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Humans race drones faster than neural networks trained for end-to-end autonomous flight. This may be related
to the ability of human pilots to select task-relevant visual information effectively. This work investigates whether
neural networks capable of imitating human eye gaze behavior and attention can improve neural networks’
performance for the challenging task of vision-based autonomous drone racing. We hypothesize that gaze-based
attention prediction can be an efficient mechanism for visual information selection and decision making in a
simulator-based drone racing task. We test this hypothesis using eye gaze and flight trajectory data from 18
human drone pilots to train a visual attention prediction model. We then use this visual attention prediction
model to train an end-to-end controller for vision-based autonomous drone racing using imitation learning. We
compare the drone racing performance of the attention-prediction controller to those using raw image inputs and
image-based abstractions (i.e., feature tracks). Comparing success rates for completing a challenging race track by
autonomous flight, our results show that the attention-prediction based controller (88% success rate) outperforms
the RGB-image (61% success rate) and feature-tracks (55% success rate) controller baselines. Furthermore, visual
attention-prediction and feature-track based models showed better generalization performance than image-based
models when evaluated on hold-out reference trajectories. Our results demonstrate that human visual attention
prediction improves the performance of autonomous vision-based drone racing agents and provides an essential
step towards vision-based, fast, and agile autonomous flight that eventually can reach and even exceed human
performances.

Fig. 1. Experimental methods illustrated. a) Experimental setup used in [2]; b) First-person view (FPV) racing drone; c) Example FPV image
showing racing gates, gaze-based, and network-predicted attention maps. d) Reference trajectory by a human pilot showing quadrotor axes in
red (x), green (y), and blue (z). Race gates are represented by black rectangles and numbered in sequence. Black arrow indicates the direction of
flight.



Research Article: PLOS ONE Vol. 17, Issue 3, 2022, Accepted Version University of Zurich 2

INTRODUCTION

First-person view (FPV) drone racing is an increasingly popular tele-
vised sport in which human pilots compete to complete challenging
obstacle courses in a minimum time. Using only visual feedback from
an FPV camera attached to the teleoperated unmanned aerial vehicle,
human pilots are able to plan and execute appropriate control actions
to navigate the drone along challenging race tracks [1, 2]. The visual-
motor coordination skills required to achieve top-level performances
in drone racing are based on many years of repeated practice and flight
experience in drone racing simulators and real-world races[2, 3]. But,
how exactly is visual perception related to aircraft control? Recent
experimental evidence indicates a strong relationship between human
drone racing pilots’ eye gaze behavior and future flight trajectories
and shows that the direction of eye gaze fixation precedes planned
control actions [2]. Thus, visual attention measured by eye gaze fixa-
tions indicates a human pilot’s intention and subsequent control action.
Because quadrotor drones are extremely agile vehicles, they become
increasingly relevant in time-critical missions, such as search and res-
cue, aerial delivery, and industrial inspection tasks. Therefore, over the
last decade, research on autonomous, agile quadrotor flight has pushed
platforms to higher speeds and agility [4–12] In this line of research
a key question is: Can we design an algorithm for fully autonomous
vision-based fast and agile drone flight that performs as well as or better
than human pilots? Solving this challenge is one of the most pertinent
goals in autonomous vision-based quadrotor navigation, reflected in an
increasing number of simulation-based [13, 14] and real-world compe-
titions [15, 16]. The challenges are enormous, particularly regarding
the issues of low-latency perception-aware planning and state estima-
tion under motion blur [16]. If solved, numerous benefits outside of
drone racing would arise. This includes low-latency agile autonomous
systems that perform safe and effective missions in unknown, clut-
tered environments inaccessible to humans for industrial inspection
and search and rescue applications. The two leading approaches are
model-based and learning-based system design. The model-based ap-
proach follows a classical sense-plan-control scheme, which is modular,
and requires very accurate knowledge about the drone dynamics, the
drone’s state, and the ability to perform low-latency minimum-time
control onboard [8, 12, 15]. Indeed, this approach has been very suc-
cessful and has been able to outperform experienced drone racing pilots
on challenging race maneuvers in highly controlled environments [8].
However, model-based approaches often require external sensing and
highly accurate systems knowledge, pre-planned trajectories, and do
not generalize to unknown environments or noisy sensory inputs. The
alternative is infusing learning-based methods into systems design,
where sensing, planning, and control tasks are performed by a single
neural network. These so-called end-to-end neural networks have been
successfully trained and deployed for quadrotor flights of acrobatic ma-
neuvers [11], obstacle avoidance in the wild [17], and simulator-based
drone racing [18, 19]. Surprisingly, none of these previous works have
considered imitating or making use of flight trajectories and visual-
motor coordination behavior produced by experienced human drone
racing pilots. The main objective of this work is to answer the ques-
tion of whether gaze-based visual attention prediction can improve the
performance of end-to-end models for vision-based autonomous drone
racing beyond state-of-the-art. We address the problem of a lack of hu-
man ground truth data during deployment by training a neural network
for predicting human visual attention from RGB images. The scope of
the present work is an evaluation of the flight performances of end-to-
end controller architectures for the task of vision-based autonomous
drone racing in a highly realistic simulator.

