IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019 1

How Fast is Too Fast? The Role of Perception
Latency in High-Speed Sense and Avoid

Davide Falanga, Suseong Kim, and Davide Scaramuzza

Abstractin this work, we study the effects that perception At the current state of the art, the agility of autonomous
latency has on the maximum speed a robot can reach to safely robots is bounded, among the other factors (such as their
navigate through an unknown cluttered environment. We provide 5 .4ation limitations), by their sensing pipeline. This is because
a general analysis that can serve as a baseline for future th lativelv hiah lat dl ling f limit th
guantitative reasoning for design trade-offs in autonomous robot erela _'Ve y high latency and low Samp Ing requen‘?y imitthe
navigation. We consider the case where the robot is modeled as@ggressiveness of the control strategies that can be implemented.
a linear second-order system with bounded input and navigates It is typical in current robots to have latencies of tens or

through static obstacles. Also, we focus on a scenario where thehundreds of milli-seconds. Faster sensing pipelines can lead to
robot wants to reach a target destination in as little time as more agile robots

possible, and therefore cannot change its longitudinal velocity D te the i f th ion | littl
to avoid obstacles. We show how the maximum latency that D€SPite the importance of the perception latency, very little

the robot can tolerate to guarantee safety is related to the attention has been devoted to study its impact on the agility of a
desired speed, the range of its sensing pipeline, and the actuationrobot for a sense and avoid task. Analyzing the role of sensing
limitations of the platform (i.e., the maximum acceleration it can latency allows one to understand the limitations of current

produce). As a particular case stud_y, we compare monocular and Sperception systems, as well as to comprehend the bene ts of
stereo frame-based cameras against novel, low-latency sensor

such as event cameras, in the case of quadrotor ight. To validate é.XPIOiting novel image sensors and processors, S_UCh parallel
our analysis, we conduct experiments on a quadrotor platform Visual processors (e.g., SCAMP [8]), with a theoretical latency
equipped with an event camera to detect and avoid obstacles of few milli-seconds, or event cameras, with a theoretical

thrown towards the robot. To the best of our knowledge, this |atency of micro-seconds (e.g., the DVS [9]) or even nano-
is the rst theoretical work in which perception and actuation seconds (e.g., CeleX 10])

limitations are jointly considered to study the performance of a L o .
robotic platform in high-speed navigation. In the context of robot navigation, it is also important to

correlate the sensing latency to the actuation capabilities of the
robot. Broadly speaking, the larger the acceleration a robot can
produce, the lower the time it needs to avoid an obstacle and,
therefore, the larger the latency it can tolerate. Consequently, the

coupling between sensing latency and the actuation limitations

H IGH-speed robot navigation in cluttered, unknown enviss 5 rohot represents a key research problem to be addressed.
ronments is currently an active research area|[1] [7] and

bene ts of over 50 million US dollar funding available through
the DARPA Fast Lightweight Autonomy Program (2015-2018). Related Work
and the DARPA Subterranean Challenge (2018-2021). Sensing latency is a known issue in robotics and has

To prevent a collision with an obstacle or an incoming objeq|ready been investigated before. For example, this problem
a robot needs to detect them as fast as possible and exe@igarticularly interesting when the state estimation process is
a safe maneuver to avoid them. The higher the relative spegshe through visual localization. A number of vision-based
between the robot and the object, the more critical the role gbjutions for low-latency localization based either on standard
perception latencyecomes. cameras|[11],[[12] or novel sensors (e.g., event camétas [2],

Perception latency is the time necessaryptceivethe [13], [14]) have been proposed. Impressive results have been
environment angrocessthe captured data to generate contrgdchieved, however no information about the environment is
commands. Depending on the task, the processing algoritiyyhjlable since visual localization only provides the robot the
the available computing power, and the sensor (e.g., lid@kormation about its pose.
camera, event camera, RGB-D camera), the perception latency js ot yet clear what the maximum latency of a perception
can vary from tens up to hundreds of milli-seconds [2] [7]. system for a navigation task should be. A rst step in that
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between the tracking error in the image plane and the later€y Assumptions

