
This paper has been accepted for publication in the IEEE Transactions on Robotics (T-RO), 2024. ©IEEE

Autonomous Drone Racing: A Survey
Drew Hanover1, Antonio Loquercio3, Leonard Bauersfeld1, Angel Romero1, Robert Penicka2,

Yunlong Song1, Giovanni Cioffi1, Elia Kaufmann1 and Davide Scaramuzza1

a) Number of Papers on Autonomous Drone Racing

'15

0

'16

3

'17

6

'18

16

'19

69

Year
'20

95

'21

138

'23'22

275

223

b) Onboard View c) Drone Racing

Fig. 1: Drone racing is a sport rapidly gaining popularity where opponents compete on a pre-defined race track consisting of a series of gates. Autonomous
drone racing research aims to build algorithms that can outperform human pilots in such competitions. a) The task of autonomous drone racing has gained a
substantial amount of interest from the research community in the last few years, as indicated by the increasing number of related publications per year, as
evidenced by a google-scholar search for “autonomous drone racing”. b) Autonomous drones rely on visual and inertial sensors to estimate their own states,
as well as their opponents’ states. c) Agile maneuvers are required to overtake opponents and win the race.

Abstract—Over the last decade, the use of autonomous drone
systems for surveying, search and rescue, or last-mile delivery
has increased exponentially. With the rise of these applications
comes the need for highly robust, safety-critical algorithms that
can operate drones in complex and uncertain environments.
Additionally, flying fast enables drones to cover more ground,
increasing productivity and further strengthening their use case.
One proxy for developing algorithms used in high-speed naviga-
tion is the task of autonomous drone racing, where researchers
program drones to fly through a sequence of gates and avoid
obstacles as quickly as possible using onboard sensors and limited
computational power. Speeds and accelerations exceed over
80 kph and 4 g, respectively, raising significant challenges across
perception, planning, control, and state estimation. To achieve
maximum performance, systems require real-time algorithms
that are robust to motion blur, high dynamic range, model
uncertainties, aerodynamic disturbances, and often unpredictable
opponents. This survey covers the progression of autonomous
drone racing across model-based and learning-based approaches.
We provide an overview of the field, its evolution over the years,
and conclude with the biggest challenges and open questions to
be faced in the future.

I. INTRODUCTION

Throughout history, humans have been obsessed with racing
competitions, where physical and mental fitness are put to the
test. The earliest mention of a formal race dates all the way
back to 3000 BC in ancient Egypt, where the Pharaoh was
thought to have run a race at the Sed festival to demonstrate
his physical fitness, indicating his ability to rule over the

1D. Hanover, L. Bauersfeld, A. Romero, Y. Song, G. Cioffi, E. Kaufmann
and D. Scaramuzza are with the Robotics and Perception Group, University
of Zurich, Switzerland (http://rpg.ifi.uzh.ch). 2R. Penicka is with the Multi-
robot Systems Group, Czech Technical University in Prague, Czech Republic.
3A. Loquercio is with UC Berkeley. This work was supported by the
Swiss National Science Foundation (SNSF) through the National Centre of
Competence in Research (NCCR) Robotics, the Czech Science Foundation
(GACR) under research projects No. 23-06162M, the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement
No. 871479 (AERIAL-CORE), and the European Research Council (ERC)
under grant agreement No. 864042 (AGILEFLIGHT).

kingdom [1], [2]. As time has progressed, humans have
moved from racing on-foot to using chariots, cars, planes, and
more recently quadcopters [3]. Although the vessel frequently
changes, one thing that has remained constant since the early
days of racing has been the recurring theme of using the task as
a catalyst for scientific and engineering development. Recently,
we have seen a push to remove humans from the loop,
automating the highly complex task of racing in order to push
vehicle performance beyond what humans can achieve [4], [5].

A. Why Autonomous Drone Racing?

Drone racing is a popular sport with high-profile interna-
tional competitions. In a traditional drone race, each vehicle
is controlled by a human pilot, who receives a first-person-
view (FPV) live stream from an onboard camera and flies
the drone via a radio transmitter. An onboard image from
the drone can be seen in Fig. 1b. Having access to an FPV
feed sets drone racing apart from remote-controlled fixed-
wing aircraft racing, where pilots typically control the vehicle
in a line-of-sight fashion. Human drone pilots need years of
training to master the advanced navigation and control skills
required to succeed in international competitions. Such skills
would also be valuable to autonomous systems that must fly
through complex environments in applications such as disaster
response, aerial delivery, and inspection of complex structures.
For example, automating inspection tasks can save lives while
being more productive than manual inspection. According to
a recent survey on unmanned aerial vehicle (UAV) use in
bridge inspection [6], most drones used for inspection tasks
rely on GPS navigation with the biggest limiting factor on
inspection efficiency being the drones’ endurance and mobility.
Additionally, the most popular drones used for surveying
by several US Departments of Transportation are not fully
autonomous and require expert human pilots [6]. In these
applications, an increase in autonomy and operational speed

http://rpg.ifi.uzh.ch

2

will offer gains in utility as faster flight increases the operating
radius achievable with a given battery [7]. Drone racing
research has made significant progress in bringing the skills
of autonomous drones closer to those of professional human
pilots [5]. This required advances on all parts of the flight
stack, i.e., estimation, planning, control, and hardware [8],
which we cover in length in this survey. However, several
challenges remain to bridge the gap between drone racing and
real-world applications, such as safety [9] and generalization
over tasks and environments.

Over the last five years, several projects have been launched
to encourage rapid progress within the field, such as DARPA’s
Fast Lightweight Autonomy (FLA) [11], European Research
Council’s AgileFlight [12], and the AutoAssess project [13].
With million-dollar funding for each of these projects and
significant commercial potential, a large incentive exists for
researchers and entrepreneurs alike to achieve autonomous
operation in GNSS-denied and confined critical infrastructure.
Competitions such as the IROS’16-19 Autonomous Drone
Racing series [14], NeurIPS 2019’s Game of Drones [15],
and the 2019 AlphaPilot Challenge [16], [17] provided further
opportunity for researchers to compare their methodologies
against one another in a competitive fashion. A depiction of
the progress made from these competitions can be seen in
Fig. 2. However, we are far from having solved autonomous
drone racing—a notion reflected by the recently announced
competition scheduled for 2025 and to be hosted by the Abu
Dhabi Autonomous Racing League [18].

Drone racing is a challenging benchmark that can help re-
searchers to gauge progress on complex perception, planning,
and control algorithms. Autonomous drones in a racing setting
must be able to perceive, reason, plan, and act on the tens
of milliseconds scale, all onboard a computationally limited
platform. Apart from being very challenging to solve, the
drone racing task offers a single measure of the progress of
the state-of-the-art in autonomous flying robotics: lap time.
Solving this problem requires efficient, lightweight algorithms
to provide optimal decision and control behaviors in real-time.
Just a few years back, it was unclear whether such a problem
was feasible in the first place, even given perfect information.
Drone racing research has advanced much since its early
stages [19]. Such advances required radically new algorithmic
ideas, e.g., training learning-based sensorimotor controllers
only in simulation, together with engineering advances to the
platform and the overall system [8]. Now that superhuman
performance has been achieved [5] (despite being in controlled
conditions), we predict that more work will be done on safety
and generalization over tasks and environments to bridge
the gap between drone racing and real-world applications.
This research effort is already evident today, as shown by
the increasing number of papers in the field over the years
(Fig. 1a).

This is the first survey on the state of the art in autonomous
drone racing. This overview will be useful to researchers who
wish to make connections between existing works, learn about
the strengths and weaknesses of current and past approaches,
and identify directions moving forward which should progress
the field in a meaningful way.

B. Task Specification
The drone racing task is to fly a quadrotor through a

sequence of gates in a given order in minimum time while
avoiding collisions. Humans are astonishingly good at this
task, flying at speeds well over 100kph with only a first-person
view camera as their sensory input. Beyond this, expert pilots
can adapt to new race tracks quickly in a matter of minutes,
however, the sensorimotor skills required by professional
drone pilots take years of training to acquire.

For an autonomous drone to successfully complete this task,
it must be able to detect opponents and waypoints along the
track, calculate their location and orientation in 3-dimensional
space, and compute an action that enables navigation through
the track as quickly as possible while still controlling a highly
nonlinear system at the limits. This is challenging in three
different aspects: Perception, Planning, and Control. Poor
design in any of these aspects can make the difference between
winning or losing the race, which can be decided by less than
a tenth of a second.

The paper is structured as follows: First, the modeling pro-
cedure of the drone, including aerodynamics, batteries, motors,
cameras, and the system nonlinearities, are discussed in detail
in Sect. II. A classical robotics pipeline is then introduced
in Sect. III, with a deep dive into literature relevant to agile
flight split into Perception, Planning, and Control subsections.
All of these components are equally important because, at the
edge of a drone’s performance envelope, all parts—perception,
state-estimation, planning, and control—need to meticulously
work together. Next, we delve into learning-based methods
for Perception, Planning, and Control which rely on recent ad-
vancements from the machine learning community in Sect. IV.
Then, a discussion of the development of simulation tools that
can enable rapid development for agile flight applications in
Sect. V. A history of drone racing competitions and the meth-
ods used for each are included in Sect. VI. Next, a summary
of open source code bases, hardware platforms, and datasets
for researchers is provided in Sect. VII. Finally, a forward-
looking discussion on the Opportunities and Challenges for
future researchers interested in autonomous drone racing in
Sect. VIII.

II. DRONE MODELING

To further advance research on fast and agile flight, it is
important to have accurate models that capture the complex
nonlinear dynamics of multicopter vehicles at the limit of their
performance envelope.

This section reviews different dynamics modeling ap-
proaches from classic, first-principles modeling to pure data-
driven models in the context of drone racing. For the vehicle
dynamics, the key aspects that need to be modeled are the
kinematics, aerodynamics, the electric motors, and the battery.
In addition to the vehicle dynamics models discussed in this
section, many difficulties for autonomous drone racing models
are introduced by the onboard sensors, whose characteristics
need to be modeled. For example, IMUs are subject to bias
and noise, and the intrinsic as well as extrinsic parameters of
onboard sensors change over time as hard crashes may lead
to miscalibration.

3

The first autonomous drone racing challenge at
IROS 2016, Daejong Korea. Slow moving
quadrotors cautiously navi-gated the course shown
above using only onboard sensors. Team KIRD
from KAIST placed 1st, reaching a top speed of
0.6 m/s.

IROS ADR I
In the third iteration of the ADR challenge held in
Madrid, teams began implementing learning based
methods with optimal control techniques. The
Robotics and Perception Group from the
University of Zurich successfully completed the
course the fastest with speeds up to 2.0 m/s.

IROS ADR III

The following year, another autonomous drone
racing competition took place in Vancouver,
Canada. Similar to the year prior, teams used
classical methods to navigate a challenging course
with compute done onboard and the INAOE team
from Mexico won with a speed of 0.7 m/s.

IROS ADR II

In summer of 2022, the Robotics and Perception
Group of the University of Zurich hosted a drone
racing competition to face their autonomous
drones off against some of the best human FPV
pilots in the world. Speeds exceeded 20 m/s,
relying only on onboard sensing.

Swiss Drone Days

2017

2016 2018 2022

2019

In 2019, Lockheed Martin sponsored a $1M prize
to teams who could successfully navigate a
challenging drone racing course completely
autonomously. The MAVLAB team from TU Delft
won, with top speeds approaching 10 m/s, showing
a significant jump over previous competitions.

AlphaPilot

vmax = 0.6 m/s vmax = 0.7 m/s vmax = 2.0 m/s vmax = 10 m/s vmax = 22 m/s

Fig. 2: History of drone racing competitions that use real drones for navigating the race track, IROS ADR II photo credit [10].

A. Kinematics

Typically, the vehicle is assumed to be a 6 degree-of-
freedom rigid body of mass m with a (diagonal) inertia matrix
J = diag(Jx, Jy, Jz). Given a dynamic state x ∈ R17

the equations describing its evolution in time are commonly
written as:

ẋ = f(x,u) =

ṗWB

q̇WB

v̇W

ω̇B

Ω̇

=

vW

qWB

[
0

ωB/2

]
1
m

(
qWB � f

)
+ gW

J−1
(
τ − ωB × JωB

)
1
τΩ

(Ωss −Ω)

, (1)

where pWB ∈ R3 is the position of the center of mass given
in the world frame, qWB ∈ SO(3) is a quaternion defining
the rotation of the body frame relative to the world (vehicle
attitude), vW ∈ R3 is the velocity of the vehicle in the world
frame, ωB ∈ R3 are the bodyrates of the vehicle, Ω ∈ R4

are the motor speeds, gW = [0, 0, 9.81 m/s2]ᵀ denotes earth’s
gravity, and u ∈ R4 is the input. Depending on the control
modality, the input can be single rotor thrusts or collective
thrust and body rates. In this setting, the task of the model is
to calculate the total force f and total torque τ that acts on
the drone as accurately as possible. Note the quaternion-vector
product denoted by � representing a rotation of the vector by
the quaternion as in q � f = q · [0,fᵀ]ᵀ · q̄, where q̄ is the

quaternion’s conjugate. Those forces and torques, collectively
referred to as wrench, are determined by the aerodynamics
of the platform as well as the vehicles’ actuators, e.g. the
propellers.

B. Aerodynamics
This section discusses the different approaches to modeling

the aerodynamics of the drone and its propellers. The most
widely used modeling assumption is that the propeller thrust
and drag torque are proportional to the square of the rotational
speed [20]–[24] and that the body drag is negligible. These as-
sumptions quickly break down at the high speeds encountered
in drone racing as this model neglects (a) linear rotor drag [25],
[26], (b) dynamic lift [25], (c) rotor-to-rotor [27]–[29], (d)
rotor-to-body [27]–[29] interactions and (e) aerodynamic body
drag [26], [28].

The accuracy of the propeller model can be improved
by leveraging blade-element-momentum theory, where the
propeller is modeled as a rotating wing. Such first-principle ap-
proaches [30]–[34] have been shown to provide very accurate
models of the wrench generated by a single propeller as they
properly capture effects (a) and (b). Implemented efficiently, a
Blade Element Momentum (BEM) model can be run in real-
time [35] and has been successfully used to test algorithms in
simulation [36], [37].

Accounting for the remaining open points (c)-(e), the aero-
dynamics of the drone body as well as any interaction effects

4

need to be calculated, which requires a full Computational
Fluid Dynamics (CFD) simulation [27]–[29], [38], [39]. Due
to the extreme computational demands, this is impractical
in drone racing. To still get close to the accuracy of CFD
methods while retaining the computational simplicity of the
previously mentioned methods, data-driven approaches are
employed [35], [40]–[44]. In the early works [42], [43],
the whole vehicle dynamics model was learned from data.
In a similar fashion [41] uses a combination of polynomi-
als—identified from wind-tunnel flight data—to represent the
vehicle dynamics. In [35], [40], it has been shown that higher
modeling accuracies can be achieved when combining a first-
principle model with a data-driven component. Such a com-
bination of first-principle and data-driven models also leads
to improved generalization performance, as shown in [35],
which combines a BEM model with a temporal convolutional
network [45] to regress the residual wrench. Recently, a similar
hybrid modeling approach has been applied to moving-horizon
estimation [46].

C. Motor and Battery Models
The previous section outlines different approaches to how

the aerodynamic wrench can be estimated based on the state of
the vehicle. However, for all such models, the rotational speed
of the propeller is assumed to be known. On most multicopters,
the motors are not equipped with closed-loop motor speed
control but are controlled by a ‘throttle’ command, which
controls the duty cycle of a PWM (pulse-width-modulation)
signal applied to the motors. The actual rotational speed that
the motor achieves is a function of the throttle command as
well as other parameters such as the battery voltage and the
drag torque of the rotor [7]. Therefore, in order to have a
dynamics model for the motors, we need a model of the battery
to calculate the voltage applied to the motors. Most literature
on battery modeling relies on so-called Peukert models [47],
but for lithium-polymer batteries in drone racing, this is hardly
applicable because the battery discharge current often exceeds
100 A (e.g. 50-100 C) [48], [49]. Graybox battery models
for the voltage that are based on a one-time-constant (OTC)
equivalent circuit [50], [51] are much more suitable for drone
racing tasks as shown in [7], because they are applicable to the
extremely high loads experienced during a racing scenario. In
combination with either a polynomial or a constant-efficiency
motor model, such OTC models can be used to accurately
simulate the battery voltage during agile flight [7]. Given
a simulation of the battery voltage, one can measure the
performance characteristics of a given motor-propeller com-
bination to determine the mapping of throttle command and
voltage to resulting steady-state propeller speed Ωss. When the
highest model fidelity is desired, a more sophisticated motor
simulation [52] can further improve the accuracy, which can be
desirable if the controller directly outputs single-rotor thrusts
instead of the more commonly used collective-thrust and body
rates control modality.