CONTRIBUTIONS

The main contributions of this work are:

1. We train and evaluate a visual attention prediction model for
autonomous drone racing.

2. We train end-to-end deep learning networks using imitation learn-
ing that can complete a challenging race in a vision-based drone
racing task, with a performance as good as human pilots.

3. We demonstrate that attention prediction models outperform mod-
els using raw image inputs and image-based abstractions (i.e.,
feature tracks).

4. We found a better generalization performance to previously un-
seen flight trajectories for end-to-end drone racing agents using
attention prediction or feature tracks when compared to a raw
image input baseline.

The Related Work section describes related works in the domain. The
Materials and Methods section describes the datasets, network archi-
tectures, and experimental analysis methods used in this work. The
Results section presents experimental results obtained for the visual at-
tention prediction, control command prediction, and end-to-end drone
racing performance. The Discussion section relates the experimental
findings to previous work and proposed future work. The Conclusion
section concludes the paper.

RELATED WORK

Behavioral cloning, or imitation learning, has the goal to develop neu-
ral networks that can map from sensory inputs to control actions by
learning from (human) expert data in a supervised fashion [20, 21].
The main benefit of imitation learning is that it does not require feature
engineering. Imitation learning approaches were initially developed
and successfully deployed for car driving applications, such as lane
following and obstacle avoidance [19, 22]. A caveat however is that
training models on expert data often do not provide information about
the states that deviate from the experts, which can lead to failure if
the agent encounters such states. This can be mitigated by dataset
aggregation (DAgger), where novel training data is collected while
training a primary policy on a reference policy [23] or by introduc-
ing displacements [18] or distortions to control commands [19] to
enlarge the state space for training. Dataset aggregation has been suc-
cessfully used for training end-to-end networks for autonomous car
driving [19] and autonomous quadrotor flight [11]. Another short-
coming of imitation learning is that it does not allow the network to
compensate for mistakes made by the expert. A possible solution is
the use of observational imitation learning in which a network learns
to select optimal behavior while observing multiple imperfect teach-
ers. This approach outperformed reinforcement learning and imitation
learning approaches in vision-based autonomous drone racing in a
simulator [24]. However, not only the choice of network architecture
and training method but also the choice of input/output representa-
tion strongly affect network performance. Abstractions of either input
or output data typically outperform networks operating directly on
raw image data. For instance, [11] observed better performance in
autonomous acrobatic flight using feature tracks than using RGB im-
ages directly. Similarly, [25] found better 3D localization performance
using grayscale instead of RGB images. Likewise, [26] found better
performances in autonomous car racing when predicting parameterized
trajectories for a model predictive controller (MPC) driving the car
compared to letting the network predict control commands directly.
Such sensory and output abstractions seem advantageous in network
performance and generalization ability. It should also be noted that
several previous works follow hybrid approaches combining learning
methods for perception [27] and localization [28] with model-based
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Fig. 2. The architecture of our attention-prediction network based on ResNet-18. The network predicts pixel-wise attention probabilities
and is therefore a Fully Convolutional Network. ResNet blocks (each with two convolutional layers) are shown in grey, convolutional layers in
purple and blue (with and without batch normalization), max-pooling layers in red and upsampling layers in green.

methods for planning [29] and control [21] and have demonstrated
successes. However, these approaches often require extensive system
identification and controller tuning, which are not required when using
end-to-end neural network controllers. In this study, we investigate
whether imitating human visual attention and flight behavior, could
serve to improve the performance of state-of-the-art end-to-end mod-
els on autonomous drone racing tasks, which requires the models to
perform fast and agile flight through mandatory waypoints (i.e., race
gates). The importance of visual attention in vision-based navigation
has not only been demonstrated in drone pilots [2]. Human car drivers
move their eye gaze to future waypoints and driving paths several sec-
onds and meters ahead of the current position of the car [30]. These eye
gaze fixations allow the operator to compensate for unwanted visual
image motion (retinal stabilization) and estimate the current vehicle
motion. Most importantly, there is a strong temporal and spatial rela-
tionship between eye gaze fixations and subsequent control commands.
Drivers execute control actions congruent with the eye gaze deviations
from the vehicle’s forward velocity at fixed temporal offsets of 400
ms for driving on winding roads [31]. Gaze monitoring in car drivers
also provides valuable information for autonomous driving agents, in
particular regarding high-level intentions, such as whether to perform
a left or right turn [32]. It can even support more efficient performance
by selecting only task-relevant information [33]. Previous works have
tried to extract information from eye gaze for steering cars, e.g., for
assistive technology, hands-free operation [34], attention or intention
monitoring [35], or for teaching autonomous agents to drive in virtual
cities [33]. However, those applications are usually slow, use limited
control commands, and have not directly used visual attention for fast
and agile drone flight.