of the perception was derived. This works is based on the following assumptions. First,
In [17], a framework to predict and compensate for thge assume that the robot can be model as a linear system.
latency between sensing and actuation in a robotic platfofbotic systems are typically characterized by non-linear
aimed at visually tracking a fast-moving object was proposefiodels. However, a large variety of them can be linearized
and experimental results showed the bene ts of that framewofkrough either static or dynamic feedbatk]|[19], rendering them
Nevertheless, the impact of the latency on the performangguivalent from a control perspective to a chain of integrators.
of the executed task without the proposed compensatigfis important to note that feedback linearization is different
framework was not discussed. from Jacobian linearization: the rst is an exact representation
The most similar work to ours is [18], where the authorsf the original non-linear system over a large variety of working
studied the performance of vision-based navigation for mobi@nditions, while the second is only valid locally [20]. Linear
robots depending on the latency and the sensing rangenfddels for mobile robots have already been used in the [past [1],
the perception system. A trade-off among camera frama@d come with the advantage of allowing a simple, yet effective
rate, resolution, and latency was shown to represent the b@sthematical analysis of the behaviour of the system in closed-
con guration for navigation in unstructured terrain. Howeveform. Also, they cover a large variety of systems, rendering
such results were only supported by experimental resulisr analysis valid for different kinds of robots.
without any theoretical evidence. Different from our work, Second, we assume that the robot can execute holonomic 2D
the actuation capabilities of the robot were not considered.maneuvers. For non-holonomic systems, such as xed-wing
To the best of our knowledge, no previous works analyzeifrcraft, the coupling of the longitudinal and lateral dynamics
the coupling between sensing latency and actuation limitationsuld break the assumptions of our model and would deserve
in a robotic platform from a theoretical perspective. Similarly different analysis.
the problem of highlighting their impact on the performance of Finally, since we are interested in the role of sensing latency
high-speed navigation has not been addressed in the literatanel actuation limitations on the agility of a robot, we assume
that, for any other aspect, the sensing and actuation system are
ideal. In other words, we assume that there is no uncertainty
B. Contributions in the obstacle detection, no illumination issues, no artifacts

in the measurements, and the robot’s dynamics is perfectly

In this work, we focus on the effects of perception Iatencly . .
T . nown and can be controlled with errors. This allows us to
and actuation limitations on the maximum speed a robot ca

. : créarly isolate and analyze the impact of sensing latency and
reach to safely navigate through an unknown, static scenarig, " = . .° ) . L
Wi ider th h . bot del OIactuatlon limitations in our analysis, where otherwise it would
Ve consider Ine case where a generic robot, modeled gy peo possible to distinguish the role of these two from the
a linear system with bounded inputs, moves in a plane a

X . i act of other sources of non-ideality.
relies on onboard perception to detect static obstacles alon

its path (cf. Fig[]l). We focus on a scenario where the robot
wants to reach a target destination in as little time as possiﬂ?e, Structure of the Paper
and therefore cannot change its longitudinal velocity to avoid In Sec.[T], we provide the mathematical formulation of
obstacles. We show how the maximum latency the robot ctiie problem and perform a qualitative analysis. In $e¢. Il
tolerate to guarantee safety is related to the desired sp&¢l,particularize our study to vision-based navigation and
the agility of the platform (e.g., the maximum acceleration &nalyze it for both standard and event cameras. A detailed
can produce), as well as other perception parameters (énfithematical analysis of these sensors is provided in the
the sensing range). Additionally, we derive a closed-forgUpplementary material. In Sec. IV, we compare standard
expression for the maximum speed that the robot can reagneras (monocular and stereo) against event cameras for
as a function of its perception and actuation parameters, 4hé case study of autonomous quadrotor ight. In Set. V,
study its sensitivity to such parameters. we validate our analysis performing experiments on an actual
We provide a genera| ana|ysis that can serve as a baseﬁhlédrotor aVOiding obstacle thrown towards it. Further details
for future quantitative reasoning for design trade-offs iabout the experiments are provided in the supplementary
autonomous robot navigation, and is completely agnostigaterial. Finally, in Sed. V1, we draw the conclusions.
to the sensor and robot type. As a particular case study,
we compare standard cameras against event cameras for [I. PROBLEM FORMULATION
autonomous quadrotor ight, in order to highlight the potential We consider the case of a mobile robot navigating in a plane,
bene ts of these novel sensors for perception. Finally, wehich covers a large number of scenarios, e.g. an aerial robot
provide an experimental evaluation and validation of thging in a forest [1], where the third dimension would not
proposed theoretical analysis for the case of a quadrote#lp with the avoidance task. The robot moves along a desired
equipped with an event camera, avoiding a ball thrown towardiection with a desired speed, provided by a high-level planner,
it at speeds up t@® m=s. towards its goal, which has to be reached in as little time as
To the best of our knowledge, this is the rst work in whichpossible. Therefore, the robot cannot change its longitudinal
perception and actuation limitations are jointly considered t@locity. In the following analysis, we consider the case where
study the performance of a robot in high-speed navigation.the robot only faces one single obstacle along its path and then
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obstacle width by a quantit;, on each side. The expanded