D. Camera and IMU Modeling
Drone racing pushes not only the mechanical and electrical

components of drones to their limits, but is also highly

demanding in terms of sensor performance. For an in-depth
overview of the many different sensor options for drone racing
the reader is referred to [53]. The most common sensors
aboard autonomous drones are monocular or stereo cameras
combined with IMUs (inertial measurement units) thanks to
their low cost, low weight, and mechanical robustness.

For vision-based drone racing, having an accurate simula-
tion of the perception pipeline is critical for validation and
controller development. In terms of modeling and simulation
of the camera, it is common to use a pinhole model [54] and
estimate the focal length, image center, and distortion parame-
ters from measurements. Combined with accurate information
on how far the camera is displaced from the center of gravity
of the vehicle, this allows simulating observations. Either low-
level sensory observations (e.g. images) are simulated using a
rendering engine [22], [55] or more abstract visual features
(e.g. landmark positions) are simulated using the projection
equations.

In the context of using a simulation to test approaches
before attempting real-world deployment, an accurate model
of the IMU characteristics is important, as the bias and noise
strongly influence the performance of many methods. The
IMU intrinsic calibration estimates the noise characteristic of
the sensor. The camera-IMU extrinsic calibration estimates the
relative position and orientation of the two sensors as well as
the time offset. Kalibr [56] is a widespread tool to perform
these calibrations.

However, the biggest source of measurement error of the
inertial sensors onboard a drone are not the sensors themselves
but the strong high-frequency vibrations introduced by the fast-
spinning propellers. The vibrations lead to aliasing effects on
the IMU measurements and introduce additional motion blur
on the camera images. The structural vibrations and their effect
on the measurements are extremely difficult to model and
correct for. Therefore, a suitable hardware design is imperative
which dampens the mount of the camera and the IMU with
respect to the vehicle frame.

III. CLASSICAL PERCEPTION, PLANNING, AND CONTROL
PIPELINE

Sensors

Hardware

Perception

Software

Planning Control Drone

Fig. 3: Architecture 1: A classic architecture for an autonomous system
programmed using model-based approaches

Since the inception of mobile robotics, a common architec-
ture has been primarily used to achieve autonomous navigation
capabilities across various systems. In a traditional robotics
software stack, the navigation task is broken into three main
components: Perception, Planning, and Control. A diagram of
this architecture can be seen in Fig. 3. This section covers
recent research in these areas relating specifically to agile
flight and autonomous drone racing. All approaches detailed in
this section rely on first principles modeling and optimization
techniques.

5

A. Perception

The perception block estimates the vehicle state and per-
ceives the environment using onboard sensors. The most com-
mon solution for state estimation of flying vehicles is visual-
inertial odometry (VIO), thanks to its low cost and low weight
requirements. VIO uses camera and IMU measurements to
estimate the state x̂ (position, orientation, and velocity) of the
drone platform. The inertial measurements are integrated to
obtain relative position, orientation, and velocity estimates in
a short time, e.g., between two camera images. However, the
integration for a longer time, e.g., a few seconds, accumulates
large drift due to scale factor errors, axis misalignment errors,
and time-varying biases [57] that commonly affect off-the-self
IMU measurements. The camera measurements provide rich
information about the environment at a lower rate, usually
around 30 Hz, than IMU measurements. Unlike the IMU
measurements, the camera measurements are affected by envi-
ronmental conditions. The quality of information they provide
for state estimation degrades in the case of poor illumination
conditions, textureless scenes, and motion blur. For this reason,
the camera and inertial measurements complement each other
and are the standard choice for state estimation of flying
vehicles [58]. In this section, we first give an overview of VIO
with a focus on the methods that can be applied for online state
estimation of a racing drone. Second, we give an overview
of possible additional sensor modalities that integrated into
the classical VIO pipeline have the potential to improve state
estimation at high speed. Third, we conclude with a discussion
on the application of classical VIO methods to drone racing.

1) VIO: VIO is the most common solution for state esti-
mation of aerial vehicles [58] using only onboard sensing and
computing, thanks to its favorable trade-off between accuracy
and computational requirements. VIO algorithms usually com-
prise two main blocks: the frontend and the backend.

The frontend uses camera images to estimate the motion
of the sensor. Two main approaches exist in the literature:
direct methods [59], [60] and feature-based methods [61]–
[63]. Direct methods work directly on the raw pixel intensities.
These methods commonly extract image patches and estimate
the camera trajectory by tracking the motion of such patches
through consecutive images. The tracking is achieved by
minimizing a photometric error defined on the raw pixel
intensities [59]. This tracking method is particularly interesting
for drone racing because of its robustness in featureless
scenarios. In fact, a direct frontend [60] is used to estimate the
state of a racing drone in [16]. On the contrary, feature-based
methods [61]–[63] extract points of interest, commonly known
as visual features or keypoints, from the raw image pixels. The
camera trajectory is estimated by tracking these points through
consecutive images. High-speed motions make it difficult (e.g.,
due to motion blur) to track features on many consecutive;
consequently, feature-based methods struggle in drone racing
scenarios. However, feature-based methods exhibit higher ro-
bustness than direct methods to brightness changes. The VIO
methods used in [64], [65] demonstrate that a hybrid frontend,
combining the benefits of direct and feature-based methods, is
beneficial for drone racing tasks.

The backend fuses the output of the fronted with the inertial
measurements. Two categories exist in the literature according
to how the sensor fusion problem is solved: filtering meth-
ods [61] and fixed-lag smoothing methods [62], [63]. Filtering
methods are based on an Extended Kalman Filter (EKF).
These methods propagate the system’s state using the inertial
measurements and fuse the camera measurements in the update
step. The pioneer filter-based VIO algorithm is the Multi-
State Constraint Kalman Filter (MSCKF) originally proposed
in [61]. Since then, many different versions of MSCKF have
been developed [66]. Fixed-lag smoothing methods, also called
sliding window estimators, solve a non-linear optimization
problem where the variables to be optimized are a window
of the recent robot states. The cost function to minimize
contains visual, inertial, and past states marginalized residuals.
Thanks to their favorable trade-off between accuracy and
computational cost, filter-based methods have been commonly
used in drone racing [16], [64], [65].

2) Additional sensor modalities in VIO: Recently, classical
VIO pipelines have been augmented with event cameras [67]–
[69] or drone dynamics [70]–[72], to improve state estimation
at high speed.

Low latency, high temporal resolution (in the order of µs),
and high dynamic range (140 dB compared to 60 dB of stan-
dard cameras) are the main properties of event cameras [73],
which make this novel sensor a great complementary sensor
to standard cameras. Including event data in VIO algorithms
onboard flying vehicles achieves increased robustness against
motion blur as demonstrated in [67]–[69]. Although applica-
tions of event cameras in drone racing tasks are yet to be
explored, investigating the use of this sensor is a promising
research direction to robustify VIO systems for agile flights.

The drone dynamics are used to define additional constraints
in the estimation process. The work in [70] (VIMO) is the
first to integrate error terms related to the drone transitional
dynamics in a VIO backend. VIMO inspired a few works [71],
[74] which propose an improved noise model of the dynam-
ics [74] and a learned component to account for unmodeled
aerodynamics [71]. In particular, the results of [71] show that
the learned aerodynamics effects help to improve the VIO
estimates at high speeds.

The work in [72] proposes an odometry algorithm that relies
on an IMU as the only sensor modality (no camera is needed),
and leverages a learned dynamics component to estimate the
state of the racing drone. Consequently, this method does not
use a visual frontend.

3) Discussions: The work in [75] presents a benchmark
comparison between a number of VIO solutions on the EuRoC
dataset [76]. The EuRoC dataset contains camera and IMU
data recorded onboard a drone flying in indoor environments.
The drone moves with average linear and angular velocities
up to 0.9 m/s and 0.75 rad/s, respectively. These values are
far below the ones reached in drone racing. The conclusions
of [75] show that state-of-the-art VIO algorithms provide
reliable solutions for estimating the state of the drone at
limited speeds. However, these classical VIO methods cannot
provide accurate state estimates for drone racing tasks. VIO
methods accumulate large drift in scenarios characterized by

6

motion blur, low texture, and high dynamic range [77]. These
scenarios are the norm in drone racing.

To help research VIO algorithms for drone racing tasks, the
work in [78] proposes the UZH-FPV Drone Racing Dataset.
This dataset contains images recorded from standard cameras,
event camera data, and IMU data recorded onboard a quadrotor
flown by a human pilot. All the flights include visual chal-
lenges similar to those in drone racing competitions.

Successful state estimation solutions for drone racing [77],
[79] reduce the drift accumulated in VIO by localizing to a
prior map of the track. In drone racing competitions, a map of
the track in the form of gate positions is known beforehand.
The localization process is based on the detection of the gates.
Performing gate detection is challenging. Often during the
race, none of the gates is visible in the camera’s field of view.
Moreover, motion blur makes gate corner detection difficult.
For this reason, gate detection and VIO are complementary.
In [80], a gate detector was proposed that uses an RGB camera
to identify the gates based on their color. This detector, tailored
to the IROS drone racing context [19], is aimed at extreme
computational efficiency, which is particularly important for
tiny drones. The method in [81] relies on detecting gates
and using a model of the drone dynamics to estimate the
position of the racing drone. Differently from [77], [79], this
method does not use a VIO but controls the drone based on a
visual-servoing approach. All the other gate detection methods
in the literature are based on deep learning techniques [82].
We review them in Sec. IV. The known gate positions and
the detections in the onboard images are used to estimate
the relative pose between the camera and the gate using
the Perspective-n-Point algorithm (PnP) [83]. This relative
pose is used to constrain the VIO estimates and consequently
reduce the drift. There is significant room for innovation on
this front, as the VIO-PnP paradigm has existed for several
years with little innovation. However, one clear benefit of the
VIO-PnP approach is its ability to use a monocular camera
setup with a large FOV. While this comes with a lack of
scale and higher uncertainty in motion estimation, both can
be compensated using inertial sensors and localization with
respect to known landmarks (e.g., gates). As evidenced by
the rich literature, this makes a monocular setup the preferred
solution for autonomous drone racing practitioners. The choice
of a monocular sensor is very much in agreement with how
human pilots fly: while they have goggles with two monitors,
the video stream they receive is from a monocular camera
system on the drone. Other approaches used in early drone
racing competitions relied on the technique of visual servoing
via stereo cameras [10], but relying on a stereo camera pair
comes with inherent difficulties. In the presence of motion-
blur stereo-matching approaches degrade quickly. Further-
more, drones only allow for a very small baseline and require
a wide-angle camera to perceive as much of the surroundings
as possible. Both lead to very high depth estimation errors
in the stereo setup. The solution proposed in [10] was found
to be sensitive to indoor lighting changes and needed to be
hand-tuned for every flight.

Recent works [84]–[86] proposed vision-based odometry
algorithms that are learned end-to-end. Theoretically, these

methods could be specialized to drone racing tasks and poten-
tially outperform classical VIO approaches. However, they are
in the early development phase, and how to customize them
for the drone racing task is still an open research question.
In addition, they currently have high computational costs that
make them impractical for online state estimation onboard
drones. We refer the reader to Sec. IV for a detailed review
of VIO methods based on deep learning.

B. Planning

Once a state estimate x̂ has been obtained from
the perception module, the next step in the classical
pipeline is to plan a feasible, time-optimal trajectory
τref = (xref ,uref)k, ∀k ∈ 0 . . . N , which respects the phys-
ical limits of the platform as well as the constraints imposed
by the environment. This requires predicting the drone’s future
states such that minimum lap time is reached without crashing.

The planning for drones has matured over the last decade
from works mostly verified in simulation to works shown in
both controlled lab environments and unknown unstructured
environments. In the classical pipeline, planning can include
up to two distinct planning problems, path planning and tra-
jectory planning. Path planning tackles the problem of finding
a geometrical path between a given start and goal position
while passing specified waypoints and avoiding obstacles.
Trajectory planning then uses a found geometric path to either
create a collision-free flight corridor [87], [88], to find new
waypoints for the trajectory to avoid collisions [37], [89], to
constrain the trajectory to stay close to the found path [90],
[91] or directly finds time allocation for a given path [92],
[93]. Therefore, path planning can be seen as a way to select
the homotopy class of the collision-free space the drone flies
through, while trajectory planning finds the full (or simplified)
time-allocated drone state predictions to be followed by the
control pipeline (Section III-C). However, many works rely
solely on trajectory planning as they assume no collision
with the environment when a trajectory is found [94]–[98].
Other works directly find a collision-free trajectory [99]–[102]
without having a previously found path. On the other hand,
some control approaches [103], [104] do not need a specified
time-allocated trajectory and rely only on the geometrical path
for controlling the drone.

In the following text, we first overview the most popular
path planning approaches for drones that are used for fur-
ther trajectory planning. Then, we categorize trajectory plan-
ning methods in polynomial and spline trajectory planning,
optimization-based trajectory planning, search-based trajec-
tory planning, and sampling-based trajectory planning.

1) Path planning: Path planning approaches can be broadly
divided into Sampling-based planning and Combinatorial plan-
ning [105]. Sampling-based methods do not construct the
obstacle space explicitly but rather rely on random sam-
pling of the configuration space together with collision de-
tection. The most popular variants of the sampling-based
methods with numerous modified versions are the Probabilis-
tic Roadmaps (PRM) [106] and Rapidly-exploring random
trees (RRT) [107]. Important variants of these algorithms

7

named RRT* and PRM* [108], can find the optimal path given
infinite time. The combinatorial planning methods, in contrast
to the sampling-based methods, directly represent the obstacle
or free space using e.g. polygonal maps or cell decomposition
such as grid-based maps. With the help of a graph repre-
sentation of the decomposed free space, classical path search
algorithms such as A* [109] or Dijkstra’s algorithm [110] can
be used to find a path.

Variants of the above path planning approaches are used
in many of the methods listed in Sections III-B2–III-B5 to
help find trajectories for either fast flight or even drone
racing. The RRT* algorithm is used to find new waypoints
for polynomial trajectory planning in [89], and the PRM* is
used as a path planning part to guide sampling-based trajectory
planning in [37]. The sampling-based planning in [101], [102]
directly performs both path and trajectory planning. While the
trajectory planning objective can be to minimize time duration
of a trajectory, the path planning typically tries to find the
shortest paths. Therefore, some methods search for multiple
distinct paths to enable the trajectory planning to search over
multiple options on how to navigate around obstacles [37],
[90], [91]. Other methods [87] use search-based algorithms to
find an initial path and to create a convex flight corridor for
constraining the collision-free trajectory planning. Similarly,
the search-based methods [99], [100] use a variant of A* to
perform both path and trajectory planning at the same time.

2) Polynomial and Spline Trajectory Planning: The Poly-
nomial and Spline methods leverage the differential flatness
property [111], [112] of quadrotors and represent a trajectory
as a continuous-time polynomial or spline. This property
simplifies the full-state trajectory planning to a variant where
only four flat outputs need to be planned (typically 3D position
and heading). By taking their high-order derivatives, these flat
outputs can represent a dynamically feasible trajectory with
their respective control inputs. This property is used by many
polynomial and spline methods that are nowadays among the
most used for general quadrotor flight.

The widely used polynomial trajectories [111], [112] min-
imize snap (4th order position derivative) of a trajectory.
Different methods opted for minimizing jerk (3rd order po-
sition derivative) for planning a trajectory [113]. However,
the trajectories that result from having jerk as the primary
objective have been shown to minimize the aggressiveness
of the control inputs [113], which is fundamentally different
from minimizing the lap times, where extremely aggressive
trajectories are generally required. Richter et al. [89], there-
fore, extended the objective by jointly optimizing both the
snap of a trajectory and the total time through a user-specified
penalty on time. Recently, Han [87] proposed a polynomial-
based trajectory planning method for drone racing. It jointly
optimizes control effort and regularized time and penalizes the
dynamic feasibility and collisions.

