

k
i , μ

k
i , σ

k
i

2)

= Beta(ρi |ak
i , b

k
i )N (di |μk

i , σ
k
i

2), (32)

where ak
i and bk

i are the parameters controlling the Beta
distribution. The choice is motivated by the fact that Beta ×
Gaussian is the approximating distribution minimizing the
Kullback-Leibler divergence from the true posterior (31).
We refer to Vogiatzis & Hernández (2011) for an in-depth
discussion and formalization of this Bayesian update step.

6.2. Depth Smoothing

In Pizzoli et al. (2014), we introduced a fast smoothing step
that takes into account the measurement uncertainty to en-
force spatial regularity and mitigates the effect of noisy cam-
era localization.

We now detail our solution to the problem of smooth-
ing the depth map D(u). For every pixel ui in the reference
image Ir : � ⊂ R

2 	→ R, the depth estimation and its confi-
dence upon the kth observation are given, respectively, by μk

i

and σ k
i in Eq. (32). We formulate the problem of computing

a denoised depth map F (u) as the following minimization:

min
F

∫
�

{
G(u)

∥∥∇F (u)
∥∥

ε
+ λ

∥∥F (u) − D(u)
∥∥

1

}
du, (33)

where λ is a free parameter controlling the tradeoff between
the data term and the regularizer, and G(u) is a weight-
ing function related to the “G-weighted total variation” in-
troduced in Bresson, Esedoglu, Vandergheynst, Thiran, &
Osher (2007) in the context of image segmentation. We pe-
nalize nonsmooth surfaces by making use of a regulariza-
tion term based on the Huber norm of the gradient, defined
as

∥∥∇F (u)
∥∥

ε
=

⎧⎪⎨
⎪⎩

||∇F (u)||22
2ε

if ||∇F (u)||2 ≤ ε,

||∇F (u)||1 − ε

2
otherwise.

(34)

We chose the Huber norm because it allows smooth recon-
struction while preserving discontinuities at strong depth
gradient locations (Newcombe et al., 2011). The weighting
function G(u) influences the strength of the regularization
and we propose to compute it on the basis of the measure
confidence for u:

G(u) = Eρ[q](u)
σ 2(u)
σ 2

max
+ {

1 − Eρ[q](u)
}
, (35)

where we have extended the notation for the expected value
of the inlier ratio Eρ[q] and the variance σ 2 in Eq. (32) to ac-
count for the specific pixel u. The weighting function (35) af-
fects the strength of the regularization term: for pixels with
a high expected value for the inlier ratio ρ, the weight is
controlled by the measurement variance σ 2; measurements
characterized by a small variance (i.e., reliable measure-
ments) will be less affected by the regularization; in contrast,
the contribution of the regularization term will be heavier
for measurements characterized by a small expected value
for the inlier ratio or higher measurement variance.

The solution to the minimization problem (33) is com-
puted iteratively based on the work in Chambolle & Pock
(2011). The algorithm exploits the primal dual formulation
of Eq. (33) and is detailed in Pizzoli et al. (2014).

7. RESULTS

7.1. Indoor flight

Our flying arena is equipped with an OptiTrack motion-
capture system by NaturalPoint,7 which we only used for
ground-truth comparison. Its floor is covered with a texture-
rich carpet and boxes for 3D structure as shown in Figure 7.
The quadrotor was requested to autonomously execute a
closed-loop trajectory specified by waypoints. The trajec-
tory was 20 m long and the MAV flew on average at 1.7 m
above ground. Figures 8, 9, and 10, show the accurate

7http://www.naturalpoint.com/optitrack/

Journal of Field Robotics DOI 10.1002/rob

http://www.naturalpoint.com/optitrack/


Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 13

Figure 7. Our flying arena equipped with an OptiTrack motion-capture system (for ground-truth recording), carpets, and boxes
for 3D structure.

Figure 8. Comparison of estimated and ground-truth position to a reference trajectory (a) flown indoors over a scene as recon-
structed in (b).

trajectory following as well as the position and orientation
estimation errors, respectively. For ground-truth compari-
son, we aligned the first 2 m of the estimated trajectory to the
ground truth (Umeyama, 1991). The maximum recorded po-
sition drift was 0.5% of the traveled distance. As observed,
the quadrotor was able to return very close to the start point

(with a final absolute error smaller than 5 cm). This result
was confirmed in more than 100 experiments run at pub-
lic events, exhibitions, and fairs. These results outperform
those achieved with MAVs based on PTAM. This is due to
the higher precision of SVO. Comparisons between SVO
and PTAM are reported in Forster et al. (2014b).