ry size of the obstacle is = 2(ry + ro), as shown in Fig]1.
eI; ] EV ! o r 3) Sensor Model:ln this work, we assume that at least
g ® e : £p. one edge of the obstacle must enter the sensing area to allow

a detection. We de ne the sensing latency2 R* as the
interval between the time the obstacle enters the sensing area
and the moment the robot’s initiates the avoidance maneuver.
The latency of a sensor is typically the sum of multiple
Fig. 1: A schematics representing the obstacle and the roghtributions, and in general depends on the sensor itself and
model in the frameE . The robot is represented as a square @he time necessary to process a measurement (which depends
size2r, centered at pgr, and moves with a speetdvg. The on the algorithm used, the computational power available, and
dashed triangle starting from the robot's position represemfher factors). In general, it is hard to provide exact bounds for
its sensing area, is the eld of view ands the maximum each of these contributions, therefore we consider as latency
distance it is able to perceive. The ObStaCle, represented by mé sum of the sensor’s and the Sensing a|gorithm’s |atency_
green square on the right side of the image, has ZigeWe \We denote bys 2 R* the robot's sensing range, i.e. the largest
expand the square representing the obstacle by a quantitydistance it is able to perceive. We assume the eld of view of
such that the robot can be considered to be a point mass. the sensor to be such that the obstacle’s edge is fully contained
in the sensing area when the distance between the robot and

_ N ) _ the obstacle is equal to the sensing range. This provides a
provide an intuitive explanation of how our conclusions cag erbound for the eld of view 2 arctan L

be extended to the case of multiple obstacles. 2s

S

A. Modelling B. Obstacle Avoidance

1) Robot Model: Let E be the inertial reference frame, _ ) ) )
having basis es; e,g, and lete pr and g Vg be the position 1) Time to Contat_:t an_d Avoidance TlmWe de ne thetl_me
and velocity, respectively, of the robot B. Also, letgpo [0 contactt. as the time it takes the vehicle to collide with the

be the position of an obstacle . In the remainder, we will obstacle once it enters the sensing range of its onboard sensor.

refer toe; as thelongitudinal axis, ande; as thelateral axis. Since the longitudinal motion has a constant spegand the
Finally, letr, be the half-size of the square centere¢ pk distance between the vehicle and the obstacle at the time the

containing the entire robot (cf. Fifj] 1). obstacle enters the sensing area,ishe time to contact, is:
We model both the longitudinal and lateral dynamics as t = S, 3)
a chain of integrators. As shown in [19], a large variety Ty

of mechanical systems can be linearized by using nonlineas, orqer for the robot to avoid the obstacle, it has to reach

feedback, which, from a control perspective, renders thefsase |ateral position in aavoidance time shorter than the
equivalent to a chain of integrators. Additionally, the dynamiGge to contact[{B).

of the actuators is usually faster than the mechanical dynamics t te (4)
Cc S-
and can, therefore, be neglected.
The longitudinal and lateral dynamics are modeled by a2) Time-Optimal AvoidanceThe avoidance maneuver along

position p;, a speeds; and an inputy; given by: the lateral axis leads to a safe navigatiorpiftc) r. We
_ ) _ ] consider the casp(tc) = r, which represents the minimum
B =va®): MO =ua(); @ lateral deviation for the avoidance maneuver to be executed
() =vat);  w(t)=us,t): (2) safely. For this to happen, we assume the robot to use a time-