MATERIALS AND METHODS

Ethics statement
The study protocol was approved by the local Ethical Committee of
the University of Zurich and the study was conducted in line with the
Declaration of Helsinki. All participants gave their written informed
consent before participating in the study. All human data taken from a
publicly available dataset were fully anonymized before we accessed
them.

Human drone racing dataset
We use the publicly available "Eye Gaze Drone Racing Dataset" (Open
Science Framework repository: https://osf.io/gvdse/), originally re-
leased by [2], which consists of eye gaze, control commands, drone
state ground-truth, and the FPV video (800×600 pixels resolution)
recordings from experienced drone pilots flying in a drone racing sim-
ulator (Fig 1a-c illustrates the experiment setup). The eye gaze data

is projected onto the screen to obtain gaze locations that correspond
with the recorded videos. For this study, we randomly select flight
trajectory data from 36 collision-free flights from 18 human pilots
from a figure-eight race track (see example trajectory in Fig 1d). Flight
trajectory selection is constrained by the achieved lap time, that is
we randomly select data within one interquartile range of the group
median lap time (11.80 sec) and assign these data randomly to the
training set (18 trajectories; median lap time = 11.69 sec, min = 10.79
sec, max = 14.46 sec) and test set (18 trajectories; median lap time
= 11.83 sec, min = 11.05 sec, max = 14.91 sec; paired-samples t-test
shows no statistical difference in lap times between training and test
set).

Because the AlphaPilot drone racing simulator used for drone state
data logging by [2] is proprietary software that did not allow for closed-
loop control, we use the open-source drone racing simulator Flightmare
[36], which is tailored to machine learning tasks as required for the
present study. The quadrotor platform had an arm length of 17 cm,
an all-up-weight of 1 kg, a maximum collective thrust of 21.7 N, and
a maximum rotational velocity of 6 rad/s. The RGB camera had a
horizontal field-of-view of 80°, and an uptilt angle of 25°. We thus
used the ground-truth trajectory, eye gaze, drone, and camera settings
of the original dataset by [2] to generate a novel ground-truth dataset
required for network training and evaluation. We designed a visual
environment largely identical in color and dimensions, with identical
gate sizes, positions, and shapes as used by [2]. We then rendered
the drone ground-truth poses in Flightmare to collect images of the
same resolution as in the original dataset, which is subsequently used
for attention network training. Although gaze fixations can be used to
indicate the pilots’ focus of attention, the uncertainty inherent in the
measurements can better be expressed using a probability distribution
over the image coordinates. Using the procedure described in [37], we
generate ground-truth continuous visual attention maps At by averag-
ing the gaze positions recorded for each frame (in pixels) and using
these fixations ft from the frame at time t − 12 to t + 12 (a total of
25 frames at 60Hz) to define a 2D multivariate Gaussian distribution
(with a fixed diagonal variance matrix Σ = diag(200, 200)) centered
on each fixation. For each pixel, the maximum value across these
Gaussians is computed to create a visual attention map over the image:

At(x, y) = max
i∈{t−12,...,t+12}

N (x, y; fi, Σ). (1)

To form a valid probability distribution of the pilot’s visual atten-
tion, this attention map is normalized to sum to one. An example of
one of these ground-truth attention maps can be seen as the output of
the architecture shown in Fig 2. We filter out any laps with crashes
or in which the drone does not pass through all gates, and also per-

https://osf.io/gvdse/
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Fig. 3. Architecture of the attention-prediction based end-to-end controller.

form a manual inspection of the trajectories, removing those that are
undesirable for training a controller, e.g. when pilots considerably
deviate from the figure-eight reference trajectory (Fig 1c). Further-
more, we only use frames where both gaze and control ground truth
is available. This results in a total of 675, 251 valid frames from 18
subjects. The gaze dataset is split into a training set with 508, 670
frames and a test set with 166, 581 frames, with both sets containing
samples from all included subjects but not from the same individual ex-
perimental runs. This dataset is used for the training and performance
evaluation of the visual attention prediction network. The dataset used
in this study is available in an Open Science Framework repository
(https://osf.io/uabx4/, Dataset DOI: 10.17605/OSF.IO/UABX4).