Journal of Field Robotics DOI 10.1002/rob



14 • Journal of Field Robotics—2015

Figure 9. Error between estimated and ground-truth position
for the trajectory illustrated in Figure 8.

Figure 10. Error between estimated and ground-truth orien-
tation for the trajectory illustrated in Figure 8.

Apart from its higher precision and frame rate, another
main advantage of our SVO compared to PTAM is its ro-
bustness in scenes with repetitive and high-frequency tex-
tures (e.g., asphalt, grass); cf. Figure 11. Figure 12 shows a
comparison of the map generated with PTAM and SVO in
the same scene. While PTAM generates outlier 3D points,

Figure 12. Side-view of a piecewise-planar map created by
SVO and PTAM. The proposed method has fewer outliers due
to the depth-filter.

by contrast SVO has almost no outliers thanks to the use of
the depth-filter.

7.2. Outdoor Flight

An outdoor demonstration was performed at the Zurich
firefighter training area in front of real firemen. This area
features a large mock-up disaster site, consisting of two
main towers and several stone blocks gathered on the
ground. Due to the unavailability of a reliable GPS signal in
this area, results are not compared to GPS. The quadrotor
was requested to reach a height of 20 m and follow a piece-
wise straight trajectory (cf. Figure 13). The overall trajectory
length was 140 m. The first 100 m of this trajectory were
executed fully autonomously and are indicated in blue. Af-
ter the autonomous flight, we handed a joypad game con-
troller to a fireman with no pilot experience. The joypad was
connected to the ground station and allowed sending the
quadrotor simple up-down, left-right, forward-backward

Figure 11. Successful tracking in scenes of high-frequency texture.

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 15

Figure 13. Outdoor trajectory of 140 m. Blue denotes the tra-
jectory executed autonomously, red the one executed manually
by a firefighter with no pilot experience assisted by the onboard
vision-based controller.

velocity commands expressed in the world reference frame.
Thanks to the assistance of the vision-based control running
onboard the quadrotor, the firefighter was able to success-
fully and easily control the vehicle back to his position.

7.3. Reconstruction

The laptop that served as a ground station to run the live,
dense 3D reconstruction is a Lenovo W520 with an Intel i7-
3720QM processor, equipped with 16 GB of RAM, and an
NVIDIA Quadro K2000M GPU with 384 CUDA cores.

Figures 14 and 15 show the dense reconstruction results
from an indoor and outdoor scene, respectively.

To quantitatively evaluate our approach, we tested
REMODE in Pizzoli et al. (2014) on a synthetic dataset
provided in Handa et al. (2012). Figure 16 reports the
main results of the reconstruction performance. The dataset
consisted of views generated through ray-tracing from a

Figure 14. Outdoor, dense 3D reconstruction.

three-dimensional synthetic model. The evaluation was
based on a comparison with the ground truth depth map
corresponding to the view taken as reference in the re-
construction process. As an evaluation metrics, we used
the percentage of ground truth depths that have been esti-
mated by the proposed method within a certain error (see
Figure 17). To show the effectiveness of our approach, we
compared our result with the depth map computed accord-
ing to the state-of-the-art method introduced in Vogiatzis &
Hernández (2011).

Our approach was capable of recovering a number
of erroneous depth estimations, thus yielding a sensi-
ble improvement in terms of completeness. To verify the

Journal of Field Robotics DOI 10.1002/rob



16 • Journal of Field Robotics—2015

Figure 15. Indoor, dense 3D reconstruction.

robustness against noisy camera-pose estimation, we cor-
rupted the camera position with Gaussian noise, with zero
mean and 1-cm standard deviation on each coordinate. The
results show that the completeness drops. This is inevitable
due to the smaller number of converged estimations. How-
ever, the computation of the depth map takes advantage of
the denoising step.

8. DISCUSSIONS AND CONCLUSION

8.1. Lessons Learned

8.1.1. System Design

The use of open-source software and hardware components
was crucial to adapt them exactly to our needs. This al-
lowed us to tune all the components such that they could
work together properly and, hence, achieve a very good
overall system performance. Furthermore, since we mostly
used off-the-shelf hardware components, our quadrotor is
relatively cheap, easy to upgrade, and fast to repair.

8.1.2. Indoor Experiments

In the proposed setup, the MAV relies on our visual odom-
etry pipeline (i.e., SVO). However, several factors may dis-
turb visual-odometry pipelines. Examples include flash-
lights of photographers, sudden illumination changes (e.g.,
when moving from a shadow area to an illuminated area),
too rapid motion of the vehicle, or poor texture on the
ground. If the visual odometry cannot recover within a
certain amount of time, it is not possible to continue the
mission and the quadrotor has to land. Since this can hap-
pen often in an experimental phase, it is crucial to have a
safe landing procedure such that the quadrotor does not get
damaged. To do so, we implemented an open-loop
emergency-landing procedure, where the quadrotor stabi-
lizes its attitude with the IMU and applies a thrust to slowly
descend to the ground. An open-loop procedure is neces-
sary since, especially in indoor environments, fall-backs,
such as GPS, are not available.