. optimal strategyu, (t) :
Both inputs are assumed to be bounded such that

U2 [ ujuili=1;2. We assume the robot to move only Up(t) = arg min  ts
along the longitudinal axis with an initial speed =¥, uz(t)

meaning that the lateral speed is zero before the avoidance Subject to B(t) =va(t); w(t) =u(t);
maneuver starts. The case where the robot has non-zero p2(0)=0; vo(0) =0; (®)
lateral velocity can be analyzed using the same mathematical Pa(t) = 1 Vatd) =0;

framework. Also, we assume that the robot cannot change its
longitudinal speed, namely;(t) =0 8t, and can therefore
only exploit the lateral dynamics to avoid an obstacle. A#/e requirev,(ts) =0 because there would be no advantage in
shown in Sec[ 81 of the supplementary material, a latetaving a non-zero lateral speed in terms of progressing towards
avoidance maneuver requires less time at high speed, allowthg goal, since we considered the longitudinal axis to be the
faster navigation along the longitudinal axis. direction of motion. Leaving the nal lateral speed free would
2) Obstacle Model:We consider static obstacles envelopebtad to a lower execution time for the avoidance maneuver,
by a square of widttr,. To study the motion of the robot but this could potentially result in a large lateral speed, which
considering only the position of its center, we expand the typically not desirable because the robot is not able to sense

ux(t) 2 [ ugu,] 8t
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Fig. 2: Maximum latency that the robot can tolerate in orderFig. 3: Maximum speed; that the robot can move in order
to safely perform the avoidance maneuver when0:5m. to safely perform the avoidance maneuver when0:5m.

ginal speed the robot can have to avoid the obstacle:
s

the environment in such a direction. As well known in th

literature [21], the prok()len@ leads to abang-bangsolution: Vi= —¢—: 9)
+2 L
ne Uz 0Ot £ 5 !
u(t) = u, iffi<t tg’ ) Fig.[3 shows the maximum speed the robot can navigate safely

q_ o (i.e., being still able to avoid the obstacle although this is
where thef' = ULz is the switching time ands = 2 ULz is perceived with some delay), depending on the latency of its

the avoidance time.. sensing pipeline.

3) Obstacle Avoidance with Sensing Latenty:Sec[T-B]] ll. VISION-BASED PERCEPTION
we de ned the time to contadt as the time between when the In the following, we particularize our analysis to the case of
obstacle enters the sensing range and the moment whenvib®n-based perception for three modalities: (i) a monocular
collision occurs, as de ned if3). However, in the presenceframe-based camera, (ii) a stereo frame-based camera, (i) a
of sensing latency, the timg0 remaining to the collision when monocular event camera, and analyze the impact of their latency
tpe robot is informed about the presence of the obstacleois the maximum speed. For brevity reasons, the mathematical
t.( )= tc . Therefore, in order for a robot equipped withderivation of the expressions for the sensing range and the
a sensor with sensing Orangeand latency to safely avoid an latency of each of these sensing modalities is reported in the
obstacle, the condition,( ) ts must hold. In this case, we supplementary material attached to this work.
can compute[(4) as:

r A. Frame-Based Cameras and Event Cameras

(S r
o 2 — (7) Most computer vision research has been devoted to frame-
based cameras, which have latencies in the order of tens of
The worst case in which the robot manages to avoid thailli-seconds, thus, putting a hard bound on the achievable
obstacle occurs whefY)) is satis ed with equality. In this case, agility of a robotic platform. By contrast, event cameias [9] are
the robot passes tangent to the obstacle, whereas it would hbiginspired vision sensors that output pixel-level brightness
some safety margin i{7) was satis ed with the inequality changes at the time they occur, with a theoretical latency of
sign. We can study7) to compute the maximum latency micro-seconds or even nano-seconds. More speci cally, rather
the system can tolerate such that the avoidance can stilltBan streaming frames at constant time intervals, each pixel

2

c

performed safely: res an event (a pixel-level brightness change), independently
r of the other pixels, every time it detects a change of brightness
o 2 L; (8) in the scene. Broadly speaking, we can consider event cameras
%1 uz as motion-activatedasynchronous edge detectors: events re
only if there is relative motion between the camera and the