Visual attention prediction network
Fig 2 pictures the architecture of the visual attention prediction net-
work, based on [38], which is designed to predict visual attention as
a distribution over image pixels. The network uses ResNet-18 [39]
layers pre-trained on ImageNet [40] and is trained on individual frames.
It uses the first four residual blocks of the ResNet-18 architecture, in-
cluding strided convolution and pooling operations. To maintain a high
spatial resolution for predicting attention maps, the model is trained
on RGB images of size 400×300 (half the original resolution), result-
ing in feature maps of resolution 25×19 after being processed by the
encoder. These features are repeatedly upsampled and passed through
convolutional layers with ReLU activations, finally obtaining a visual
attention map of the same resolution as the input image by applying a
2D softmax to create a valid probability distribution. Similar to [37],
Kullback-Leibler divergence is used to compute the loss:

DKL(A∥Â) = ∑
x,y

A(x, y) log
(

A(x, y)
Â(x, y)

)
(2)

where A is the ground-truth attention distribution, Â is the net-
work’s prediction, and x and y are image coordinates. The visual
attention prediction network is trained for 5 epochs with a batch size
of 128 and using the Adam optimizer [41] with a learning rate of
2 × 10−4. During training, we use data augmentation by randomly
applying the following transformations to the input images: brightness,
contrast, saturation and hue changes, the addition of Gaussian noise,
applying Gaussian blur, and erasing of random image regions. The
trained network is ultimately used to obtain encoder features as input
to the end-to-end drone racing agent.

End-to-end controller network
Fig 3 shows the architecture of the visual attention-prediction based
end-to-end drone racing network. The architecture is adapted from
the "Deep Drone Acrobatics" (DDA) architecture proposed in [11].
It takes as input a short history of measurements: reference states in
world coordinates consisting of rotation, linear and angular velocity
(sampled from the reference trajectory at 50 Hz), and a state estimate,
also entailing rotation, linear and angular velocity (sampled at 100 Hz).
Note that unlike in [11], we do not use the original implementation
in ROS designed for real-world quadrotor flight but instead use a
custom Python 3.8 implementation of the code compatible with the
Flightmare simulation environment. Moreover, we use ground-truth
states as a substitute for state estimates. The inputs for each of the
described branches are processed by temporal convolutions before
being concatenated and passed through the control module consisting
of four linear layers and predicting mass-normalized thrust and body
rates. We introduce one major modification to the original network
architecture by replacing feature tracks with encoder features from
visual attention prediction as an input to the network. We flatten the
features extracted by the encoder of the visual attention network (i.e.,
25×19 features) to a one-dimensional vector of size 475 at each time
step. These vectors are then further processed by temporal convolutions
like the other inputs. The control module is identical to the original
network architecture used by [11]. For performance comparison, we
use two baseline models, which are identical to the visual attention-
prediction based model, apart from the visual attention input. The
first baseline model is an end-to-end drone racing network receiving
raw RGB images as inputs (i.e., 400×300×3 features), which are
stacked in the feature dimension and processed by a 2D convolutional
network before also being transformed to a single vector as input
to the control module. The second network is an end-to-end drone
racing network receiving feature tracks as inputs. Feature tracks are
an abstraction of visual inputs, initially used in [11] to provide a better
transfer from learning in simulation to control in the real world. We use
a re-implementation of feature tracks from the VINS-Mono package
[42] in Python. Feature tracks are represented as a five-dimensional
vector: the location of salient image features in normalized image
coordinates, the velocity of features tracked over subsequent frames,
and the number of time steps each feature has been tracked. Features
are extracted using the Harris corner detector [43] and tracked using
the Lucas-Kanade method [44]. Outliers are removed using geometric
verification and key point correspondences of more than one pixel
from the epipolar line. Exactly 40 feature tracks per time step are
used as input to the respective controller (i.e., 40×5 features), sampled

https://osf.io/uabx4/
10.17605/OSF.IO/UABX4
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Fig. 4. Visual attention prediction examples. Comparison of gaze-based attention maps (ground truth, in blue) and visual attention network
predictions (in red) for FPV camera images of the left turn maneuver (showing gates 2-5, top row) and the right turn maneuver (showing gates
7-10, bottom row).

from all tracked features. The feature-track based controller receives
feature tracks after they are passed through a reduced version of the
PointNet architecture [45]) as input to the temporal convolution part of
the network.