8.1.3. Outdoor Experiments

In outdoor experiments, we noticed that the produced
thrust can vary significantly due to different air temper-
ature and pressure. This can have noticeable effects on
the flight performance. Especially for an open-loop land-
ing maneuver, after losing visual tracking it is crucial to
know what the actually produced thrust is. For this reason,
we implemented a routine to estimate the produced thrust
(see Section 6.4.2) in the beginning of a mission during a
short period of hover flight. With this routine we can ac-
count for different air densities and possible damage of the
rotors.

In addition, outdoor experiments on partially cloudy
days showed that it is crucial to have a camera with a high
dynamic range. We set the camera settings before every mis-
sion and kept them fixed during the mission due to the weak
performance of the camera-driver’s auto-adjustment, which
either flickers, overexposes, or underexposes the scene.
This can cause the visual odometry to lose tracking when
the quadrotor is transitioning between dark and bright
scenes.

8.1.4. Dense Reconstruction

In the current reconstruction pipeline, the depth maps com-
puted by REMODE are visualized as a point-cloud at the
pose computed by SVO. However, as SVO drifts over time,
the depth maps are not perfectly aligned. Therefore, in fu-
ture work we will integrate REMODE in our collaborative
mapping optimization back-end (Forster, Lynen, Kneip, &
Scaramuzza, 2013a) in order to compute globally optimized
maps. Additionally, in order to minimize the noise, we will
apply a depth-map-fusion stage such as in Forster, Pizzoli,
& Scaramuzza (2013b). Finally, depending on the height,
the structure, and the appearance of the scene, different

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 17

Figure 16. Evaluation of dense reconstruction on a synthetic dataset. (a) The reference view. (b) Ground truth depth map.
(c) Depth map based on Vogiatzis & Hernández (2011). (d) Depth map computed by REMODE. (e) Map of reliable measurements
(white pixels are classified as reliable). (f) Error of REMODE.

Journal of Field Robotics DOI 10.1002/rob



18 • Journal of Field Robotics—2015

Figure 17. The completeness of the synthetic experiment, i.e., the percentage of ground truth measurements that are within a
certain error from the converged estimations. For color blind readers: top line, this paper – exact pose; second line from the top,
Vogiatzis and Hernandez 2011 – exact pose; third line from the top, this paper – noisy pose; bottom line, Vogiatzis and Hernandez
2011 – noisy pose.

motions are required to perform the depth-map reconstruc-
tion as fast as possible. Therefore, in Forster et al. (2014a),
we proposed an active mapping formalization that we will
integrate tightly into the current system.

8.2. Conclusion

We presented a system for mapping an unknown indoor
or outdoor environment from the air in real time. Our sys-
tem consists of an autonomous vision-based quadrotor and
a ground station laptop for dense 3D reconstruction. The
quadrotor can fly fully autonomously without relying on
any external positioning system, which allows it to fly in un-
known indoor and outdoor environments. This is crucial for
search-and-rescue, where one cannot rely on any functional
infrastructure. Furthermore, the autonomy of our quadrotor
allows nonexpert operators to use our system with no train-
ing, as we demonstrated in the outdoor firefighter training
area. From the images streamed by the quadrotor, we com-
pute a live, dense 3D map on the ground station. Since the
3D map computation is performed in real time, the oper-
ator gets an immediate feedback without any unnecessary
delays in the mission.

In numerous (more than 100) demonstrations, as well
as indoor and outdoor experiments, we showed that our
system works robustly, is easy to set up, and can easily be
controlled by only one operator.

ACKNOWLEDGMENTS

This research was supported by the Swiss National Science
Foundation through Project No. 200021-143607 (“Swarm of
Flying Cameras”), the National Centre of Competence in
Research Robotics, and the CTI Project No. 15424.2.

REFERENCES

Achtelik, M., Bachrach, A., He, R., Prentice, S., & Roy, N. (2009).
Stereo vision and laser odometry for autonomous heli-
copters in GPS-denied indoor environments. In SPIE Con-
ference on Unmanned Systems Technology.

Ahrens, S., Levine, D., Andrews, G., & How, J. (2009). Vision-
based guidance and control of a hovering vehicle in un-
known, GPS-denied environments. In IEEE International
Conference on Robotics and Automation (ICRA).