Because of their numerical stability, other methods use B-
splines to represent trajectories [90], [91] instead of high-order
polynomial representations that are numerically sensitive.
These methods jointly optimize different objectives, simulta-
neously smoothness, dynamic feasibility, collision avoidance,
safety [91] and vision-based target tracking [94]. Recently,

the authors of [114] proposed a polynomial trajectory rep-
resentation based on the work of [115] and use it to plan
time-optimal trajectories through gates of arbitrary shapes for
drone racing, achieving close-to-time-optimal results while
being more computationally efficient than [95].

Although both polynomial and spline trajectories are widely
used due to their computational efficiency, polynomial-based
trajectories (and their derivatives) are smooth by defini-
tion. Therefore, only smooth control inputs can be sam-
pled from them. For this reason, the traditional polynomial
planning [111] with a finite number of coefficients and one
polynomial segment between every two waypoints (gates)
cannot represent true time-optimal trajectories [95]. Yet, di-
rect collocation methods [116] that rely on polynomials to
approximate the input and state dynamics can achieve nearly
optimal performance. This is mainly due to a larger number
of polynomial segments between the waypoints in collocation
methods, joint optimization of both polynomial coefficients
and collocation points, and due to the approximation of the
entire dynamics by polynomials. This allows to keep the
acceleration at the possible maximum at all times similar to
the optimization-based shooting method [95]. Therefore, while
the classical polynomial and spline methods can be considered
optimization-based, they only optimize coefficients of a single
polynomial between every two waypoints to describe quadro-
tor position and heading, leveraging the differential flatness
property [111], [112].

3) Optimization-based Trajectory Planning: Optimization-
based trajectory planning enables us to independently select
the optimal sequence of states and inputs at every time
step, which inherently considers time minimization while
complying with quadrotor dynamics and input constraints.
Optimization-based approaches have been extensively con-
sidered in the literature, ranging from exploiting point-mass
models [96], simplified quadrotor models [97], [117], and full-
state quadrotor models [88], [95].

Time-optimality of a trajectory could also be accomplished
by using a specific path parameterization that maximizes
velocity over a given path [92]. This method was shown for
quadrotors in [93] for minimizing time of flight considering
both translational and rotational quadrotor dynamics. However,
the method only creates a velocity profile over a given path
which is not further optimized.

Apart from time optimality, complying with intermediate
waypoint constraints is another requirement for path planning
in autonomous drone racing. A common practice of solving
a trajectory optimization problem with waypoint constraints
is allocating waypoints to specific time steps and minimizing
the spatial distance between these waypoints and the position
at the corresponding allocated time steps on the reference
trajectory (e.g. [98], [118]). The time allocation of the way-
points is, however, non-trivial and difficult to determine. This
is tackled in [88], but the work uses body rates and collec-
tive thrust as control inputs and does not represent realistic
actuator saturation. Recent work [95] introduces a comple-
mentary progress constraints (CPC) approach, which considers
true actuator saturation, uses single rotor thrusts as control
inputs, and exploits quaternions to create full, singularity-

8

free representations of the orientation space with consistent
linearization characteristics. While the above methods create
time-optimal trajectories passing through given gates, they are
computationally costly and hence intractable in real-time.

4) Search-based Trajectory Planning: Search-based plan-
ning methods [99], [100] rely on discretized state and time
spaces. They solve the trajectory planning through graph
search algorithms such as A*. The search graph is built using
minimum-time motion primitives with discretized velocity,
acceleration, or jerk input. The algorithms then use trajectories
of a simpler model, e.g. with velocity input, as heuristics for
the search with a more complex model. Search-based planning
methods can optimize the flight time up to discretization, but
they suffer from the curse of dimensionality which renders
them too computationally demanding for a complex quadrotor
model. Furthermore, the employed per-axis dynamic limits
(velocity, acceleration, jerk) do not represent the true quadrotor
model, further decreasesing the quality of found plans. Finally,
although searching for minimum time trajectories, the methods
are currently limited to planning between two states which is
not suitable for multi-waypoint drone racing.

5) Sampling-based Trajectory Planning: Sampling-based
methods like RRT* [119] can be used for planning trajecto-
ries for linearized quadrotor models. Several time-minimizing
approaches [77], [101] use a point-mass model for high-
level time-optimal trajectory planning. In [101], an additional
trajectory smoothing step is performed where the gener-
ated trajectory is connected with high-order polynomials by
leveraging the differential flatness property of the quadrotor.
Authors of [120] use sampling-based approach with massive
GPU parallelization and a 6D double integrator system of
UAV with additional single integrator yaw dynamics. However,
these point-mass approaches need to relax the single actuator
constraints and instead limit the per-axis acceleration, which
results in trajectories that are conservative and sub-optimal
given a minimum time objective. In [102], the authors use
minimum-jerk motion primitives for connecting randomly
sampled states inside RRT* to plan a collision-free trajectory.
Since the authors use polynomials, this approach can only
generate smooth control inputs, meaning that they cannot
rapidly switch from full thrust to zero thrust if required.

The first method for planning minimum-time trajectories
in a cluttered environment for the full quadrotor model was
proposed in [37]. It uses a hierarchical sampling-based ap-
proach with an incrementally more complex quadrotor model
to guide the sampling. The authors showed that the method
outperforms both polynomial and search-based methods in
minimizing trajectory time. Yet, the method is offline and
intractable in real-time. Most recently, the authors of [104]
proposed an online replanning approach that plans minimum-
time trajectories for a point-mass model. The paths of re-
planned trajectories are then consequently used by Model
Predictive Contouring Control [103] with a full quadrotor
model to maximize the progress along the path. This method
is capable of outperforming other classical approaches due to
the replanning capability and progress maximization with a
full quadrotor model.

2016 2017 2018 2019 2020 2021 2022
0

10

20

30

[53] [53]

[16]

[40]

[124], [125]

[4]

Year

M
ax

im
um

Sp
ee

d
[m

/s
]

Fig. 4: Top speeds demonstrated on autonomous drones over time from both
literature and competition data.

6) Discussion: A planned trajectory can be understood as
an intermediate representation that, given information about
the robot’s dynamics and the environment, helps guide the
platform through the race track and ultimately perform the task
at hand. One might argue if this intermediate representation is
needed at all, since ultimately, what we are looking for is a
policy that maps sensor information and current environment
knowledge to the actuation space. This is generally achieved
with learning-based approaches, discussed in Section IV,
which bypass the planning stage and directly convert sensor
observations to actuation commands [121]–[123].

One of the biggest benefits of explicit planning is modu-
larity. This means that the developed algorithms can be used
off-the-shelf for different drone tasks outside racing, such as
search and rescue, which is not the case for single-purpose
learned approaches. However, explicit planning suffers from
the disconnection (or an open loop) between the planning and
the deployment stage. Unexpected deviations from the plan,
be it in the time domain (like unmodeled system delays) or in
the state-space domain (like state estimation drifts or jumps in
the VIO pipeline), can lead to compound errors and ultimately,
a complete system failure.

This can be tackled with more complex control approaches
that do some part of the replanning online [104].

C. Control

Over the last decade, significant advancements have been
made in agile multicopter control. Every year, increasing top
speeds are demonstrated in the literature as shown in Figure 4.

Controllers must be able to make real-time decisions in the
face of poor sensor information and model mismatch. Control
inputs, u(t), can come in a variety of modalities for quadrotor
control, such as velocity and heading, body rates and collective
thrust, or direct rotor thrust commands [36]. Typically, a high-
level controller computes a desired virtual input such as body
rates and collective thrust, which is then passed down to a
low-level flight controller that directly controls the individual
rotors on the multicopter.

Commonly used open source controllers such as PixHawk1

or BetaFlight2 are widely available to the drone racing com-

1https://pixhawk.org/
2https://github.com/betaflight/betaflight

9

munity. BetaFlight is the most commonly used low-level
controller for agile drone flight and has been widely adopted
by the First Person View (FPV) racing community.

In the following sections, we provide an overview of suc-
cessful approaches to achieving high speeds in both simulation
and real-world applications. We sort the approaches into
model-based control and coupled perception and control.

1) Model-Based Control: In model-based control, an ex-
plicit model of the dynamic system is used to calculate control
commands that satisfy a given objective such as minimizing
time or tracking error. Models enable the prediction of future
states of the drone and provide information about the system’s
stability properties. In [126], Geometric Tracking control is
introduced on the Special Euclidean group SE(3) and com-
pletely avoids singularities commonly associated with Euler
angle formulations on SO(3). This nonlinear controller showed
the ability to execute acrobatic maneuvers in simulation and
was the first to demonstrate recovery from an inverted initial
attitude. The dynamic model of a quadrotor is shown to be
differentially flat when choosing its position and heading as
flat outputs in [112]. In this work, many agile maneuvers are
performed onboard real drones with speeds up to 2.6 m/s.

The previous work is extended in [26], proving that the
dynamics model of a quadrotor subject to linear rotor drag
is also differentially flat. The inclusion of the aerodynamic
model within the nonlinear controller led to demonstrated
flight speeds up to 4.0 m/s while reducing tracking error by
50% onboard a real drone.

The differential flatness method is further extended in [127]
by cascading an Incremental Nonlinear Dynamic Inversion
(INDI) controller with the differential flatness controller de-
scribed in [112] but neglects the aerodynamic model addition
from [26]. The INDI controller is designed to track the angular
acceleration commands Ω̇ from the given reference trajectory.
Top speeds of nearly 13 m/s and accelerations over 2g are
demonstrated onboard a real quadrotor. The controller shows
robustness against large aerodynamic disturbances in part due
to the INDI controller.

An investigation of the performance of nonlinear model pre-
dictive control (NMPC) against differential flatness methods
is available in [125]. Cascaded controllers of INDI-NMPC
and INDI-differential flatness are shown to track aggressive
racing trajectories which achieve speeds of around 20m/s and
accelerations of over 4g. While differential flatness methods
are computationally efficient controllers and relatively easy to
implement, they are outperformed on racing tasks by NMPC.

An excellent overview of MPC methods applied to micro
aerial vehicles can be found in [128]. Because quadrotors are
highly nonlinear systems, nonlinear MPC is often used as
the tool of choice for agile maneuvers. The debate of linear
versus nonlinear MPC is thoroughly discussed in [129]. Model
Predictive Path Integral (MPPI) control is a sampling-based
optimal control method that has found excellent success on
the AutoRally project, a 1/5th scale ground vehicle designed to
drive as fast as possible on loose dirt surfaces [130], [131]. An
introduction to MPPI can be found in https://autorally.github.
io/. The MPPI approach can be used on agile quadrotors to
navigate complex forest environments, however, analysis was

only performed in simulation [130]. Most of the successful
demonstrations of MPPI come from ground robots [130],
[131]. Because MPPI is a sampling based algorithm, scaling
to higher-dimension state spaces of quadrotors can lead to
performance issues as shown in [124].

Nonlinear MPC methods are also used in [40] where a
nominal quadrotor model is augmented with a data-driven
model composed of Gaussian Processes and used directly
within the MPC formulation. The authors found that the
Gaussian-Process model could capture highly nonlinear aero-
dynamic behavior which is difficult to model in practice as
described in Sec. II. The additional terms introduced by the
Gaussian-Process added computational overhead to the MPC
solve times, but it was still able to run onboard a Jetson TX2
computer.

Similar to [127], authors in [124] question whether or not
it is necessary to explicitly model the additional aerodynamic
terms from [40] due to the added computational and modeling
complexity. Instead, they propose to learn residual model
dynamics online using a cascaded adaptive nonlinear model
predictive control architecture. Aggressive flight approaching
20m/s and over 4g acceleration is demonstrated on real rac-
ing quadrotors. Additionally, completely unknown payloads
can be introduced to the system, with minimal degradation
in tracking performance. The adaptive inner loop controller
added minimal computational overhead and improved tracking
performance over the Gaussian Process MPC by 70% on a
series of high-speed flights of a racing quadrotor [40], [124].

Contouring control methods can deal with competing op-
timization goals such as trajectory tracking accuracy and
minimum flight times [132]. These methods minimize a cost
function which makes trade-offs between these competing
objectives. In [133], Nonlinear Model Predictive Contouring
Control (MPCC) is applied to control small model racecars.
MPCC was then extended to agile quadrotor flight in [103].
Although the velocities achieved by the MPCC controller were
lower than that of [124], [125], the lap times for the same race
track were actually lower due to the ability of the controller to
find a new time-allocation that takes into account the current
state of the platform at every timestep. The work is further
extended to solve the time-allocation problem online, and to
re-plan online [104] while also controlling near the limit of
the flight system. Similar work uses tunneling constraints in
the MPCC formulation in [134],

2) Perception Awareness: Other methods that lie in the
intersection of perception, planning, and control include a
perception objective in the cost function that helps improve the
visibility of an objective or the quality of the state-estimation
pipeline. The methods are called perception aware, and the
first methods were proposed in [135]–[137] This is integral to
the drone-racing problem because, to navigate a challenging
race course, the gates that define the course layout must be
kept in view of the onboard cameras as much as possible.
Additionally, coupling the perception with the planning and/or
control problem can alleviate issues in state estimation because
the racing gates are usually feature-rich. Therefore, the use
of perception-related objectives in both planning and control
pipelines is commonplace [91], [93], [120], [137], [138]. For

https://autorally.github.io/
https://autorally.github.io/

10

example, in [93], [137] the authors tackle the problem of
minimizing the time required by a quadrotor to execute a given
path, while maintaining a given set of landmarks within the
field of view of its on-board camera. Or in [139], where the
authors include a perception-aware term in the cost function
to maximize the visibility of the closest dynamic obstacle,
in order to readily plan a path that avoids it. These methods
are called perception-aware [140], and in the following, we
highlight their core characteristics.

The goal is as follows: navigate a trajectory with low
tracking error while keeping a point of interest in view while
minimizing motion blur for maximum feature detection and
tracking. The first instance applied to agile quadrotors was
PAMPC introduced in [140]. In this work, a nonlinear pro-
gram is optimized using a sequential quadratic programming
approximation in real time. The cost function contains both
vehicle dynamic terms as well as perception awareness terms
such as keeping an area of interest in the center of the camera
frame.

This technique is applied to the drone racing problem in
[141], where an MPPI controller is designed with a Deep
Optical Flow (DOF) component that predicts the movement
of relevant pixels (i.e. gates). The perception constraints are
introduced into a nonlinear optimization problem and deployed
in a drone-racing simulator. The approach was not demon-
strated onboard real hardware. In [142], a perception-aware
MPC based on Differential Flatness was used to ensure that
a minimum number of features are tracked between control
updates and thus guarantee localization. To achieve this, a
Perception Chance Constraint within the MPC formulation is
introduced to ensure that at least n number of landmarks are
within the field-of-view of the camera at all times with some
bounded probability.

3) Discussion: The performance of model-based controllers
degrades when the model they operate on is inaccurate [124].
For drones, defining a good enough model is an arduous
process due to highly complex aerodynamic forces, which can
be difficult to capture accurately within a real-time capable
model. In addition, the tuning process of many model-based
controllers can be arduous, and requires a high level of domain
expertise to achieve satisfactory performance.

In any optimal control problem, a cost function that the
user wants to optimize must be defined. Traditionally, con-
venient mathematical functions leveraging convex costs are
used because these functions are easy to optimize and there
is a large toolchain available for optimizing such problems
such as Acados [143], CVXGEN [144], HPIPM [145], or
Mosek [146]. In many drone racing papers, the optimal control
problem is formulated as follows:

min
u
xT
NQxN +

N−1∑
k=0

xT
kQxk + uT

kRuk , (2)

subject to: xk+1 = fRK4(xk,uk, δt) ,
x0 = xinit , umin ≤ uk ≤ umax ,

where the state is given by xk, the control input is given by
uk, the state cost matrix is given by Q, and the control cost
matrix is given by R. The optimization problem is constrained

by the dynamics of the system given by f(xk, uk, δt) where
δt is a finite time step. The nonlinear dynamics are typically
propagated forward using an integrator such as 4th order
Runge-Kutta, RK4. Additionally, the problem is subject to the
thrust limits of the platform. umin and umax, and some initial
condition of the system x0. In this formulation, a reference
position and control are provided by a high-level planner and
the goal of the controller is to track the given reference, but
this objective is ill-defined for the drone racing problem: in
drone racing, we wish to complete the track in as little time
as possible; therefore, our objective can be better formulated
as follows:

min
u

T∑
k=0

δt , (3)

subject to: xk+1 = fRK4(xk,uk, δt)

x0 = xinit, x ∈ X , u ∈ U

where T is the number of discrete time steps it takes to
complete the race, and the set U contains the input constraints
(e.g., single-rotor thrust constraints). The set X encodes all
state constraints, from possible limits in the state itself (e.g.,
attitude or velocity constraints), to more complex constraints
such as the fact that the drone has to pass through a set of gates
in a pre-determined order without colliding. This approach
requires a time-horizon that predicts all the way until the end
of the task which is intractable to optimize online.