End-to-end controller training
We use the same training strategy employed in [11], using imitation
learning with DAgger [46]. We train each model on 18 reference
trajectories of the training data. Using these human-generated trajecto-
ries ensures that the quadrotor’s camera is pointed in the direction of
movement, and meaningful attention predictions can be made based
on models trained on human gaze data. An MPC expert with access
to the ground-truth state is used that follows the trajectory, providing
labels for network predictions. It uses the simplified quadrotor model
proposed in [47]. It solves the optimization problem of minimizing the
difference between the reference trajectory and the predicted quadrotor
states, subject to the quadrotor dynamics (see [11] for more details).
Exploration - and thus larger coverage of the state-space - is facilitated
by adding random noise to the expert command with a small probabil-
ity, which increases throughout data generation and network training.
Additionally, the network predictions (rather than the expert predic-
tions) are executed if they are within a boundary close to the expert
command, the range for which also increases over time. We record
data for 30 rollouts before training for 20 epochs, which is repeated
five times for a total of 150 rollouts and 100 epochs of training.

Drone racing performance evaluation
We evaluate end-to-end drone racing network performances on 18 ref-
erence trajectories of the training set by comparing the performances
between visual attention prediction, raw RGB images, and feature
track-based networks. To evaluate network generalization, we evaluate
network performance on hold-out test set trajectories that the networks
have not observed previously. For each scenario, we perform 10 repe-
titions of the test flight to compute the number of gates successfully
passed. This metric is computed considering the period between the
start of the network-controlled flight until completing the trajectory or
until collision with a gate, the ground floor, or virtual collider bound-
aries placed at 30×15×8 meters around the racing track.

RESULTS

In this study, we trained two kinds of neural networks: one that predicts
human gaze-based visual attention from RGB images (attention predic-
tion model) and one that uses attention prediction to control a racing
drone in a vision-based autonomous drone racing task (attention-based
end-to-end controller). The following sections present a performance
evaluation of the visual attention prediction model, the control com-
mand prediction performance of the end-to-end controller, the drone
racing performance on seen trajectories (training set), and the general-
ization performance to hold-out trajectories (test set).

Visual attention prediction performance
Fig 4 provides a qualitative assessment of the predictions of the visual
attention prediction model on exemplar images. When gates are in
clear view of the FPV camera (as compared to, e.g., the moment of
traversal), attention predictions match ground-truth data very well both
in terms of location and accumulating probability mass in one region.
This also holds when multiple gates are in view. In these cases, the
network’s predictions mostly focus on the upcoming gate, just like the
human ground-truth [2].

We evaluate visual attention prediction performance by compari-
son to two simple baselines. The first consists of the mean attention
map (resp. gaze position) over the training set. For the second, we
shuffle ground-truth attention map samples within each lap of the race
track in the test set, thus retaining the same overall distribution across
that lap but disconnecting the attention output from the RGB input.
Furthermore, we compare our results with a state-of-the-art model
[48, 49], which also predicts attention maps from single RGB images.
As metrics for visual attention prediction, we use the Kullback-Leibler
divergence (DKL), also used for training our model, and the Pearson
Correlation Coefficient (CC). The results are shown in Table 1. Our vi-
sual attention prediction model (ResNet-18) outperforms the respective
baselines in every metric. Although our model does not outperform the
state-of-the-art deep supervision model, it achieves performance close
to [49] on our dataset while being faster to train and faster during in-
ference. Our model and [48] are more comparable in terms of training
and inference time.
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Table 1. Visual attention prediction performance.

DKL ↓ CC ↑

Baseline mean 2.499 0.281

Baseline shuffled GT ∞ 0.203

Deep supervision 1.600 0.500

ResNet-18 (ours) 1.716 0.487

Control command prediction
We analyze the prediction performance of end-to-end controllers using
an offline evaluation method. Specifically, we compare the control
commands generated by the neural networks to control commands
produced by an MPC controller (which has access to the ground truth
quadrotor state), while the MPC controls the quadrotor along 18 ref-
erence trajectories on which the networks were previously trained
(training set) and hold-out trajectories the networks have not previously
observed (test set). We use as performance metrics the Mean Squared
Error (MSE) and Mean Absolute Error (L1) for each control com-
mand (i.e., Throttle, Roll, Pitch, Yaw) computed across the respective
datasets. Table 2 shows results of the control command prediction
analysis on the training set. The attention-prediction based controller
produces control commands that more closely resemble control com-
mands of the MPC as compared to the image- and feature track-based
controller. This indicates that the attention-based controller selects the
appropriate control commands more frequently than the image- and
feature track-based baselines when deployed on reference trajectories
that the controller was trained on.