Bachrach, A., He, R., & Roy, N. (2009). Autonomous flight
in unstructured and unknown indoor environments. In
European Micro Aerial Vehicle Conference.

Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A., Krainin,
M., Maturana, D., Fox, D., & Roy, N. (2012). Estimation,
planning and mapping for autonomous flight using an
RGB-D camera in GPS-denied environments. Journal of
Field Robotics, 31(11), 1320–1343.

Bloesch, M., Weiss, S., Scaramuzza, D., & Siegwart, R.
(2010). Vision based MAV navigation in unknown and

Journal of Field Robotics DOI 10.1002/rob



Faessler et al.: Autonomous, Vision-based Flight and Live Dense 3D Mapping • 19

unstructured environments. In IEEE International Confer-
ence on Robotics and Automation (ICRA).

Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., &
Osher, S. (2007). Fast global minimization of the active
contour/snake model. Journal of Mathematical Imaging
and Vision, 28(2), 151–167.

Chambolle, A., & Pock, T. (2011). A first-order primal-dual algo-
rithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision, 40(1), 120–
145.

Engel, J., Sturm, J., & Cremers, D. (2012). Camera-based naviga-
tion of a low-cost quadrocopter. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Forster, C., Lynen, S., Kneip, L., & Scaramuzza, D. (2013a). Col-
laborative monocular slam with multiple micro aerial ve-
hicles. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Forster, C., Pizzoli, M., & Scaramuzza, D. (2013b). Air-ground
localization and map augmentation using monocular
dense reconstruction. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS).

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014a). Appearance-
based active, monocular, dense depth estimation for micro
aerial vehicles. In Robotics: Science and Systems (RSS), 1–
8.

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014b). SVO: Fast
semi-direct monocular visual odometry. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., & Pollefeys,
M. (2007). Real-time plane-sweeping stereo with multiple
sweeping directions. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recog-
nition.

Handa, A., Newcombe, R. A., Angeli, A., & Davison, A. J. (2012).
Real-time camera tracking: When is high frame-rate best?

Hrabar, S., Sukhatme, G. S., Corke, P., Usher, K., & Roberts,
J. (2005). Combined optic-ow and stereo-based navigation
of urban canyons for a UAV. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Irani, M., & Anandan, P. (1999). All about direct methods. In
Proceedings of the Workshop Vision Algorithms: Theory
Practice (pp. 267–277).

Klein, G., & Murray, D. (2007). Parallel tracking and mapping
for small AR workspaces. In IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR)
(pp. 225–234), Nara, Japan.

Lippiello, V., Loianno, G., & Siciliano, B. (2011). Mav indoor
navigation based on a closed-form solution for absolute
scale velocity estimation using optical flow and inertial
data. In IEEE International Conference on Decision and
Control.

Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P.,
Sherback, M., & D’Andrea, R. (2014). A platform for aerial
robotics research and demonstration: The Flying Machine
Arena. Journal of Mechatronics, 24(1), 41–54.

Lynen, S., Achtelik, M., Weiss, S., Chli, M., & Siegwart, R. (2013).
A robust and modular multi-sensor fusion approach

applied to MAV navigation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F.,
& Pollefeys, M. (2012). PIXHAWK: A micro aerial vehi-
cle design for autonomous flight using onboard computer
vision. Autonomous Robots, 33(1–2), 21–39.

Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010).
The GRASP multiple micro UAV testbed. IEEE Robotics
Automation Magazine, 17(3), 56–65.

Murphy, R. (2014). Disaster Robotics. Cambridge, MA: MIT
Press.

Newcombe, R., Lovegrove, S., & Davison, A. (2011). DTAM:
Dense tracking and mapping in real-time. In International
Conference on Computer Vision (ICCV) (pp. 2320–2327),
Barcelona, Spain.

Pizzoli, M., Forster, C., & Scaramuzza, D. (2014). REMODE:
Probabilistic, monocular dense reconstruction in real time.
In IEEE International Conference on Robotics and Au-
tomation (ICRA).

Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better:
A machine learning approach to corner detection. IEEE
Transactions in Pattern Analysis and Machine Intelligence,
32(1), 105–119.

Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total varia-
tion based noise removal algorithms. Physica D: Nonlinear
Phenomena, 60(1-4).

Ruffier, F., & Franceschini, N. (2004). Visually guided micro-
aerial vehicle: Automatic take off, terrain following, land-
ing and wind reaction. In IEEE International Conference
on Robotics and Automation (ICRA).