Reinforcement learning (RL) methods [36], [122] can opti-
mize a proxy of this cost function, however do so in an offline
fashion, requiring large amounts of training experience to
approximate the value function. RL methods do not necessarily
depend on a high-level planner to provide a reference to track.
We will discuss some recent approaches using reinforcement
learning methods in the following section.

IV. LEARNING-BASED APPROACHES

In this section, we present various learning-based ap-
proaches for drone racing. These approaches replace the plan-
ner, controller, and/or perception stack with a neural network.
Learning-based methods have gained significant traction in the
last few years, given their ability to cope with both high-
dimensional (e.g. images) or low-dimensional (e.g. states) in-
put data, their representation power, and the ease of developing
and deploying them on hardware.

The big advantage of these methods is that they require
less computational effort than traditional methods, possibly
enabling low-latency re-planning and control. In addition,
they are much more robust to system latencies and sensor
noise, which can be easily accounted for by identifying them
on physical drones and then adding them to the training
environments [36]. However, the major limitation of these
methods is their sample complexity. There are currently two
possibilities for data gathering. The first, mostly popular in
the initial stages of learning-based robotics [64], [79], [147]–
[149] is to collect data in the real world. The data is then
annotated by a human or an automated process, and used
for training. The second, much more popular in recent years
and currently achieving the best results, consists of using

11

simulation for collecting training data [36], [65], [121], [150],
[151]. However, significant simulation engineering is required
to enable generalization if the training data comes from a
simulator. Conversely, generalization is easier if data come
from the real world, but the data collection process is very
slow, tedious, and expensive.

Surveys covering existing methods for learning-based flight
already exist [152], [153]. In contrast to them, we cover the
most recent advances and give a broader discussion on the
comparison between learning-based and traditional methods
for drone racing.

A. Learned Perception

Sensors

Hardware

Planning Control Drone

Software

Fig. 5: Architecture 2: Learned Perception

For learned perception modules, the goal of the network
is to use images from an RGB, depth, or event camera to
detect landmarks within the environment and output useful
representations such as waypoints, or the location of gates
on the track. A depiction of this architecture can be seen in
Fig. 5. An overview of deep learning methods for vision-based
navigation specific to drone racing can be found in [153].

In [64], a dataset of images is collected from a forward-
facing camera mounted on a drone labeled with the relative
position to the closest gate. This dataset is used to train a
network that predicts from an image both the next gate location
and its uncertainty. Predictions are then fused with a visual-
inertial odometry system in an Extended Kalman Filter (EKF)
to predict the position of the drone on the track. Similarly
in [16], a Convolutional Neural Network (CNN) is used to
detect gate corners in the AlphaPilot challenge. Once the gate
corners are detected, classical computer vision algorithms like
PnP can be used to find the coordinates of the gate in the
camera frame. Using an EKF, the gate corner locations can be
fused with a traditional VIO pipeline to improve the estimates
of the drone’s location and orientation [16].

Oftentimes, perception networks consume precious re-
sources onboard computationally limited drones. To minimize
the network processing time, [82], [154] proposed optimized
architectures for gate detection on real-world data. A similar
optimization went into “GateNet” [155] a CNN to detect gate
center locations, distance, and orientation relative to the drone.
The same authors developed a follow-up work denoted as
“Pencil-Net” to do gate detection using a lightweight CNN
in [156]. Most learning-based perception networks can suffer
from poor generalization when deployed in environments that
were not included in the training data.To reduce deployment
sensitivity to lighting conditions or background content, virtual
gates can be added to real-world backgrounds [157].

Up until recently, RGB and depth cameras were used
exclusively in the drone racing task, however, these sensor
modalities can be sensitive to changes in the environment such
as illumination changes. To overcome this, [158] proposed
using event cameras coupled with a sparse CNN, recurrent
modules, and a You Only Look Once (YOLO) object detector

to detect gates. The use of event cameras overcomes potential
issues with motion blur from the rapid movement of the drone
and is a promising path forward for high-speed navigation.

Overall, deep learning methods for gate detection are the de-
facto standard in all drone racing systems. However, such gate
detectors are always coupled with traditional visual-inertial
odometry systems which explicitly estimate the metric state
of the drone. These approaches are discussed in Sec. III. It
is interesting to notice that learning-based odometry systems,
such as [84]–[86] have not yet replaced traditional methods.
This is particularly surprising since deep visual odometry
systems can specialize to a particular environment, which
can be useful for drone racing since the race track is fixed
and known in advance. A disadvantage of these methods is
the high computational cost that makes them impractical for
online applications. However, research in end-to-end visual
odometry is moving forward at a fast pace [86]. Recently,
works proposing end-to-end VIO systems for drones have been
published [159]–[161]. The work in [159] proposes to learn
global optical flow which is then loosely fused with an IMU
for full 6-DoF relative pose estimation. The method in [160]
and its extension [161] proposes a CNN-based ego-motion
estimator for fast flights. The performance of this method in
the UZH-FPV dataset shows that although end-to-end VIO
methods are a promising solution for agile flights, they are
not yet mature for drone racing. We foresee that in the near
future, researchers will be able to apply these methods to the
drone racing task.

B. Learned Planning & Perception

Sensors

Hardware

Control Drone

Software

Fig. 6: Architecture 3: Learned Planning and Perception

A tightly-coupled planning and perception stack (Figure 6)
is a very attractive algorithmic perspective. First, it greatly
simplifies the perception task: an explicit notion of a map
or globally-consistent metric state is not required. Second, it
largely reduces computational costs, both in the pre-training
and evaluation stages. Finally, it can leverage large amounts
of data, collected either in simulation or the real world, to
become robust against noise in perception or dynamics. Yet,
an interesting observation is that these methods still work
best when coupled with an explicit estimator of the metric
state [5]. In contrast to traditional methods, a locally consistent
odometry system is sufficient [65], [79], [150], waving away
the complexities of full-slam methods (e.g. loop-closure).

In [79], a coupled perception and planning stack for drone
racing is trained using real-world flight demonstrations. While
good performance is indicated on the racing task as well as
robustness against drift in state estimation, the method requires
re-training for each new environment. Therefore, in the follow-
up work [65], data generated entirely in simulation is used
to train the perception-planning stack, waiving the labor and
time-consuming requirement of data collection in the real
world. A similar pipeline was used for high-speed autonomous

12

flight through complex environments in [150], which pro-
poses to train a neural network in simulation to map noisy
sensory observations to collision-free trajectories directly.
This approach was later extended to nano-quadcopters [162],
which won the authors the first position in the IMAV 2022
Nanocopter AI Challenge. Recent work [163], [164] has shown
the possibility of training sensorimotor controllers for obstacle
avoidance end-to-end using reinforcement learning, paving the
way towards a system that could solve drone racing completely
end-to-end. However, these works still rely on explicit state
estimation and a controller to execute velocity commands.

Several other works apply a similar stacked perception
and planning pipeline for other autonomous drone racing
tasks [147]–[149], [165]. We point the interested reader to ex-
isting surveys on the role of learning in drone navigation [152].

A few works also studied the planning problem using data-
driven methods, decoupling it from the perception problem.
An interesting approach demonstrated in the NeurIPS Game of
Drones competition [166] used an off-the-shelf reinforcement
learning algorithm in place of a classic model-based planner
for drone racing [167].

C. Learned Control

Sensors

Hardware

Perception

Software

Planning Drone

Fig. 7: Architecture 4: Learned Control

Data-driven control, like reinforcement learning, allows for
overcoming many limitations of prior model-based controller
designs by learning effective controllers directly from expe-
rience. For example, model-free RL was applied to low-level
attitude control [168], in which a learned low-level controller
trained with PPO outperformed a fully tuned PID controller
on almost every metric. Similarly, [169] used model-based RL
for low-level control of an a priori unknown dynamic system.
More related to drone racing, recent works showcased the
potential of learning-based controllers for high-speed trajec-
tory tracking and drone racing [36]. Imitation learning is more
data efficient compared to model-free RL. In [170], aggressive
online control of a quadrotor has been achieved via training
a network policy offline to imitate the control command
produced by a model-based controller. Similarly, [171] studied
real-time optimal control via deep neural networks in an
autonomous landing problem. Other work in this category
has shown that reinforcement learning can find optimal [122],
[172] or highly adaptive controllers [173].

With a learning-based controller, it can be difficult to
provide robustness guarantees as with traditional methods such
as the Linear Quadratic Regulator (LQR). While a learning-
based controller may provide superior performance to classical
methods in simulation, it may be that they cannot be used
in the real world due to the inability to provide an analysis
of the controller’s stability properties. This is particularly
problematic for tracking the time-optimal trajectories required
by drone racing. Recent works have attempted to address this
using Lyapunov-stable neural network design for the control
of quadrotors [174]. This work shows that it is possible to have

a learning-based controller with guarantees that can also out-
perform classical LQR methods. Building upon this concept,
reachability analysis, and safety checks can be embedded in a
learned Safety Layer [175].

D. Learned Planning & Control

Sensors

Hardware

Perception

Software

Drone

Fig. 8: Architecture 5: Learned Planning & Control

The second paradigm of learned control is to produce the
control command directly from state inputs without requiring
a high-level trajectory planner, as shown in the architecture
diagram of Figure 8. This approach enabled an autonomous
drone with only onboard perception, for the first time, to
outperform a professional human, and is state-of-the-art at
the time of writing [5]. In autonomous drone racing, this
was proposed by [4], [122], where a neural network policy
is trained with reinforcement learning to fly through a race
track in simulation in near-minimum time. Major advantages
of the reinforcement-learning-based method are its capability
to handle large track changes and the scalability to tackle
large-scale random track layouts while retaining computational
efficiency. In [123], deep reinforcement learning is combined
with classical topological path planning to train robust neural
network controllers for minimum-time quadrotor flight in
cluttered environments. The learned policy solves the planning
and control problem simultaneously, forgoing the need for
explicit trajectory planning and control.

In this same category, another class of algorithms try
to exploit the benefits of model-based and learning-based
approaches using differentiable optimizers approaches [176]–
[178], which leverage differentiability through controllers. For
example, for tuning linear controllers by getting the analytic
gradients [179], or for creating a differentiable prediction,
planning and controller pipeline for autonomous vehicles
[180]. On this same direction, [181] equips the RL agent with
a differentiable MPC [176], located at the last layer of the
actor network that provides the system with online replanning
capabilities and allows the policy to predict and optimize
the short-term consequences of its actions while retaining the
benefits of RL training.

All these methods inherit the classic advantage of policy
learning. In addition, they do not require an external controller
to track the plan. This eliminates the discrepancy between the
planning and deployment stages, which is one of the main
limitations of traditional planning methods (Sec. III-B). Some
of the limitations of traditional planning remain, such as the
requirement of a globally-consistent state estimation and a map
of the environment. Also, they have not yet been demonstrated
in sparse long-horizon planning problems, e.g. flying through
a maze at high speeds, where their performance would likely
drop due to sample complexity.

E. End-to-End Flight

Expert pilots take raw sensory images from a first-person-
view camera stream and map directly to control commands.

13

Sensors

Hardware

Drone

Software

Fig. 9: Architecture 7: End to End Learning

In this section, we explore approaches emulating this holistic
navigation paradigm in autonomous drones.

Two families of approaches can be used to pursue an end-to-
end navigation paradigm. The first is substituting each of the
perception, planning, and control blocks with a neural network.
This structure is followed by [182], [183], where the authors
train a perception-planning network and a control network
using imitation learning. The perception network takes raw
images as input and predicts waypoints to the next gate.
The control network uses such predictions with ground-truth
velocity and attitude information to predict control commands
for tracking the waypoints. They showed improvements over
pure end-to-end approaches, which directly map pixels to con-
trol commands and were able to show competitive lap times
on par with intermediate human pilots within the Sim4CV
simulator [184]. Yet, the division into independent blocks leads
to compounding errors and latencies, which negatively affect
performance when flying at high speeds [150].

The second family of approaches directly maps sensor
observation to commands without any modularity. This design
is used by [185], which to date remains the only example of
the completely end-to-end racing system. Indeed, other end-
to-end systems generally require an inner-loop controller and
inertial information to be executed. For instance, [186] trains
an end-to-end CNN to directly predict roll, pitch, yaw, and
altitude from camera images. Similarly, [187], [188] use a
neural network to predict commands directly from vision. To
improve sample complexity, they use contrastive learning to
extract robust feature representations from images and leverage
a two-stage learning-by-cheating framework.

Independently of the design paradigm they follow, end-
to-end navigation algorithms are currently bound to simula-
tion. The reasons why no method was successfully deployed
in the real world include weak generalization to unseen
environments, large computational complexity, and inferior
performance to other modular methods. Another interesting
observation is that humans can pilot a drone exclusively
from visual observations. Conversely, except for [185], end-
to-end systems still rely on the state extracted from other
measurement modalities, e.g. an IMU. The question of whether
autonomous drones can race in the real world at high-speed
without any inertial information remains open. We provide
more details on this question in Section VIII.

F. Discussion

Data-driven approaches are revolutionizing the research in
autonomous drone racing, ranging from improving the system
model to end-to-end control. Currently, the best-performing
algorithms for drone racing include a learning-based com-
ponent [16], [17], and this trend is unlikely to change in
the coming years. Indeed, compared to classical model-driven
design, they can process high-dimensional sensory inputs
directly, can be made robust to any modeling uncertainty (e.g.

latency) by simply incorporating it in the training pipeline, and
require far less engineering effort for tuning and deploying
them [36].

Our analysis shows that the majority of learning-based
approaches heavily rely on simulators. While simulators may
get better and faster in the near future, recent advances in real-
world training [189], [190] and fine-tuning [191], [192] offer a
potential alternative for zero-shot simulation to reality transfer
for sensorimotor policies. However, so far, these works have
been limited to legged locomotion. Extension to agile drones
could lead to the successful deployment of end-to-end policies,
possibly improving the state of the art in agile flight.

Another limitation of the approaches discussed in this
section is their inability to adapt to new and uncertain en-
vironments quickly. The field of adaptive control has studied
this problem extensively [193]–[195]. Inspired by these works,
there has been a recent push to use advancements in machine
learning within the adaptive control framework. A method to
learn parametric uncertainty functions is introduced in [196].
These uncertainty functions could be learned offline using data
captured from agile flight experiments, and then embedded
within an adaptive controller to adjust controller parameters
online during flight. Results indicate that highly accurate
trajectory tracking can be achieved with this approach, even
in the face of strong wing gusts exceeding 6.5 m/s. More
recently, learning-based controllers have shown the ability to
adapt zero-shot to large variations in hardware and external
disturbances [197]. We see this as a promising area of research
and one that is integral for reliable performance in changing
environmental conditions.

V. DRONE RACING SIMULATORS

One tool that has drastically accelerated the progress of
research in autonomous drone flight is the use of simulation
environments that attempt to recreate the conditions that
real drones experience when flying. Over the years, several
simulation environments have been developed for the use of
general research.

In 2016, the widely used RotorS simulation environment
was published, which extends the capabilities of the popular
Gazebo simulation engine to multi-rotors [23]. Gazebo uses
the Bullet physics engine for basic dynamic simulation and
contact forces. Linear drag on the body of the multicopter is
simulated based on the cross-sectional area and linear velocity
of the simulated object. The RotorS extension features many
easy-to-use plugins for developing multi-rotors, however, it
distinctly lacks the photorealistic details needed to simulate
accurate behavior of estimation and perception pipelines.

AirSim was introduced by Microsoft in 2018 as a photo-
realistic simulator for the control of drones [21]. It is built on
the Unreal graphics engine and features easy-to-use plugins
for popular flight controllers such as PX43, ArduPilot4, and
others. It was used in the 2019 NeurIPS Game of Drones
challenge [166]. Because of the photorealism of AirSim, it
is possible to simulate the entire perception and estimation

3https://px4.io/
4https://ardupilot.org/

14

pipeline with a good possibility of transfer to real-world drone
systems. Additionally, AirSim comes pre-packaged with an
OpenAI-Gym environment for training Reinforcement Learn-
ing algorithms. Organizations such as Bell, Airtonomy, and
NASA are using AirSim to generate training data for learning-
based perception models.