Table 3 shows the control command prediction performance on
the test set. The feature track-based controller shows an overall better
match to MPC commands as compared to the attention- and image-
based controllers. Thus, the feature-tracks based controller appears to
generalize better to previously unseen reference trajectories than the
attention- and image-based controllers.

Drone racing performance
Fig 5 shows a comparison of drone racing performance for the attention-
prediction, feature tracks, and image-based end-to-end controllers
across 180 trials (i.e., 18 trajectories each flown 10 times) on training
set reference trajectories. The attention-prediction based controller suc-
cessfully completes 159/180 trials (88% success rate) and outperforms

Fig. 5. Training set drone racing performance. Training set drone
racing performance for different end-to-end controllers showing
success rates for passing the 10 consecutive gates of the race track.
Average success rate and 95% confidence intervals across 18 flight
trajectories are shown.

both image-based (110/180 trials, 61% success rate) and feature-track
based (99/180 trials, 55% success rate) end-to-end controllers.

In Fig 6 we present an analysis of the generalization performance
of the chosen end-to-end controllers when attempting to fly reference
trajectories of the test set, which none of the networks has previously
observed. The attention-prediction based controller again achieves
the highest number of successfully completed trials (130/180 trials,
72% success rate) and outperforms the feature tracks-based (104/180
trials, 58% success rate) and image-based (70/180 trials, 39% success
rate) end-to-end controllers. When comparing controller performance
between training and test set, it can be noted that the image-based
controller showed a much larger decrease in performance (-22% suc-
cess rate difference) than the attention-prediction based controller (i.e.,
-16% success rate difference). The feature-track based controller did
not considerably change performance (+3% success rate difference)
between training and test set, indicating that the feature-track based
controller showed better generalization to previously unseen reference
trajectories.

DISCUSSION

This study investigates whether visual attention prediction can improve
the drone racing performance of end-to-end neural network controllers.
Our results show that using human drone pilots’ eye gaze data we
can train a neural network that reliably predicts visual attention when
no human is controlling an FPV racing drone. Using this attention
prediction network, we successfully train end-to-end neural networks
that can fly a challenging race track fully autonomously and collision-
free with up to 88% success rate across 180 attempted flight. This
attention-prediction based model outperforms controllers based on raw
images and feature tracks. Several reasons may contribute to the su-
perior performance of the attention-prediction based controller over
the RGB-image and feature-track based controllers. First, attention
prediction serves as a task-specific abstraction of image information.
That is, attention prediction emulates the eye gaze behavior of human
pilots in a drone race, which depends on the pilot’s intention (“Pass
the next gate”) and planned flight trajectory [2]. Indeed, eye gaze has
been successfully used as a high-level control input for teleoperated
quadrotor navigation [50, 51]. Second, the attention-prediction model
may provide useful information for quadrotor state estimation. The
attention prediction feature maps typically highlight subregions of the
image where the upcoming race gate is located (Fig. 1c). This drone-
racing specific selection of spatial regions of interest is not available
from feature tracks or RGB images alone. Indeed, previous work has

Fig. 6. Test set drone racing performance. Test set drone racing
performance for different end-to-end controllers showing success
rates for passing the 10 consecutive gates of the race track. Average
success rate and 95% confidence intervals across 18 flight trajecto-
ries are shown.
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Table 2. Training set control command prediction errors for end-to-end controllers.

Throttle Roll Pitch Yaw

MSE ↓ L1 ↓ MSE ↓ L1 ↓ MSE ↓ L1 ↓ MSE ↓ L1 ↓

RGB images 0.51 0.58 0.59 0.69 0.60 0.60 0.14 0.31

Feature tracks 0.62 0.63 0.20 0.36 0.58 0.57 0.04 0.15

Attention prediction (ours) 0.45 0.54 0.23 0.39 0.51 0.56 0.04 0.14

Table 3. Test set control command prediction errors for end-to-end controllers.