Fig.[4 shows the maximum latencyfor different values

. ne.
ofu, ands for the case =0:5m. As one can notice, the scene

importance of low latency increases as the navigation s eetfxploiting frame-based cameras for obstacle avoidance typi-
'mp y avig PE& ly requires the analysis of all the pixels of the image to detect
increases. Also, for some speedisthe robot is unable to

perform the avoidance maneuver safely given its actuatian opstacle, independently of the texture..Convergely, since
capabilities and the sensing range of its sensor. This is cl?rpe pixels of an event camera only trigger information when
from the negative values the maximum Iatencyls;sumes in ére_ls change O.f intensity, it has the advantage of requiring

. . . very little processing to detect an obstacle. Furthermore, since
some intervals. In this case the robot should be either m

o . . i e smallest time interval between two consecutive events on
agile (i.e. capable of generating higher lateral f'slcceler(';1t|ons)the same pixel is in the order df s, or generally much

fnhgl:(lj(lrpfoegvlg%p?ﬁevg&tz;gn:fgrg;hSa :é%r;er SEnsing rangSaller than the typical framerate of frame-based cameras, this
P ' can safely be neglected. These factors result in a theoretical
Similarly, we can usgg) to compute the maximum longitu-advantage of event cameras against frame-based cameras.
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B. Sensing Range of a Vision-Based Perception System one, instead, represents a quadrotor withrast-to-weightatio

1) Monocular Frame-Based Camerd@he sensing rangsy hat is, as of today, particularly hard to achieve with current
of a monocular camera depends, as shown in of technology, but might become common in the future. This ideal
the supplementary material, on the sizgof the obstacle, the Platform serves us to show that more agile quadrotors would
number of pixelsN it must occupy in the image to be detectedigni cantly highlight the bene ts of lower-latency sensors for
and the camera’s angular resolution obstacle avoidance.

2) Stereo Frame-Based Camer&he sensing rangss

of a stereo camera depends, as shown in of the A Sensing Range

supplementary material, on the baselméhe focal lengttf, 1) Monocular Frame-Based Camerale use the results
the uncertainty in the disparity> and the maximum percentualof Sec.[S4-A of the supplementary material to obtain the
uncertaintyk in the depth estimation. upper-bound and the lower-bound for the sensing range of a

3) Event Camera:In Sec.[S6-A of the supplementary monocular camera. The best-case scenario occurs when the
material we show that the sensing rarsgeof an event camera obstacle to be detected occup® of the image, leading to
can be computed usinB.1) It depends on how large thean upper-boundy, = 6 m. We consider as worst-case scenario
object must be in the image such that, when its edges genetfien the obstacle occupid9%, leading to a lower-bound

an event, they are suf ciently far apart. Sm=2m .
2) Stereo Frame-Based Camerdfe assume the robot to be

equipped with a stereo system having a basdiined:10 m
_ and each camera having a VGA resolution. As shown in
1) Monocular Frame-Based Camerahe latency v 0f  gec[SE-A of the supplementary material, we consider= 2 m

a monocular camera depends on the titnéetween tWo gnqs.=8m to be reasonable values for the lower-bound and
consecutive triggers of the sensor, the exposure timéhe upper-bound of the sensing range.

transfer timett, the processing time and the number of images 3) Event Camera:As mentioned in SedS6-A of the
necessary to detect the obstacle. As shown in[&&# of the ~ gypplementary material, the sensing range of an event camera
supplementary material, if two consecutive images are suf Ciepi, reach values aboge = 10 m. Intuitively speaking, this is
to detect an obstacle, it can vary betwegn= t+ tr+ te  pecause to potentially detect an obstacle with an event camera,
and vy = 2ts. it is suf cient that the projection of its edges move on the image
2) Stereo Frame-Based Camerdn Sec.[S5-B of the py 1 pxi and are far apart from each others by an amount that is
supplementary material, we analyze the possible range of §{8east on order of magnitude larger (i.e., at lepx| apart).
latency s of a stereo camera. In general, it can span betwepfywever, to render our comparison more fair and realistic, we
a best-case value equal to the time between two consecufi¥@sider a lower-bound that is comparable to the one of frame
frames, and a worst-case value, which we derive analyzing t@meras. Indeed, when a robot navigates cluttered environments,
datasheet of several stereo cameras. its distance from the obstacles is typically lower tHehm,
3) Event Camera:The latency g of an event camera yhich makes it necessary to consider a lower value for the