FlightGoggles [55] was developed as another photorealistic
simulator and was used as the primary simulation environment
for the Lockheed Martin AlphaPilot challenge. FlightGoggles
contains two separate components: a photorealistic render-
ing engine built with Unity3D and a dynamic simulation
implemented in C++. FlightGoggles provides an interface
with real-world vehicles using a motion capture system; such
an interface allows the rendering of simulated images that
correspond to the position of physical vehicles in the real
world.

A recent simulator focused on Safe RL was proposed
in [198]. It uses Gazebo and the Pybullet physics engine as
the backend. Leaderboards for several safety-focused training
environments exist, encouraging researchers to submit their
approaches and compete with other researchers around the
world.

Flightmare [22] is a simulation environment featuring pho-
torealistic graphics provided by the Unity engine. The physics
engine is decoupled and can be swapped out with various
engines for user-defined levels of simulation fidelity. Similar to
FlightGoggles, Flightmare can also provide hardware-in-the-
loop simulation functions where a virtual, synthetic camera
image can be provided to the drone for use in control and
estimation [8].

Finally, Aerial Gym [199] is a GPU-accelerated simulator
that allows simulating millions of multirotor vehicles in paral-
lel with nonlinear geometric controllers for attitude, velocity
and position tracking. Additionally, the simulator offers a
flexible interface for modeling a large number of obstacles
and generating data such as RGB, depth, segmentation, and
optical flow.

VI. COMPETITIONS

To gauge the progress of the field as a whole, several
drone racing competitions have taken place since 2016. We
include a graphical overview of these events in Figure 2. The
Autonomous Drone Racing (ADR) competition was an annual
competition which took place during the IROS conference
between 2016 and 2019. In 2016, 11 teams competed in
autonomous drone racing and were tasked to navigate a series
of gates in sequence. The positions of the gates were not
known to the participating teams ahead of time, therefore
teams flew very cautiously identifying the next waypoints
online. Each team was given 30 minutes prior to the official
competition to fly the course as many times as they wished.
The winning team, from KAIST, made it through 10 of the 26
gates in 1 minute and 26 seconds. For comparison, a human
was able to complete the entire 26-gate course in 1 minute 31
seconds. A survey summarizing the approaches used for these
early competitions can be found in [19]. The following year,
a similar competition took place during IROS in Vancouver,

Canada, with better results. This time, 14 teams participated
and were given a CAD drawing of the course prior to the
event with locations and dimensions of all gates. Only 5 teams
participated in the final in-person event, with the winning team
making it through 9 out of 13 gates in over 3 minutes. A
summary of the winning approaches can be found in [14].
Two more ADR competitions took place at IROS 2018 and
2019, with drones navigating courses faster and more reliably.

In 2019, Lockheed Martin sponsored the AlphaPilot AI
Drone Racing Innovation Challenge where a 1 million dollar
grand prize was awarded to the winning team [200]. The
competition took place first in a virtual qualifying round which
used the FlightGoggles simulation environment [55]. Nine
teams out of more than 400 worldwide qualified for the final
challenge which included navigating a new track in a time-trial
setting against an expert human pilot. Such competition took
the form of a tournament, with three seasonal races and a final
championship race. This made it very different from previous
single-day competitions. Ultimately, professional pilot Gabriel
Kocher, from the Drone Racing League, manually piloted his
drone through the course in only 6 seconds. It took 11 seconds
to the winner, MAVLab from TU Delft, and 15 seconds
to the second-place winner, UZH-RPG from the University
of Zurich, to complete the course autonomously. The two
different approaches are documented in [16], [17]. Further
comments are provided by the winner in [201]. Perez et al.
provide an overview of the types of hardware used for some
of the drone racing competitions mentioned so far [53].

In 2019, the Game of Drones competition took place at the
NeurIPS conference. This competition was purely simulation-
based and used the AirSim simulation environment built by
Microsoft [15], [21], [166]. Participants in the Game of Drones
competition raced against simulated opponents in a head-to-
head fashion, similar to how humans compete in FPV drone
racing. Teams raced against a single simulated opponent,
navigating through a complex series of gates in three different
tiers: Planning Only, Perception Only, and Perception with
Planning.

In 2022, at the Swiss Drone Days event in Zurich, Switzer-
land, three of the world’s best human pilots competed against
researchers from the Robotics and Perception Group of the
University of Zurich. Flight speeds exceeding 100 kph were
demonstrated by the autonomous drones. When relying on
motion capture, the autonomous drones were able to achieve
significantly faster laptimes than the expert human pilots.
They additionally demonstrated it was possible to win races
without motion capture, using only onboard computing and
sensors to navigate the race track. IEEE Spectrum author Evan
Ackermann discusses the multi-day event in [202].

Looking into the future, the Abu Dhabi Autonomous Racing
League recently announced plans for an autonomous drone
racing competition in 2025.

VII. DATASETS, HARDWARE, AND OPEN SOURCE CODE

In this section, we provide an overview of the existing open
source code bases, useful datasets for autonomous drone racing
as well as hardware considerations. We first discuss datasets,

15

and then group the existing open source code bases by their
use-cases in table I and conclude with a brief overview over
drone racing hardware.

A. Datasets

In 2018, researchers from MIT released a large scale dataset
for perception during aggressive UAV flight [205]. This dataset
contains over 10 hours of flight data which includes simulated
stereo and downward-facing camera images at 120 Hz, real-
world IMU data at 100 Hz, motor speed data at 190 Hz, and
motion capture data at 360 Hz. The sensor suite was chosen
such that algorithms like Visual-Inertial Odometry (VIO) or
Simultaneous Localization and Mapping (SLAM) could be
evaluated on the dataset.

In 2019, the UZH-FPV Drone Racing Dataset was released,
which contains many agile maneuvers flown by a professional
racing pilot [78]. The dataset includes indoors and outdoors
real-world camera images, inertial measurements, event cam-
era data, and ground truth poses provided by an advanced
motion capture system (a total station) providing millimeter-
level accuracy. In 2024, the dataset was extended with new
data recorded onboard an autonomous racing drone flying
in a racing track with peak speed exceeding 20 m/s. This
new data includes large field-of-view camera images, inertial
measurements, and ground truth from a motion capture system.
Similar to the authors in [205], the authors of this dataset hope
to push the state of the art in state estimation during aggressive
motion and have created competitions to allow researchers to
compete against one another on this agile flight benchmark.5.
A recent effort reported in [207] open-sourced high-quality
data from both autonomous and human-piloted flights. This
effort enables the study of both the perception and control
problem without actual hardware, lowering the barrier of entry
for studying drone racing.

Research on how expert human pilots focus on their targets
during flying and provide a dataset that contains flight trajec-
tories, videos, and data from the pilots is examined in [206]

NeuroBEM [35] is a hybrid aerodynamic quadrotor model
which combines blade-element-momentum-theory models
with learned aerodynamic representations from highly ag-
gressive maneuvers. While the model is fit to the specific
quadrotor platform defined in [8], the approach can be used
for any quadrotor platform and provides over 50% reduction in
model prediction errors compared to traditional, exclusively-
first-principles approaches.

B. Open-Source Code

A significant amount of autonomous drone racing research
has been open sourced to the community, making implemen-
tation less daunting for newcomers to the field. A collection of
all known drone racing repositories has been provided to the
reader in Table I. These code bases range across controllers,
planners, sensor calibration, and even entire software stacks
dedicated to drone racing. We encourage both newcomers and
experienced researchers to check out the extensive amount of

5https://fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/

open source code bases available and contribute back to the
community.

C. Hardware

This survey does not intend to cover the hardware design
of racing drones rigorously. For an in-depth overview, see [8],
where the hardware and software design for developing a very
capable research platform are discussed. To make this survey
self-contained, this section presents a brief overview of the
hardware design of a racing drone nevertheless.

1) Racing Drone Design: A suitable hardware design
should maximize the agility and acceleration of the drone,
and hence, it needs to be as lightweight as possible [210].
For drones featuring onboard compute, the drone size is thus
lower-bounded by the size of the computer. Currently, the
NVIDIA Jetson family is the smallest off-the-shelf hardware
with sufficient compute to run complex neural networks, and
it leads to drones built on 6 inch frames. Carbon fiber offers
an excellent compromise between the weight and durability of
the frame, while other parts (such as holders for the computer)
can be designed using a 3D printer.

For actuation, fast-spinning brushless DC motors are ideal
because of their high specific power output, often exceeding
500 W for a 50 g motor. In general, larger propellers will
improve the energy efficiency of the drone [7] while smaller
propellers lead to a faster motor response. On a 6 inch frame,
three-bladed 5 inch propellers present a good compromise. To
sustain the power demand of brushless drone-racing motors
(often exceeding 2 kW at full throttle [7]) a lithium-polymer
battery with a sufficiently high discharge current rating (e.g.,
120 C) is required.

The Pixhawk PX4 flightstack, despite being commonly used
for quadrotors [11], [211], fixed-wings [212], and hybrid
VTOL platforms [213], is not optimized for agile flight.
Conversely, agile autonomous research platforms [5], [8] use
Betaflight as a low-level controller, similar to professional
human racing pilots.

The design of a capable racing drone is important for re-
searchers developing new technology. However, in many drone
racing competitions, the hardware design is not left to the
participants but is standardized. This approach is common in
human drone racing, where thousands of identical drones are
built before each competition. This concept was also adopted
by the AlphaPilot [200] competition, where all participants
used a given platform. Overall, this approach ensures fair
competition.

2) Beyond Quadcopters: While this survey focuses on
multi-copter drones, future drone racing competitions will
go beyond this platform. Indeed, FPV Fixed-Wing Racing is
already a popular sport among human pilots [214]. For exam-
ple, vertical takeoff and landing (VTOL) drones might offer
a great alternative to quadcopters. VTOL aircraft combine
the high speeds achieved by fixed-wing drones with some of
the maneuverability of multicopters. Pioneering works on this
platform have already shown agile control [215] and trajectory
generation for aerobatic VTOL flight [216]. Perhaps, once
such research platforms are available off the shelf, VTOL

https://fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/

16

TABLE I: Open Source Software and Datasets

Name and Reference Category Year Link
PAMPC [140] Controller 2018 https://github.com/uzh-rpg/rpg mpc

Deep Drone Acrobatics [121] Controller 2019 https://github.com/uzh-rpg/deep drone acrobatics
Data Driven MPC [40] Controller 2020 https://github.com/uzh-rpg/data driven mpc

High MPC [203] Controller 2022 https://github.com/uzh-rpg/high mpc
AutoTune [204] Controller Tuner 2022 https://github.com/uzh-rpg/mh autotune
Blackbird [205] Dataset 2018 https://github.com/mit-aera/Blackbird-Dataset
UZH-FPV [78] Dataset 2019 https://fpv.ifi.uzh.ch/
NeuroBEM [35] Dataset 2020 https://rpg.ifi.uzh.ch/NeuroBEM.html

Eye Gaze Drone Racing [206] Dataset 2021 https://osf.io/gvdse/
TII Drone Racing Dataset [207] Dataset 2024 https://github.com/tii-racing/drone-racing-dataset

Time-optimal Planning for Quadrotor Waypoint Flight [95] Planner 2021 https://github.com/uzh-rpg/rpg time optimal
Minimum-Time Quadrotor Waypoint Flight in Cluttered

Environments [37]
Planner 2022 https://github.com/uzh-rpg/sb min time quadrotor planning

RotorS [23] Simulator 2016 https://github.com/ethz-asl/rotors simulator
AirSim [166] Simulator 2018 https://microsoft.github.io/AirSim/

FlightGoggles [55] Simulator 2019 https://github.com/mit-aera/FlightGoggles
Flightmare [22] Simulator 2020 https://uzh-rpg.github.io/flightmare/

Learning to fly—a gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control [198]

Simulator 2021 https://github.com/utiasDSL/gym-pybullet-drones

Aerial Gym [199] Simulator 2023 https://github.com/ntnu-arl/aerial gym simulator
Sim 2 Real Domain Randomization [65] Sim2Real Transfer 2019 https://github.com/uzh-rpg/sim2real drone racing

RPG Quadrotor Control [26] Software Stack 2017 https://github.com/uzh-rpg/rpg quadrotor control
Agilicious [8] Software Stack 2022 https://github.com/uzh-rpg/agilicious

Kalibr [56] Camera Calibration 2022 https://github.com/ethz-asl/kalibr
VID-Fusion [74] Estimation 2021 https://github.com/ZJU-FAST-Lab/VID-Fusion
Fast-Racing [87] Planner 2021 https://github.com/ZJU-FAST-Lab/Fast-Racing

Ego-planner [208] Planner 2021 https://github.com/ZJU-FAST-Lab/ego-planner
GCOPTER [115] Planner 2022 https://github.com/ZJU-FAST-Lab/GCOPTER
FASTER [209] Planner 2021 https://github.com/mit-acl/faster
Panther [139] Planner 2022 https://github.com/mit-acl/panther

Deep Panther [138] Planner 2023 https://github.com/mit-acl/deep panther
Raptor [91] Planner 2021 https://github.com/HKUST-Aerial-Robotics/Fast-Planner

aircraft racing will become a popular platform for autonomous
drone racing research.

VIII. OPEN RESEARCH QUESTIONS AND CHALLENGES

While a lot of progress has been made, there are still many
challenges to be overcome in drone racing research. In the
following, we discuss the most interesting challenges in detail.

A. Challenge 1: Reliable State Estimation at High-Speeds

In its current form, online, robust, and accurate state
estimation is highly beneficial when pushing autonomous
drones to their limits. Currently, classical state estimation
approaches based on visual-inertial odometry cannot cope
with the perceptual challenges present in drone racing tasks.
Motion blur, low texture, and high dynamic range are some
reasons why classical VIO algorithms accumulate large errors
in localization. The miscalibration of intrinsic and extrinsic
camera parameters can lead to improper estimates of the
camera pose on a drone. This is due to local movements of the
camera frame relative to the drone body, as well as changes
in temperature and pressure. VIO drift can render the state
estimates unusable unless corrected through localizations to
a prior map. New sensor modalities, such as event cameras,
could potentially alleviate this issue. Although event-aided
VIO algorithms for drones have been proposed to improve
robustness to motion blur, they have not been demonstrated at
high speeds as seen in drone racing. Future research in agile
flight may focus on finding new event representations that are

computationally efficient and compatible with classical VIO
formulations. One example is to exploit direct methods [217].
Other promising sensor modalities are motor speed controllers
and force sensors. These sensor measurements could be used
to include more advanced drone models in VIO, e.g. modeling
aerodynamics effects, in order to limit the drift that accu-
mulates where camera measurements are degraded. One of
the main consequences of motion blur, low texture, and high
dynamic range is unreliable feature extraction and matching.
This consequently degrades the performance of the visual
frontend. Deep learning methods have the potential to solve
this problem. What hinders the application of these methods to
drone racing at the moment is their computational cost. Future
research should work on lightweight neural networks that can
provide inference at a high rate. Neural networks could also
be used to remove non-zero mean noise and constant errors
from the inertial measurements. A potentially fruitful area of
research is in combining neural networks for input processing
with a geometry-based VIO backend. This could lead to the
next step in the research on VIO for drone racing. Current
works [86], [218] have shown that this direction outperforms
end-to-end visual-based odometry methods.