Throttle Roll Pitch Yaw

MSE ↓ L1 ↓ MSE ↓ L1 ↓ MSE ↓ L1 ↓ MSE ↓ L1 ↓

RGB images 1.21 0.81 5.35 0.68 1.76 0.67 543.10 0.76

Feature tracks 1.17 0.85 0.29 0.42 0.90 0.71 0.07 0.20

Attention prediction (ours) 1.21 0.86 0.31 0.43 0.96 0.75 0.10 0.21

demonstrated that attention prediction models can improve the per-
formance of simultaneous localization and mapping algorithms [52].
Third, attention-prediction and feature-track models reduce the number
of input features per sample to the end-to-end controller network (atten-
tion prediction: 25×19 features, feature tracks: 40×5 features) when
compared to raw RGB images (400×300×3 features). Our results go
beyond the state of the art by showing, for the first time, a successful
behavior cloning of human eye-gaze based visual attention and flight
behavior of experienced drone racing pilots, achieving human-level,
fully autonomous vision-based quadrotor flight. Our work differs from
previous model-based and learning-based approaches to autonomous
drone racing in the following ways: We do not explicitly encode racing
gate poses or relative locations (e.g., as in [15]) but let the attention-
prediction model select relevant task visual-spatial information from
RGB images. Moreover, by using multiple reference trajectories in
training the learned end-to-end controllers, we demonstrate that our
controllers can complete multiple reference trajectories despite large
variations between the provided reference trajectories. Furthermore,
we extend previous works using feature tracks for visual abstraction
(e.g., [11]) by showing that visual attention prediction can provide
similar and even better performance in vision-based racing tasks. We
interpret this result as follows: The visual attention prediction model
learns to select task-relevant image features (i.e., vicinity to race gates)
that are important for the drone racing task - as shown empirically by
[2]. Thus, attention prediction models convey intentionality, which is
not provided by purely image feature-based abstractions as provided by
feature tracks. This perceptual intentionality can be highly beneficial
if the race track and desired trajectory is previously known (i.e., as
shown in our drone racing performance analysis on the training set).
Nevertheless, feature tracks provide very robust performance on hold-
out data, in line with previous observations [11]. Our results extend
previous work on gaze-based attention prediction originally carried out
for autonomous driving [32, 33] to fast and agile quadrotor flight in
three dimensions. One may ask whether the attention-prediction based
end-to-end controller could be deployed on a quadrotor platform flying
in the real world? We think that real-world deployment is feasible
because in our previous work [11] a feature-track-based end-to-end
controller was successfully deployed on an NVIDIA Jetson TX2 for
acrobatic flight in the real world. Furthermore, in our present work,
both the feature-track and attention-prediction-based controllers suc-

cessfully performed output predictions within 40 ms sample-to-sample
intervals. However, further work will be needed to evaluate simulation-
to-reality transfer for the attention-prediction model. Potential future
applications of human-attention based autonomous flight are preci-
sion agriculture [53], road traffic surveillance [54], internet of things
[55, 56], assistive technologies for hands-free remote control [50, 57],
inspection [58, 59], and search-and-rescue [60, 61].

CONCLUSION

This paper addresses the problem of learning fast and agile quadro-
tor flight from expert human drone pilots. We consider the question
of whether human visual attention prediction can improve the per-
formance of autonomous drone racing agents over state-of-the-art
methods. To address the problem of a lack of human ground truth
data during autonomous flight, we train a neural network that predicts
gaze-based visual attention from RGB images. We systematically com-
pare the performance of end-to-end neural network controllers in an
autonomous drone racing task. Our results show that gaze-based vi-
sual attention prediction outperformed image-based and feature-tracks
based controllers. These results provide an essential step towards
human-inspired fully autonomous learning-based vision-based fast and
agile flight.
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35. Aydın Baytaş M, La Delfa J. Integrated Apparatus for Empirical Stud-
ies with Embodied Autonomous Social Drones. HAL open science.
2019;(May).

36. Song Y, Naji S, Kaufmann E, Loquercio A, Scaramuzza D. Flightmare:
A Flexible Quadrotor Simulator. In: Conference on Robot Learning;
2020.

37. Palazzi A, Abati D, Calderara S, Solera F, Cucchiara R. Pre-
dicting the Driver’s Focus of Attention: The DR(eye)VE Project.
IEEE Trans Pattern Anal Mach Intell. 2019;41(7):1720–1733.
doi:10.1109/TPAMI.2018.2845370.

38. Loquercio A, Maqueda AI, Del-Blanco CR, Scaramuzza D. DroNet:
Learning to Fly by Driving. IEEE Robotics and Automation Letters.
2018;3(2):1088–1095. doi:10.1109/LRA.2018.2795643.

39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern



Research Article: PLOS ONE Vol. 17, Issue 3, 2022, Accepted Version University of Zurich 9

Recognit.. vol. 2016-December. IEEE Computer Society; 2016. p. 770–
778.

40. Deng J, Dong W, Socher R, Li LJ, Kai Li, Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. Institute of Electrical and
Electronics Engineers (IEEE); 2010. p. 248–255.