Scaramuzza, D., Achtelik, M., Doitsidis, L., Fraundorfer, F.,
Kosmatopoulos, E. B., Martinelli, A., Achtelik, M. W., Chli,
M., Chatzichristofis, S., Kneip, L., Gurdan, D., Heng, L.,
Lee, G., Lynen, S., Meier, L., Pollefeys, M., Renzaglia,
A., Siegwart, R., Stumpf, J. C., Tanskanen, P., Troiani, C.,
& Weiss, S. (2014). Vision-controlled micro flying robots:
From system design to autonomous navigation and map-
ping in GPS-denied environments. IEEE Robotics Automa-
tion Magazine.

Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry. Part
I: The first 30 years and fundamentals. IEEE Robotics Au-
tomation Magazine, 18(4), 80–92.

Schmid, K., Lutz, P., Tomic, T., Mair, E., & Hirschmuller, H.
(2014). Autonomous vision-based micro air vehicle for in-
door and outdoor navigation. Journal of Field Robotics,
31, 537–570.

Shen, S., Michael, N., & Kumar, V. (2011). Autonomous
multi-floor indoor navigation with a computationally
constrained MAV. In IEEE International Conference on
Robotics and Automation (ICRA).

Shen, S., Michael, N., & Kumar, V. (2012a). Autonomous indoor
3D exploration with a micro-aerial vehicle. In IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Shen, S., Michael, N., & Kumar, V. (2012b). Stochastic differen-
tial equation-based exploration algorithm for autonomous
indoor 3D exploration with a micro aerial vehicle. Journal
of Field Robotics, 31(12), 1431–1444.

Journal of Field Robotics DOI 10.1002/rob



20 • Journal of Field Robotics—2015

Shen, S., Mulgaonkar, Y., Michael, N., & Kumar, V. (2013).
Vision-based state estimation and trajectory control to-
wards aggressive flight with a quadrotor. In Robotics: Sci-
ence and Systems (RSS), 1–8.

Strasdat, H., Montiel, J., & Davison, A. (2010). Real-time monoc-
ular SLAM: Why filter? In IEEE International Conference
on Robotics and Automation (ICRA).

Stühmer, J., Gumhold, S., & Cremers, D. (2010). Real-time dense
geometry from a handheld camera. In Pattern Recognition,
vol. 6376 of Lecture Notes in Computer Science (pp. 11–20).
Berlin: Springer.

Szeliski, R., & Scharstein, D. (2004). Sampling the disparity
space image. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(3), 419–425.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D.,
Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M.,
Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V.,
Stang, P., Strohband, S., Dupont, C., Jendrossek, L., Koe-
len, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S.,
Kaehler, A., Nefian, A., & Mahoney, P. (2007). Stanley: The
robot that won the DARPA grand challenge. In Buehler,
M., Iagnemma, K., & Singh, S. (eds.), The 2005 DARPA
Grand Challenge, vol. 36 of Springer Tracts in Advanced
Robotics (pp. 1–43). Berlin: Springer.

Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (2000).
Bundle adjustment—A modern synthesis. In Triggs, W.,
Zisserman, A., & Szeliski, R. (eds.), Vision Algorithms:
Theory and Practice, vol. 1883 of LNCS (pp. 298–372).
Springer-Verlag.

Umeyama, S. (1991). Least-squares estimation of transforma-
tion parameters between two point patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
13(4), 376–380.

Vogiatzis, G., & Hernández, C. (2011). Video-based, real-
time multi view stereo. Image and Vision Computing,
29(7), 434–441.

Weiss, S., Achtelik, M. W., Lynen, S., Achtelik, M. C., Kneip,
L., Chli, M., & Siegwart, R. (2013). Monocular vision for
longterm micro aerial vehicle state estimation: A com-
pendium. Journal of Field Robotics, 30(5), 803–831.

Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-
SLAM-based navigation for autonomous micro heli-
copters in GPS-denied environments. Journal of Field
Robotics, 28(6), 854–874.

Wendel, A., Maurer, M., Graber, G., Pock, T., & Bischof, H.
(2012). Dense reconstruction on-the-fly. In Proceedings of
the IEEE International Conference on Computer Vision
and Pattern Recognition.

Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estima-
tion with non-local total variation regularization. In Pro-
ceedings of IEEE International Conference on Computer
Vision and Pattern Recognition.

Zingg, S., Scaramuzza, D., Weiss, S., & Siegwart, R. (2010). MAV
navigation through indoor corridors using optical flow. In
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Zufferey, J.-C., & Floreano, D. (2006). Fly-inspired visual steer-
ing of an ultralight indoor aircraft. IEEE Transactions on
Robotics 22(1), 137–146.

Journal of Field Robotics DOI 10.1002/rob