B. Challenge 2: Flying from Purely Vision

State-of-the-art autonomous navigation methods rely on
visual and inertial information, usually combined with classic
perception algorithms. Conversely, expert human pilots rely
on nothing more than a first-person-view video stream, which
they use to identify goals and estimate the ego-motion of the

https://github.com/uzh-rpg/rpg_mpc
https://github.com/uzh-rpg/deep_drone_acrobatics
https://github.com/uzh-rpg/data_driven_mpc
https://github.com/uzh-rpg/high_mpc
https://github.com/uzh-rpg/mh_autotune
https://github.com/mit-aera/Blackbird-Dataset
https://fpv.ifi.uzh.ch/
https://rpg.ifi.uzh.ch/NeuroBEM.html
https://osf.io/gvdse/
https://github.com/tii-racing/drone-racing-dataset
https://github.com/uzh-rpg/rpg_time_optimal
https://github.com/uzh-rpg/sb_min_time_quadrotor_planning
https://github.com/ethz-asl/rotors_simulator
https://microsoft.github.io/AirSim/
https://github.com/mit-aera/FlightGoggles
https://uzh-rpg.github.io/flightmare/
https://github.com/utiasDSL/gym-pybullet-drones
https://github.com/ntnu-arl/aerial_gym_simulator
https://github.com/uzh-rpg/sim2real_drone_racing
https://github.com/uzh-rpg/rpg_quadrotor_control
https://github.com/uzh-rpg/agilicious
https://github.com/ethz-asl/kalibr
https://github.com/ZJU-FAST-Lab/VID-Fusion
https://github.com/ZJU-FAST-Lab/Fast-Racing
https://github.com/ZJU-FAST-Lab/ego-planner
https://github.com/ZJU-FAST-Lab/GCOPTER
https://github.com/mit-acl/faster
https://github.com/mit-acl/panther
https://github.com/mit-acl/deep_panther
https://github.com/HKUST-Aerial-Robotics/Fast-Planner

17

drone. Building systems that, similarly to human pilots, only
rely on visual information is very interesting from a scientific
perspective. Indeed, since simulating RGB is very challenging,
solving this question might require lifelong learning algo-
rithms operating in the real world. In addition, eliminating
inertial information might have some engineering advantages
too, e.g., data throughput, power consumption, and lower cost.
Seminal works in this direction try to understand how humans
solve this task [206], [219]. They found that expert pilots can
control drones despite a 200ms latency, which is compensated
by the human brain. Taking inspiration from biology, a recent
work [220] shows that it is possible to fly with camera images
and an onboard gyroscope (e.g., removing the accelerometer),
as long as the system never hovers. However, the above
questions still remain mostly open and a good avenue for
research at the intersection of computer vision, neuroscience,
and biology.

C. Challenge 3: Multiplayer Racing

Much of the work done up until this point on autonomous
drone racing has focused on time-optimal flight without con-
sidering how a capable opponent might impact the compe-
tition dynamics. In FPV races, pilots can compete against
up to 5 opponents simultaneously, bringing about the need
to anticipate how their opponents might behave. Humans
are astonishingly capable of recognizing opportunities for
overtaking and executing complex maneuvers in the face of
large aerodynamic disturbances caused by flying close to
another drone. Achieving such capabilities requires an agent
to estimate their opponent’s state using only onboard visual
sensors. However, these observations in drone racing are
sparse because the camera faces forward along the heading
axis, meaning that the only time an opponent is observable
is when the ego-agent is behind them. Sophisticated motion
and planning models which can propagate predictions of the
opponents’ states and racing lines through time are necessary
to anticipate collisions or overtaking opportunities. One way
to simplify the problem is combining classical vision with
learning-based control, which has shown promising results in
multi-agent zero-sum games for locomotion [221]. An initial
study [222] examined how game-theoretic planners can lead
to highly competitive behavior in two-player drone racing,
however, this work was confined to racing on a 2D plane.
The work was further extended to 3D spaces in [223], but
there is a significant opportunity for researchers to explore
the competitive nature of drone racing and develop interesting
racing strategies that lead to time-optimal agents that are able
to deal with complex opponent behavior.

D. Challenge 4: Safety

Autonomous drone racing research has so far focused
on demonstrating that superhuman performance in racing is
possible in controlled conditions [5] but has put less em-
phasis on risk and safety. We predict that this trend will
soon change. Adding safety to agile flight has gained much
attention recently [9], [198]. Initial works focused on gen-
erating a collision-free trajectory [224]–[226] with less em-
phasis on performance. More geared towards agile flight, the

works [209], [227]–[229] have studied the problem of trading
off safety and performance. All the aforementioned works
rely on solving constrained optimization problems. Outside
of drone racing, similar paradigms have been developed and
have the potential to inspire future algorithms. Such methods
are, for example, conformal analysis [230], chance-constrained
dynamic programming [231], control barrier functions [232],
or reachability analysis [233]. The latter has been successfully
applied in the context of autonomous driving with collision
avoidance [234], [235].

More modern, learning-based methods have been explored
for risk-aware autonomous driving in the context a of map-
prediction approach [236] and in combination with Tube
MPC [237], a form of MPC that takes stochasticity into
account. However, such approaches generally do not scale
to high-dimensional perception but rely on robust state-
estimation for all involved agents. Combining such algorithms
with the methods for vision-based, high-speed drone racing
presented in this survey could solve both of these prob-
lems simultaneously. As a first step in this direction, recent
work [238] has shown that a learned control policy can be
conditioned on an auxiliary input signal from a user. The
signal regulates the maximally available thrust, leading to a
single learned policy that can race at various speeds and risk
levels.

E. Challenge 5: Transfer to Real-World Applications

Drone racing, while an extraordinarily challenging research
environment, is ultimately not the end goal. Opportunities
exist for technology transfer between the drone racing research
community to real-world applications such as search and res-
cue, inspection, agriculture, videography, delivery, passenger
air vehicles, law enforcement, and defense. However, applica-
tions that leverage the full agility of the platform have much
to gain. Drones that fly fast, fly farther, therefore increasing
the productivity of drones in every commercial sector [7].

One of the major challenges to real-world application is gen-
eralization to conditions where the environmental knowledge
before deployment is limited. For example, we often do not
have a known map ahead of time for real-world applications,
which requires simultaneous estimation of the state of the
drone while mapping the environment. However, a central
theme of drone racing research has been the development of
adaptive control strategies and decision-making algorithms to
enable drones to react rapidly to changes in the race track or
the robot condition(Sec. III-C and Sec. III-A). These strategies
can be used to handle real-world applications where envi-
ronmental knowledge is imperfect and to enable adaptation
to unforeseen obstacles and challenges. In addition, learning-
based sensorimotor controllers for drones, increasingly more
popular due to research on racing, have been designed with
the ability to generalize from limited data, adapt, and improve
their performance over time (Sec. IV). Such generalization and
adaptation abilities have already been applied to cases where
there is no previous knowledge of the environment [150].

Building algorithms that can continually improve from their
experience is another alternative to favor this transfer. While
recent advances in reinforcement learning research point to the

18

feasibility of this path [191], [192], [239], it is unclear when
and how such recent approaches would be applicable to drones
or similarly agile platforms in the real world. Collecting data
for continual RL onboard a drone is notoriously difficult. This
is because the drone does not have the luxury of remaining in
contact with the ground like legged robots and cars, and thus
has to immediately know how to hover otherwise a crash will
occur. One interesting area that may be useful for continual RL
in drones is the notion of “safe-RL”. The goal of safe RL is to
enable exploration without ever incurring catastrophic failure
of the system. Initial work on this topic can be found in [240].
A survey paper covering safe RL methods can be found in [9].
Furthermore, a thorough review paper on continual, or life-
long RL can be found in [241].

IX. CONCLUSIONS AND SUMMARY

From racing at a pace comparable to walking speed [19],
autonomous drones have advanced to surpassing world cham-
pions [5]. Such an exponential advance has been driven by
both algorithmic innovations, e.g., learning sensorimotor con-
trollers in simulation, and system engineering improvements.
Such advances span the entire navigation pipeline: perception,
planning, and control. Our paper comprehensively covers each
of these topics. Methodologically, the dominant trend has been
a shift from conventional methods to data-driven solutions.
However, in contrast to fields like computer vision and natural
language processing, neural networks did not replace but
coexist with traditional methods: no method with competitive
performance in the real world is fully data-driven. The most
resilient part of the pipeline is state estimation, where strong
prior knowledge about the dynamics and environment are still
needed to cope with the lack of sensorimotor data. In the short
term, we predict that such a hybrid approach could be applied
to other physical systems, e.g., autonomous ground vehicles
and personal robots. However, in the long term, we predict
that, similarly to research in computer vision and natural
language processing, neural networks will replace each part of
the pipeline. This will require many innovations, e.g., compu-
tationally efficient architectures, offline pre-training strategies,
and fast adaptation schemes to previously unseen conditions.
While autonomous drones are already superhuman in con-
trolled scenarios, many challenges are yet to be solved to
outperform human champions in official drone racing leagues
and transfer the findings to real-world applications.

X. ACKNOWLEDGEMENTS

The authors thank Manasi Muglikar for her valuable inputs
on event-camera methods for state estimation and perception.

XI. CONTRIBUTIONS

Drew Hanover initiated the idea of this paper, created the
paper structure, and contributed to all sections of this paper
while coordinating efforts amongst the co-authors. Antonio
Loquercio contributed to the paper structure and the learning-
based sections. Leonard Bauersfeld authored the Drone Mod-
eling section and created the graphics seen throughout. Angel
Romero contributed to the Classical Planning and Control

sections. Giovanni Cioffi contributed to the Classical Percep-
tion and Challenges sections. Yunlong Song contributed to
the Simulators and Learning-Based Planning/Control sections.
Robert Penicka contributed to both Classical and Learning-
Based Planning sections. Elia Kaufmann contributed to the
paper structure and throughout the Learning-Based sections.
Davide Scaramuzza contributed to the general paper structure
and revised the paper thoroughly and critically.

REFERENCES

[1] T. A. Wilkinson, Early Dynastic Egypt. Routledge, 2002.
[2] S. M. Arab, “The sed-festival (heb sed) renewal of the kings’ reign,”

Arab World Books, Nov 2017.
[3] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,

and R. Mangharam, “Autonomous vehicles on the edge: A survey on
autonomous vehicle racing,” IEEE Open J. Intell. Transp. Syst., vol. 3,
pp. 458–488, 2022.

[4] Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, p. adg1462, 2023.

[5] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforce-
ment learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug 2023.

[6] Z. Ameli, Y. Aremanda, W. A. Friess, and E. N. Landis, “Impact of uav
hardware options on bridge inspection mission capabilities,” Drones,
vol. 6, no. 3, p. 64, 2022.

[7] L. Bauersfeld and D. Scaramuzza, “Range, endurance, and optimal
speed estimates for multicopters,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 2953–2960, 2022.

[8] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Ag-
ilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.

[9] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[10] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, “A direct visual
servoing-based framework for the 2016 iros autonomous drone racing
challenge,” Journal of Field Robotics, vol. 35, no. 1, pp. 146–166,
2018.

[11] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico et al., “Fast, autonomous
flight in gps-denied and cluttered environments,” Journal of Field
Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[12] “AGILEFLIGHT: Low-latency Perception and Action for Agile Vision-
based Flight,” https://cordis.europa.eu/project/id/864042.

[13] “AUTOASSES: Autonomous Aerial Inspection of GNSS-denied and
Confined Critical Infrastructures,” https://cordis.europa.eu/project/id/
101120732.

[14] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,
A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter et al.,
“Challenges and implemented technologies used in autonomous drone
racing,” Intelligent Service Robotics, vol. 12, no. 2, pp. 137–148, 2019.

[15] Microsoft, “Game of drones.”
[16] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,

M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, vol. 46, no. 1, pp. 307–320, 2022.

[17] C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon, “The
artificial intelligence behind the winning entry to the 2019 ai robotic
racing competition,” Field Robotics, vol. 2, 2022.

[18] “The motorsport concept building an autonomous mobility
ecosystem,” https://a2rl.io/news/18/The-Motorsport-Concept-
Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-
Executive-Director,-Dr-Tom-McCarthy.

[19] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, “The iros 2016 competitions
[competitions],” IEEE Robotics and Automation Magazine, vol. 24,
no. 1, pp. 20–29, 2017.

[20] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robotics and
Automation magazine, vol. 19, no. 3, pp. 20–32, 2012.

[21] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

https://cordis.europa.eu/project/id/864042
https://cordis.europa.eu/project/id/101120732
https://cordis.europa.eu/project/id/101120732
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy

19

[22] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Proceedings of the
2020 Conference on Robot Learning, 2021, pp. 1147–1157.

[23] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot operating system (ROS).
Springer, 2016, pp. 595–625.

[24] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk,
“Comprehensive simulation of quadrotor uavs using ros and gazebo,”
in International conference on simulation, modeling, and programming
for autonomous robots. Springer, 2012, pp. 400–411.

[25] R. W. Prouty, Helicopter performance, stability, and control. Krieger
Pub Co, 1995.

[26] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, 2017.

[27] S. Yoon, H. C. Lee, and T. H. Pulliam, Computational Analysis of
Multi-Rotor Flows.

[28] P. V. Diaz and S. Yoon, High-Fidelity Computational Aerodynamics of
Multi-Rotor Unmanned Aerial Vehicles.

[29] S. Yoon, Nasa, P. V. Diaz, D. D. Boyd, W. M. Chan, and C. R.
Theodore, “Computational aerodynamic modeling of small quadcopter
vehicles,” 2017.

[30] R. Gill and R. D’Andrea, “Propeller thrust and drag in forward flight,”
in 2017 IEEE Conference on Control Technology and Applications
(CCTA). IEEE, 2017, pp. 73–79.

[31] R. Gill and R. D’Andrea, “Computationally efficient force and moment
models for propellers in uav forward flight applications,” Drones, vol. 3,
no. 4, p. 77, 2019.

[32] W. Khan and M. Nahon, “Toward an accurate physics-based uav
thruster model,” IEEE/ASME Transactions on Mechatronics, vol. 18,
no. 4, pp. 1269–1279, 2013.

[33] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,” in
AIAA guidance, navigation and control conference and exhibit, 2007,
p. 6461.

[34] M. Bangura and R. Mahony, “Thrust control for multirotor aerial
vehicles,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 390–405,
2017.

[35] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” RSS: Robotics,
Science, and Systems, 2021.

[36] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark
comparison of learned control policies for agile quadrotor flight,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022.

[37] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint
flight in cluttered environments,” IEEE Robotics and Automation
Letters, 2022.

[38] P. Ventura Diaz and S. Yoon, “High-fidelity computational aerodynam-
ics of multi-rotor unmanned aerial vehicles,” in 2018 AIAA Aerospace
Sciences Meeting, 2018, p. 1266.

[39] J. Luo, L. Zhu, and G. Yan, “Novel quadrotor forward-flight model
based on wake interference,” Aiaa Journal, vol. 53, no. 12, pp. 3522–
3533, 2015.

[40] G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, 2021.

[41] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model
identification from high-speed flight data,” Journal of Aircraft, vol. 56,
no. 2, pp. 645–661, 2019.

[42] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,”
in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 4653–4660.

[43] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 3223–3230.

[44] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” 05 2019, pp. 9784–9790.

[45] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” in Proc. 9th ISCA
Workshop on Speech Synthesis Workshop (SSW 9), 2016, p. 125.

[46] B. Wang, Z. Ma, S. Lai, and L. Zhao, “Neural moving horizon
estimation for robust flight control,” IEEE Transactions on Robotics,
vol. 40, pp. 639–659, 2024.

[47] W. Peukert, “Über die abhängigkeit der kapazität von der entlade-
stromstärke bei bleiakkumulatoren.” Elektrotechn. Zeitschr., 1897.

[48] N. Galushkin, N. Yazvinskaya, and D. Galushkin, “Generalized an-
alytical model for capacity evaluation of automotive-grade lithium
batteries,” Journal of The Electrochemical Society, vol. 162, pp. A308–
A314, 01 2015.

[49] N. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, “A critical
review of using the peukert equation and its generalizations for lithium-
ion cells,” Journal of The Electrochemical Society, vol. 167, no. 12, p.
120516, aug 2020.

[50] X. Zhang, W. Zhang, and G. Lei, “A review of li-ion battery equivalent
circuit models,” Transactions on Electrical and Electronic Materials,
vol. 17, pp. 311–316, 12 2016.

[51] L. Zhang, S. Wang, D.-I. Stroe, C. Zou, C. Fernandez, and C. Yu, “An
accurate time constant parameter determination method for the varying
condition equivalent circuit model of lithium batteries,” Energies,
vol. 13, no. 8, 2020.

[52] D. Bicego, J. Mazzetto, R. Carli, M. Farina, A. Franchi, and
V. Arellano-Quintana, “Nonlinear model predictive control with en-
hanced actuator model for multi-rotor aerial vehicles with generic
designs,” Journal of Intelligent and Robotic Systems, vol. 100, 12 2020.

[53] L. O. Rojas-Perez and J. Martinez-Carranza, “On-board processing for
autonomous drone racing: An overview,” Integration, vol. 80, pp. 46–
59, 2021.

[54] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[55] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “FlightGog-
gles: Photorealistic sensor simulation for perception-driven robotics
using photogrammetry and virtual reality,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
nov 2019.

[56] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple imus and of
individual axes,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 4304–4311.

[57] Y. Yang, P. Geneva, X. Zuo, and G. Huang, “Online imu intrinsic
calibration: Is it necessary?” Proc. of Robotics: Science and Systems
(RSS), Corvallis, Or, 2020.

[58] D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial
robots,” Encyclopedia of Robotics, 2019.

[59] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[60] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” in 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, pp. 298–304.