41. Kingma DP, Ba JL. Adam: A method for stochastic optimization. In: 3rd
Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. International
Conference on Learning Representations, ICLR; 2015.

42. Qin T, Li P, Shen S. VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator. IEEE Trans Robot. 2017;34(4):1004–
1020. doi:10.1109/TRO.2018.2853729.

43. Harris C, Stephens M. A Combined Corner and Edge Detector. In:
Alvey Vision Conference; 1988.

44. Lucas BD, Kanade T. An Iterative Image Registration Technique with
an Application to Stereo Vision. In: IJCAI; 1981.

45. Ranftl R, Koltun V. Deep Fundamental Matrix Estimation. In: Lecture
Notes Computer Science. vol. 11205 LNCS. Springer Verlag; 2018. p.
292–309.

46. Ross S, Gordon GJ, Bagnell JA. No-regret reductions for imitation
learning and structured prediction. Aistats. 2011;15:627–635.

47. Mueller MW, Hehn M, D’Andrea R. A computationally efficient algorithm
for state-to-state quadrocopter trajectory generation and feasibility
verification. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems; 2013. p. 3480–3486.

48. Wang W, Shen J. Deep Visual Attention Prediction. IEEE
Transactions on Image Processing. 2018;27(5):2368–2378.
doi:10.1109/TIP.2017.2787612.

49. Kang B, Lee Y. High-Resolution Neural Network for Driver Visual Atten-
tion Prediction. Sensors. 2020;20(7):2030. doi:10.3390/s20072030.

50. Wang Q, He B, Xun Z, Xu C, Gao F. GPA-Teleoperation: Gaze En-
hanced Perception-aware Safe Assistive Aerial Teleoperation. CoRR.
2021;abs/2109.04907.

51. Hansen JP, Alapetite A, MacKenzie IS, Møllenbach E. The Use
of Gaze to Control Drones. In: Proceedings of the Symposium
on Eye Tracking Research and Applications. ETRA ’14. New York,
NY, USA: Association for Computing Machinery; 2014. p. 27–34.
doi:10.1145/2578153.2578156.

52. Perrin AF, Zhang L, Le Meur O. Inferring Visual Biases in UAV Videos
from Eye Movements. Drones. 2020;4(3). doi:10.3390/drones4030031.

53. Puri V, Nayyar A, Raja L. Agriculture drones: A modern breakthrough in
precision agriculture. Journal of Statistics and Management Systems.
2017;20(4):507–518. doi:10.1080/09720510.2017.1395171.

54. Kumar A, Krishnamurthi R, Nayyar A, Luhach AK, Khan MS,
Singh A. A novel Software-Defined Drone Network (SDDN)-
based collision avoidance strategies for on-road traffic monitoring
and management. Vehicular Communications. 2021;28:100313.
doi:https://doi.org/10.1016/j.vehcom.2020.100313.

55. Khan NA, Jhanjhi NZ, Brohi SN, Almazroi AA, Ali AA. A Secure Commu-
nication Protocol for Unmanned Aerial Vehicles. Computers, Materials
& Continua. 2022;70(1):601–618. doi:10.32604/cmc.2022.019419.

56. Nayyar A, Nguyen BL, Nguyen NG. The Internet of Drone Things
(IoDT): Future Envision of Smart Drones. First International Conference
on Sustainable Technologies for Computational Intelligence. 2019;.

57. Cauchard JR, Tamkin A, Wang CY, Vink L, Park M, Fang T, et al.
Drone.io: A Gestural and Visual Interface for Human-Drone Interaction.
In: 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI); 2019. p. 153–162.

58. Moreno S, Peña M, Toledo A, Treviño R, Ponce H. A New Vision-
Based Method Using Deep Learning for Damage Inspection in Wind
Turbine Blades. In: 2018 15th International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE); 2018.
p. 1–5.

59. Liu JS, Chang WC. Vision-based Drone Navigation for Orbital Inspec-
tion of Pole-like Objects. In: 2020 Fourth IEEE International Conference
on Robotic Computing (IRC); 2020. p. 410–411.

60. Schedl DC, Kurmi I, Bimber O. An autonomous drone for search and
rescue in forests using airborne optical sectioning. Science Robotics.
2021;6(55):eabg1188. doi:10.1126/scirobotics.abg1188.

61. Lygouras E, Santavas N, Taitzoglou A, Tarchanidis K, Mitropoulos A,
Gasteratos A. Unsupervised Human Detection with an Embedded
Vision System on a Fully Autonomous UAV for Search and Rescue
Operations. Sensors. 2019;19(16). doi:10.3390/s19163542.