[61] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in IEEE Int. Conf. Robot.
Autom. (ICRA). IEEE, 2007, pp. 3565–3572.

[62] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[63] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[64] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza, “Beauty and the beast: Optimal methods
meet learning for drone racing,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 690–696.

[65] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE Transactions on Robotics, 2019.

[66] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in IEEE Int. Conf.
Robot. Autom. (ICRA). IEEE, 2020, pp. 4666–4672.

[67] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ulti-
mate slam? combining events, images, and imu for robust visual slam in
hdr and high-speed scenarios,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 994–1001, 2018.

[68] S. Sun, G. Cioffi, C. De Visser, and D. Scaramuzza, “Autonomous
quadrotor flight despite rotor failure with onboard vision sensors:
Frames vs. events,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 580–587, 2021.

[69] P. Chen, W. Guan, and P. Lu, “Esvio: Event-based stereo visual inertial
odometry,” IEEE Robot. Autom. Lett., 2023.

20

[70] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “Vimo: Simultane-
ous visual inertial model-based odometry and force estimation,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2785–2792, 2019.

[71] G. Cioffi, L. Bauersfeld, and D. Scaramuzza, “Hdvio: Improving
localization and disturbance estimation with hybrid dynamics vio,”
Robotics: Science and Systems (RSS), 2023.

[72] G. Cioffi, L. Bauersfeld, E. Kaufmann, and D. Scaramuzza, “Learned
inertial odometry for autonomous drone racing,” IEEE Robotics and
Automation Letters, vol. 8, no. 5, pp. 2684–2691, 2023.

[73] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[74] Z. Ding, T. Yang, K. Zhang, C. Xu, and F. Gao, “Vid-fusion:
Robust visual-inertial-dynamics odometry for accurate external force
estimation,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 14 469–14 475.

[75] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monoc-
ular visual-inertial odometry algorithms for flying robots,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 2502–2509.

[76] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[77] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Robotics: Science and Systems (RSS), 2020.

[78] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the uzh-fpv drone
racing dataset,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6713–6719.

[79] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep drone racing: Learning agile flight in
dynamic environments,” in Proceedings of The 2nd Conference on
Robot Learning, ser. Proceedings of Machine Learning Research,
A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87.
PMLR, 29–31 Oct 2018, pp. 133–145.

[80] S. Li, M. M. Ozo, C. De Wagter, and G. C. de Croon, “Autonomous
drone race: A computationally efficient vision-based navigation and
control strategy,” Robotics and Autonomous Systems, vol. 133, p.
103621, 2020.

[81] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C.
de Croon, “Visual model-predictive localization for computationally
efficient autonomous racing of a 72-g drone,” Journal of Field Robotics,
vol. 37, no. 4, pp. 667–692, 2020.

[82] D. Zhang and D. D. Doyle, “Gate detection using deep learning,” in
2020 IEEE Aerospace Conference, 2020, pp. 1–11.

[83] R. Szeliski, Computer vision: algorithms and applications. Springer
Nature, 2022.

[84] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 2043–2050.

[85] W. Wang, Y. Hu, and S. Scherer, “Tartanvo: A generalizable learning-
based vo,” in Conference on Robotic Learning (CoRL), 2020.

[86] Z. Teed, L. Lipson, and J. Deng, “Deep patch visual odometry,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[87] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing:
An open-source strong baseline for {SE}(3) planning in autonomous
drone racing,” IEEE Robotics and Automation Letters, vol. 6, pp. 8631–
8638, 2021.

[88] S. Spedicato and G. Notarstefano, “Minimum-time trajectory genera-
tion for quadrotors in constrained environments,” IEEE Transactions
on Control Systems Technology, vol. 26, no. 4, pp. 1335–1344, 2017.

[89] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[90] B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time uav replanning
using guided gradient-based optimization and topological paths,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 1208–1214.

[91] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[92] H. Pham and Q.-C. Pham, “A new approach to time-optimal path
parameterization based on reachability analysis,” IEEE Transactions
on Robotics, vol. 34, no. 3, pp. 645–659, 2018.

[93] I. Spasojevic, V. Murali, and S. Karaman, “Perception-aware time opti-
mal path parameterization for quadrotors,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 3213–3219.

[94] B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3725–3732, 2018.

[95] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021.

[96] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza,
“Fast trajectory optimization for agile quadrotor maneuvers with a
cable-suspended payload,” in Robotics: Science and Systems (RSS),
2017.

[97] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Autonomous Robots,
Mar. 2012.

[98] K. Bousson and P. F. Machado, “4d trajectory generation and tracking
for waypoint-based aerial navigation,” WSEAS Transactions on Systems
and Control, no. 3, pp. 105–119, 2013.

[99] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sep 2017, p. 2872–2879.

[100] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se(3),” IEEE Robotics and Automation
Letters, vol. 3, no. 3, p. 2439–2446, Jul 2018.

[101] R. Allen and M. Pavone, “A real-time framework for kinodynamic
planning with application to quadrotor obstacle avoidance,” in AIAA
Guidance, Navigation, and Control Conference, 2016, p. 1374.

[102] T. Zhiling, B. Chen, R. Lan, and S. Li, “Vector field guided rrt* based
on motion primitives for quadrotor kinodynamic planning,” Journal of
Intelligent & Robotic Systems, vol. 100, 12 2020.

[103] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, pp. 1–17, 2022.

[104] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online
replanning for agile quadrotor flight,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 7730–7737, 2022.

[105] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[106] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[107] S. Lavalle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” Algorithmic and computational robotics: New direc-
tions, 01 2000.

[108] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[109] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[110] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
1959, pp. 269–271.

[111] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2011.

[112] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” Int. J.
Robot. Research, 2012.

[113] M. W. Müeller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[114] C. Qin, M. S. Michet, J. Chen, and H. H.-T. Liu, “Time-optimal
gate-traversing planner for autonomous drone racing,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024.

[115] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[116] T. Fork and F. Borrelli, “Euclidean and non-euclidean trajec-
tory optimization approaches for quadrotor racing,” arXiv preprint
arXiv:2309.07262, 2023.

21

[117] W. V. Loock, G. Pipeleers, and J. Swevers, “Time-optimal quadrotor
flight,” in IEEE Eur. Control Conf. (ECC), 2013.

[118] T. R. Jorris and R. G. Cobb, “Three-dimensional trajectory optimization
satisfying waypoint and no-fly zone constraints,” Journal of Guidance,
Control, and Dynamics, vol. 32, no. 2, pp. 551–572, 2009.

[119] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2013, pp. 5054–5061.

[120] B. Ichter, B. Landry, E. Schmerling, and M. Pavone, “Perception-
aware motion planning via multiobjective search on gpus,” in Robotics
Research. Cham: Springer International Publishing, 2020, pp. 895–
912.

[121] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” in Proceedings of Robotics:
Science and Systems, Corvalis, Oregon, USA, July 2020.

[122] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 1205–1212.

[123] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning
minimum-time flight in cluttered environments,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7209–7216, 2022.

[124] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza,
“Performance, precision, and payloads: Adaptive nonlinear mpc for
quadrotors,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
690–697, 2021.

[125] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,
“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” IEEE Trans. Robot., 2022.

[126] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav for extreme maneuverability,” IFAC Proceedings
Volumes, 2011.

[127] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor tra-
jectories using incremental nonlinear dynamic inversion and differential
flatness,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 1203–1218, 2020.

[128] H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predictive
control for micro aerial vehicles: A survey,” in 2021 European Control
Conference (ECC). IEEE, 2021, pp. 1556–1563.

[129] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear mpc for
trajectory tracking applied to rotary wing micro aerial vehicles,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 3463–3469, 2017.

[130] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[131] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and
J. M. Rehg, “Autorally: An open platform for aggressive autonomous
driving,” IEEE Control Systems Magazine, vol. 39, no. 1, pp. 26–55,
2019.

[132] D. Lam, C. Manzie, and M. Good, “Model predictive contouring
control,” in 49th IEEE Conference on Decision and Control (CDC),
2010, pp. 6137–6142.

[133] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, jul 2014.

[134] J. Arrizabalaga and M. Ryll, “Towards time-optimal tunnel-following
for quadrotors,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 4044–4050.

[135] G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza,
“Perception-aware path planning,” arXiv preprint arXiv:1605.04151,
2016.

[136] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive
quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision,” in 2017 IEEE international conference on
robotics and automation (ICRA). IEEE, 2017, pp. 5774–5781.

[137] B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, “Vision-based
minimum-time trajectory generation for a quadrotor uav,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 6199–6206.

[138] J. Tordesillas and J. P. How, “Deep-panther: Learning-based perception-
aware trajectory planner in dynamic environments,” IEEE Robotics and
Automation Letters, vol. 8, no. 3, pp. 1399–1406, 2023.

[139] ——, “Panther: Perception-aware trajectory planner in dynamic envi-
ronments,” IEEE Access, vol. 10, pp. 22 662–22 677, 2022.

[140] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–8.

[141] K. Lee, J. Gibson, and E. A. Theodorou, “Aggressive perception-aware
navigation using deep optical flow dynamics and pixelmpc,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1207–1214, 2020.

[142] M. Greeff, T. D. Barfoot, and A. P. Schoellig, “A perception-aware
flatness-based model predictive controller for fast vision-based multi-
rotor flight,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9412–9419, 2020.

[143] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados—a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, vol. 14, no. 1, pp.
147–183, 2022.

[144] J. Mattingley and S. Boyd, “Cvxgen: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[145] G. Frison and M. Diehl, “Hpipm: a high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.

[146] M. ApS, “Mosek optimization toolbox for matlab,” User’s Guide and
Reference Manual, Version, vol. 4, 2019.

[147] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al., “A machine
learning approach to visual perception of forest trails for mobile
robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–
667, 2015.

[148] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[149] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3948–3955.

[150] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, 2021.

[151] F. Sadeghi and S. Levine, “Cad 2 rl: Real single-image flight without
a single real image,” in Robotics: Science and Systems (RSS), 2017,
pp. 48–55.

[152] T. Lee, S. Mckeever, and J. Courtney, “Flying free: A research overview
of deep learning in drone navigation autonomy,” in drones, 2021.

[153] H. X. Pham, H. I. Ugurlu, J. Le Fevre, D. Bardakci, and E. Kayacan,
“Deep learning for vision-based navigation in autonomous drone rac-
ing,” in Deep Learning for Robot Perception and Cognition. Elsevier,
2022, pp. 371–406.

[154] A. A. Cabrera-Ponce, L. O. Rojas-Perez, J. A. Carrasco-Ochoa, J. F.
Martinez-Trinidad, and J. Martinez-Carranza, “Gate detection for micro
aerial vehicles using a single shot detector,” IEEE Latin America
Transactions, vol. 17, no. 12, pp. 2045–2052, 2019.

[155] H. X. Pham, I. Bozcan, A. Sarabakha, S. Haddadin, and E. Kayacan,
“Gatenet: An efficient deep neural network architecture for gate per-
ception using fish-eye camera in autonomous drone racing,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 4176–4183.

[156] H. X. Pham, A. Sarabakha, M. Odnoshyvkin, and E. Kayacan, “Pencil-
net: Zero-shot sim-to-real transfer learning for robust gate perception
in autonomous drone racing,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 11 847–11 854, 2022.

[157] T. Morales, A. Sarabakha, and E. Kayacan, “Image generation for
efficient neural network training in autonomous drone racing,” in 2020
International Joint Conference on Neural Networks (IJCNN). IEEE,
2020, pp. 1–8.

[158] K. F. Andersen, H. X. Pham, H. I. Ugurlu, and E. Kayacan, “Event-
based navigation for autonomous drone racing with sparse gated
recurrent network,” in 2022 European Control Conference (ECC).
IEEE, 2022, pp. 1342–1348.

[159] N. J. Sanket, C. D. Singh, C. Fermüller, and Y. Aloimonos, “Prgflow:
Unified swap-aware deep global optical flow for aerial robot naviga-
tion,” Electronics Letters, vol. 57, no. 16, pp. 614–617, 2021.

[160] Y. Xu and G. C. de Croon, “Cnn-based ego-motion estimation for fast
mav maneuvers,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 7606–7612.

[161] ——, “Cuahn-vio: Content-and-uncertainty-aware homography net-
work for visual-inertial odometry,” arXiv preprint arXiv:2208.13935,
2022.

22

[162] L. Lamberti, E. Cereda, G. Abbate, L. Bellone, V. J. K. Morinigo,
M. Barciś, A. Barciś, A. Giusti, F. Conti, and D. Palossi, “A sim-to-real
deep learning-based framework for autonomous nano-drone racing,”
IEEE Robotics and Automation Letters, 2024.

[163] H. Yu, C. De Wagter, and G. C. de Croon, “Mavrl: Learn to
fly in cluttered environments with varying speed,” arXiv preprint
arXiv:2402.08381, 2024.

[164] M. Kulkarni and K. Alexis, “Reinforcement learning for collision-free
flight exploiting deep collision encoding,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[165] K. Amer, M. Samy, M. Shaker, and M. ElHelw, “Deep convolutional
neural network based autonomous drone navigation,” in Thirteenth
International Conference on Machine Vision, vol. 11605. SPIE, 2021,
pp. 16–24.

[166] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor, “Airsim
drone racing lab,” in Proceedings of the NeurIPS 2019 Competition and
Demonstration Track, ser. Proceedings of Machine Learning Research,
H. J. Escalante and R. Hadsell, Eds., vol. 123. PMLR, 08–14 Dec
2020, pp. 177–191.

[167] U. Ates, “Long-term planning with deep reinforcement learning on
autonomous drones,” in 2020 Innovations in Intelligent Systems and
Applications Conference (ASYU). IEEE, 2020, pp. 1–6.

[168] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
learning for uav attitude control,” ACM Transactions on Cyber-Physical
Systems, vol. 3, no. 2, pp. 1–21, 2019.

[169] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. Pister, “Low-level control of a quadrotor with deep model-based
reinforcement learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4224–4230, 2019.

[170] S. Li, E. Öztürk, C. De Wagter, G. C. De Croon, and D. Izzo, “Ag-
gressive online control of a quadrotor via deep network representations
of optimality principles,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 6282–6287.

[171] C. Sánchez-Sánchez and D. Izzo, “Real-time optimal control via deep
neural networks: study on landing problems,” Journal of Guidance,
Control, and Dynamics, vol. 41, no. 5, pp. 1122–1135, 2018.

[172] R. Ferede, G. de Croon, C. De Wagter, and D. Izzo, “End-to-end neural
network based optimal quadcopter control,” Robotics and Autonomous
Systems, vol. 172, p. 104588, 2024.

[173] J. Sacks, R. Rana, K. Huang, A. Spitzer, G. Shi, and B. Boots, “Deep
model predictive optimization,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2024.

[174] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Proceedings of Robotics: Science and
Systems, Virtual, July 2021.

[175] M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H.
Johansson, “Safe reinforcement learning using black-box reachability
analysis,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 665–10 672, 2022.

[176] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[177] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen,
J. Ortiz, D. DeTone, A. Wang, S. Anderson, J. Dong, B. Amos,
and M. Mukadam, “Theseus: A Library for Differentiable Nonlinear
Optimization,” Advances in Neural Information Processing Systems,
2022.

[178] C. Wang, D. Gao, K. Xu, J. Geng, Y. Hu, Y. Qiu, B. Li, F. Yang,
B. Moon, A. Pandey, Aryan, J. Xu, T. Wu, H. He, D. Huang, Z. Ren,
S. Zhao, T. Fu, P. Reddy, X. Lin, W. Wang, J. Shi, R. Talak, K. Cao,
Y. Du, H. Wang, H. Yu, S. Wang, S. Chen, A. Kashyap, R. Bandaru,
K. Dantu, J. Wu, L. Xie, L. Carlone, M. Hutter, and S. Scherer,
“PyPose: A library for robot learning with physics-based optimization,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[179] S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan, “Difftune+:
Hyperparameter-free auto-tuning using auto-differentiation,” in Pro-
ceedings of The 5th Annual Learning for Dynamics and Control
Conference, ser. Proceedings of Machine Learning Research, N. Matni,
M. Morari, and G. J. Pappas, Eds., vol. 211. PMLR, 15–16 Jun 2023,
pp. 170–183.

[180] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A
differentiable and modular control stack for autonomous vehicles,” in
Conference on Robot Learning. PMLR, 2023, pp. 2170–2180.

[181] A. Romero, Y. Song, and D. Scaramuzza, “Actor-critic model predictive
control,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024.

[182] G. Li, M. Mueller, V. M. Casser, N. Smith, D. Michels, and B. Ghanem,
“Oil: Observational imitation learning,” in Proceedings of Robotics:
Science and Systems, FreiburgimBreisgau, Germany, June 2019.

[183] M. Muller, G. Li, V. Casser, N. Smith, D. L. Michels, and B. Ghanem,
“Learning a controller fusion network by online trajectory filtering for
vision-based uav racing,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2019, pp.
0–0.

[184] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4cv:
A photo-realistic simulator for computer vision applications,” Interna-
tional Journal of Computer Vision, vol. 126, no. 9, pp. 902–919, 2018.

[185] M. Muller, V. Casser, N. Smith, D. L. Michels, and B. Ghanem,
“Teaching uavs to race: End-to-end regression of agile controls in
simulation,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018, pp. 0–0.

[186] L. O. Rojas-Perez and J. Martinez-Carranza, “Deeppilot: A cnn for
autonomous drone racing,” Sensors, vol. 20, no. 16, p. 4524, 2020.

[187] J. Fu, Y. Song, Y. Wu, F. Yu, and D. Scaramuzza, “Learning deep
sensorimotor policies for vision-based autonomous drone racing,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023, pp. 5243–5250.

[188] J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza, “Con-
trastive learning for enhancing robust scene transfer in vision-based
agile flight,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024.

[189] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Conference on
Robot Learning. PMLR, 2023, pp. 2226–2240.

[190] L. Smith, I. Kostrikov, and S. Levine, “Demonstrating a walk in the
park: Learning to walk in 20 minutes with model-free reinforcement
learning,” Robotics: Science and Systems XIX, 2023.

[191] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine, “Legged
robots that keep on learning: Fine-tuning locomotion policies in the real
world,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 1593–1599.

[192] A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion
with cross-modal supervision,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 7295–7302.

[193] P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corpora-
tion, 2012.

[194] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[195] E. Lavretsky and K. A. Wise, “Robust adaptive control,” in Robust and
adaptive control. Springer, 2013, pp. 1 – 449.

[196] S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-
Control-Oriented Meta-Learning for Nonlinear Systems,” in Proceed-
ings of Robotics: Science and Systems, Virtual, July 2021.

[197] D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik, and M. W.
Mueller, “Learning a single near-hover position controller for vastly
different quadcopters,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2023.

[198] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoel-
lig, “Learning to fly—a gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 7512–7519.

[199] M. Kulkarni, T. J. Forgaard, and K. Alexis, “Aerial gym–isaac gym
simulator for aerial robots,” arXiv preprint arXiv:2305.16510, 2023.

[200] L. Martin, “Alphapilot ai drone innovation challenge,” Jan 2020.
[Online]. Available: https://lockheedmartin.com/en-us/news/events/ai-
innovation-challenge.html

[201] C. de Wagter, F. Paredes-Vallés, N. Sheth, and G. C. de Croon,
“Learning fast in autonomous drone racing,” Nat. Mach. Intell., vol. 3,
p. 923, 2021.

[202] E. Ackerman, “Autonomous drones challenge human champions in first
”fair” race,” Jul 2022.

[203] Y. Song and D. Scaramuzza, “Policy search for model predictive control
with application to agile drone flight,” IEEE Transactions on Robotics,
2022.

[204] A. Loquercio, A. Saviolo, and D. Scaramuzza, “Autotune: Controller
tuning for high-speed flight,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4432–4439, 2022.

https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html

23

[205] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman,
“The blackbird dataset: A large-scale dataset for uav perception in ag-
gressive flight,” in International Symposium on Experimental Robotics.
Springer, 2018, pp. 130–139.

[206] C. Pfeiffer and D. Scaramuzza, “Human-piloted drone racing: Visual
processing and control,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3467–3474, 2021.

[207] M. Bosello, D. Aguiari, Y. Keuter, E. Pallotta, S. Kiade, G. Caminati,
F. Pinzarrone, J. Halepota, J. Panerati, and G. Pau, “Race against
the machine: a fully-annotated, open-design dataset of autonomous
and piloted high-speed flight,” IEEE Robotics and Automation Letters,
2024.

[208] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.

[209] J. Tordesillas and J. P. How, “FASTER: Fast and safe trajectory
planner for navigation in unknown environments,” IEEE Transactions
on Robotics, 2021.

[210] V. Kumar and N. Michael, “Opportunities and challenges with au-
tonomous micro aerial vehicles,” The International Journal of Robotics
Research, vol. 31, no. 11, pp. 1279–1291, 2012.

[211] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert,
and M. Saska, “The MRS UAV system: Pushing the frontiers of
reproducible research, real-world deployment, and education with
autonomous unmanned aerial vehicles,” J. Intell. Rob. Syst., vol. 102,
no. 1, p. 26, Apr. 2021.

[212] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, “PIXHAWK: A micro aerial vehicle design for au-
tonomous flight using onboard computer vision,” vol. 33, no. 1, pp.
21–39, Aug. 2012.

[213] L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder, “Mpc flight
control for a tilt-rotor vtol aircraft,” IEEE Transactions on Aerospace
and Electronic Systems, pp. 1–13, 2021.

[214] “Fpv wing racing association.”
[215] E. Tal and S. Karaman, “Global incremental flight control for agile

maneuvering of a tailsitter flying wing,” Journal of Guidance, Control,
and Dynamics, vol. 45, no. 12, pp. 2332–2349, 2022.

[216] E. Tal, G. Ryou, and S. Karaman, “Aerobatic trajectory generation for a
vtol fixed-wing aircraft using differential flatness,” IEEE Transactions
on Robotics, pp. 1–15, 2023.

[217] J. Hidalgo-Carrió, G. Gallego, and D. Scaramuzza, “Event-aided direct
sparse odometry,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 5781–5790.

[218] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monocular,
stereo, and rgb-d cameras,” Advances in Neural Information Processing
Systems, vol. 34, pp. 16 558–16 569, 2021.

[219] C. Pfeiffer, S. Wengeler, A. Loquercio, and D. Scaramuzza, “Visual
attention prediction improves performance of autonomous drone racing
agents,” Plos one, vol. 17, no. 3, 2022.

[220] G. C. de Croon, J. J. Dupeyroux, C. De Wagter, A. Chatterjee, D. A.
Olejnik, and F. Ruffier, “Accommodating unobservability to control
flight attitude with optic flow,” Nature, vol. 610, no. 7932, pp. 485–
490, 2022.

[221] A. Bajcsy, A. Loquercio, A. Kumar, and J. Malik, “Learning vision-
based pursuit-evasion robot policies,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[222] R. Spica, D. Falanga, E. Cristofalo, E. Montijano, D. Scaramuzza, and
M. Schwager, “A real-time game theoretic planner for autonomous two-
player drone racing,” in Robotics: Science and Systems, 2018.

[223] Z. Wang, T. Taubner, and M. Schwager, “Multi-agent sensitivity
enhanced iterative best response: A real-time game theoretic planner for
drone racing in 3d environments,” Robotics and Autonomous Systems,
vol. 125, p. 103410, 2020.

[224] J. Chen, K. Su, and S. Shen, “Real-time safe trajectory generation for
quadrotor flight in cluttered environments,” in 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE, 2015, pp.
1678–1685.

[225] F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory
generation for quadrotor flight in complex environments,” in 2017
IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 2017, pp. 3681–3688.

[226] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory gener-
ation for quadrotors using fast marching method and bernstein basis
polynomial,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 344–351.

[227] Y.-L. Chow, M. Pavone, B. M. Sadler, and S. Carpin, “Trading safety
versus performance: Rapid deployment of robotic swarms with robust

performance constraints,” Journal of Dynamic Systems, Measurement,
and Control, vol. 137, no. 3, p. 031005, 2015.

[228] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 5883–5890.

[229] S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone,
“Robust tracking with model mismatch for fast and safe planning: an
sos optimization approach,” in Algorithmic Foundations of Robotics
XIII: Proceedings of the 13th Workshop on the Algorithmic Foundations
of Robotics 13. Springer, 2020, pp. 545–564.

[230] R. Luo, S. Zhao, J. Kuck, B. Ivanovic, S. Savarese, E. Schmerling,
and M. Pavone, “Sample-efficient safety assurances using conformal
prediction,” in International Workshop on the Algorithmic Foundations
of Robotics. Springer, 2022, pp. 149–169.

[231] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space
exploration,” Autonomous Robots, vol. 39, pp. 555–571, 2015.

[232] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[233] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE, 2017, pp.
2242–2253.

[234] X. Wang, K. Leung, and M. Pavone, “Infusing reachability-based
safety into planning and control for multi-agent interactions,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 6252–6259.

[235] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes,
and M. Pavone, “On infusing reachability-based safety assurance
within planning frameworks for human–robot vehicle interactions,” The
International Journal of Robotics Research, vol. 39, no. 10-11, pp.
1326–1345, 2020.

[236] A. Elhafsi, B. Ivanovic, L. Janson, and M. Pavone, “Map-predictive
motion planning in unknown environments,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2020,
pp. 8552–8558.

[237] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Proba-
bilistic model predictive safety certification for learning-based control,”
IEEE Transactions on Automatic Control, vol. 67, no. 1, pp. 176–188,
2021.

[238] L. Bauersfeld, E. Kaufmann, and D. Scaramuzza, “User-conditioned
neural control policies for mobile robotics,” ICRA: International Con-
ference on Robotics and Automation, 2023.

[239] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in Conference on Robot Learning (CoRL),
2019.

[240] M. Turchetta, A. Kolobov, S. Shah, A. Krause, and A. Agarwal, “Safe
reinforcement learning via curriculum induction,” Advances in Neural
Information Processing Systems, vol. 33, pp. 12 151–12 162, 2020.

[241] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual
reinforcement learning: A review and perspectives,” Journal of Artifi-
cial Intelligence Research, vol. 75, pp. 1401–1476, 2022.

24

Drew Hanover is the Chief Technology Officer and
Founder of Innovire AG. He completed his Bache-
lors in Mechanical Engineering at Michigan Tech-
nological University, and his Masters in Robotics
at the University of Michigan. He has spent time
working with NASA, General Motors, and Pratt and
Miller Engineering across a multitude of engineering
domains.

Antonio Loquercio is a professor of electrical en-
gineering and computer science at the University
of Pennsylvania. He received a M.Sc. degree from
ETH Zurich and a Ph.D. from the University of
Zurich in 2017 and 2021, respectively. He worked
at the Berkeley Artificial Intelligence Research Lab
(BAIR) at UC Berkeley from 2022 to 2024.

Leonard Bauersfeld received his M.Sc. degree
in robotics, system and control from ETH Zurich,
Switzerland in 2020. He is currently a PhD stu-
dent in the Robotics and Perception Group at the
University of Zurich, led by Prof. Davide Scara-
muzza. His reseach interests are autonomous vision-
based quadrotor flight and quadrotor simulations. He
works novel approaches, combining first-principles
methods with modern data-driven models to advance
agile quadrotor flight.

Angel Romero received a MSc degree in ”Robotics,
Systems and Control” from ETH Zurich in 2018.
Previously, he received a B.Sc. degree in Electronics
Engineering from the University of Malaga in 2015.
He is currently working toward a Ph.D. degree in the
Robotics and Perception Group at the University of
Zurich, finding new limits in the intersection of ma-
chine learning, optimal control, and computer vision
applied to super agile autonomous quadrotor flight
under the supervision of Prof. Davide Scaramuzza.

Robert Penicka is currently a postdoc in the Multi-
Robot Systems (MRS) group at the Czech Technical
University (CTU) in Prague. He did his Ph.D. at
the CTU in Prague in 2020 and was a postdoc-
toral researcher at the University of Zurich between
2020 and 2022 under the supervision of Professor
Scaramuzza. Since 2022, he’s been a research fellow
at CTU, focusing on high-level mission planning,
trajectory planning, and control for UAVs. He’s
bridged the gap between mission planning and tra-
jectory planning, particularly in cluttered environ-

ments, earning recognition including the Dean’s Prize and 2nd place in the
Werner von Siemens Award for Industry 4.0. He’s also won the Joseph Fourier
Prize and the Antonin Svoboda Award for his doctoral thesis.

Yunlong Song obtained the M.Sc. degree in In-
formation and Communication Engineering from
Technical University of Darmstadt in 2018. He is
currently a Ph.D. student in the Robotics and Per-
ception Group at the University of Zurich under
the supervision of Prof. Davide Scaramuzza. His
research interests include reinforcement learning,
machine learning, and robotics.

Giovanni Cioffi holds an M.Sc. in Mechanical
Engineering from ETH Zürich, Switzerland, which
he obtained in 2019. He is currently pursuing a Ph.D.
at the University of Zürich under the supervision
of Prof. Davide Scaramuzza. His research centers
on the intersection of computer vision and robotics,
exploring topics such as visual(-inertial) odometry
and SLAM. His contributions were recognized by
multiple awards in top-tier robotic conferences and
journals, such as the IROS 2023 Best Paper Award
and the RA-L 2021 Best Paper Award.

Elia Kaufmann completed his Ph.D. in Informatics
at the University of Zurich in 2022, where he was su-
pervised by Prof. Davide Scaramuzza. His doctoral
research focused on advancing the application of
machine learning techniques to enhance perception
and control of autonomous aerial vehicles. He earned
an M.Sc. degree in Robotics, Systems, and Control
from ETH Zurich in 2017, after obtaining a B.Sc. in
Mechanical Engineering in 2014. Currently, he is a
Senior Autonomy Engineer at Skydio.

Davide Scaramuzza is a Professor of Robotics and
Perception at the University of Zurich. He did his
Ph.D. at ETH Zurich, a postdoc at the University
of Pennsylvania, and was a visiting professor at
Stanford University. His research focuses on au-
tonomous, agile microdrone navigation using stan-
dard and event-based cameras. He pioneered au-
tonomous, vision-based navigation of drones, which
inspired the navigation algorithm of the NASA
Mars helicopter and many drone companies. He
contributed significantly to visual-inertial state esti-

mation, vision-based agile navigation of microdrones, and low-latency, robust
perception with event cameras, which were transferred to many products, from
drones to automobiles, cameras, AR/VR headsets, and mobile devices. In
2022, his team demonstrated that an AI-controlled, vision-based drone could
outperform the world champions of drone racing, a result that was published
in Nature. He is a consultant for the United Nations on disaster response, AI
for good, and disarmament. He has won many awards, including an IEEE
Technical Field Award, the IEEE Robotics and Automation Society Early
Career Award, a European Research Council Consolidator Grant, a Google
Research Award, two NASA TechBrief Awards, and many paper awards. In
2015, he co-founded Zurich-Eye, today Meta Zurich, which developed the
world-leading virtual-reality headset Meta Quest. In 2020, he co-founded
SUIND, which builds autonomous drones for precision agriculture. Many
aspects of his research have been featured in the media, such as The New
York Times, The Economist, and Forbes.

	Introduction
	Why Autonomous Drone Racing?
	Task Specification

	Drone Modeling
	Kinematics
	Aerodynamics
	Motor and Battery Models
	Camera and IMU Modeling

	Classical Perception, Planning, and Control Pipeline
	Perception
	VIO
	Additional sensor modalities in VIO
	Discussions

	Planning
	Path planning
	Polynomial and Spline Trajectory Planning
	Optimization-based Trajectory Planning
	Search-based Trajectory Planning
	Sampling-based Trajectory Planning
	Discussion

	Control
	Model-Based Control
	Perception Awareness
	Discussion

	Learning-based Approaches
	Learned Perception
	Learned Planning & Perception
	Learned Control
	Learned Planning & Control
	End-to-End Flight
	Discussion

	Drone Racing Simulators
	Competitions
	Datasets, Hardware, and Open Source Code
	Datasets
	Open-Source Code
	Hardware
	Racing Drone Design
	Beyond Quadcopters

	Open Research Questions and Challenges
	Challenge 1: Reliable State Estimation at High-Speeds
	Challenge 2: Flying from Purely Vision
	Challenge 3: Multiplayer Racing
	Challenge 4: Safety
	Challenge 5: Transfer to Real-World Applications

	Conclusions and Summary
	Acknowledgements
	Contributions
	References
	Biographies
	Drew Hanover
	Antonio Loquercio
	Leonard Bauersfeld
	Angel Romero
	Robert Penicka
	Yunlong Song
	Giovanni Cioffi
	Elia Kaufmann
	Davide Scaramuzza