depends, as shown in SE6-B of the supplementary material.gmallest sensing range of event camera. Therefore, we assume
on the distance between the camera and the obstacle, the speeds i as Jower-bound for the sensing range of an event

of the camera, the focal length, and the amount of pixelgmera, ande = 8m as its upper-bound.
the projection of the obstacle must move in the image such
that it res an event. However, to derive the maximum speegl [atency

achievable with an event camera, it is necessary to jointlyl) Monocular Frame-Based Camerale consider a frame-

consider the expression of the latency of an event camefac.q camera with () a framerate 50 Hz, meaning that
and (IZ_I]) We refer the rea<_jer to S¢86-B of the supplementary t;=0:0205 (i) an exposure time ofte =0:0055 (ii)
material for further details. VGA resolution and USB 3.0 connection, which leads to
tr = 0:0004 s Therefore, based on SE4-Bof the supplemen-
IV. CASE STUDY: VISION-BASED QUADROTORFLIGHT a1y material, the upper-bound and the lower-bound latency
In this section, we analyze the case of vision-based quadrotor the frame-based camera considered in this analysis are,
ight. We consider a quadrotor equipped with a sensing pipelinespectively, yy = 0:040sand y = 0:026s
based on frame-based cameras in a monocular and stere®) Stereo Frame-Based CamerAs mentioned in Se{S5-B
con guration, and a monocular event camera. For each sensofgthe supplementary material, it is hard to evaluate the
modality, we provide an upper and a lower-bound of the sensitedency of a stereo system. However, based on the datasheet of
range and the latency according to the model in Se. Ill. Véemmercially available stereo cameras suitable for quadrotor
compute the maximum speed achievable with each sensor fght, we can obtain an estimate of the upper-bound and the
a value of each parameter equal to its lower-bound, its uppemwer-bound. As upper-bound, we consider the Bumblebee
bound, and the average between the upper and the lower-boM&B, whose datasheet reports a latency £ 0:070s For
Finally, we consider four different values for the maximunthe lower-bound, since no further information are available in
lateral acceleration the quadrotor can produce. Three valdles datasheet of other stereo cameras, we assume it to be equal
correspond to commercially available state-of-the-art quadrotaesthe inverse of the frame-rate of the fastest available sensor
with low, medium and higtthrust-to-weightratio. The fourth (Intel RealSense R200) leading te=0:017s

C. Latency of a Vision-Based Perception System
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3) Event Camera:In Sec.[S6-B of the supplementary will similarly have different latencies (E€S.5). This motivates
material we discuss how the latency of an event camera depetits dashed values in Talle 1.
on the relative distance and speed between the robot and thAs one can notice, when the sensing range and the robot’s
obstacle. Also, we highlight that, in order to compute it, it iagility are small, the difference among mononocular frame
necessary to jointly consider the sensing range (S€e4), cameras, stereo frame cameras and event cameras is not
Eq. and Eq.(S.3) Therefore, to analyze the maximunremarkable. Conversely, frame cameras in stereo con guration
speed achievable with an event camera we proceed as follosred event cameras allow faster ight than a monocular frame
(i) we consider a value of the sensing range as describedcamera when either the sensing range or the robot’s agility
Sec.[M-B3; (ii) we plug (@) into (S§.3) and solve it for¢; increase. In particular, increasing the sensing range, as expected
to compute the maximum speed achievable; (iii) we @e from Sec[Sp, allows the robot to navigate faster thanks to a
to obtain the corresponding value of the latency of an evesgnsible increase of the time to contact.
camera, given its distance from the obstacle and its speed. Similarly, making the robot more agile (i.e., increasing
u,) allows it to y faster thanks to the decrease of the
C. Quadrotor Model avoidance time. As one can notice by the results in the
The dynamical model of a quadrotor is differentially atcplumn of the quadrotor _havmg and, = 2.00m252’ _the
. . . difference between the maximum speed achievable with stereo
and the vehicle can be considered as a linear system us- L
. . . o ‘ frame-based cameras and event cameras become signi cant.
ing nonlinear feedback linearization [22] both from a conz : .
. = : epending on the sensing range, low-latency event cameras
trol [23] and a planning perspective [24]. We considere .
. . allow the robot to reach a maximum speed that can be between
four cases for the maximum lateral acceleration the ro o and 12% larger than the one achievable with a stereo
can produces ; = 10 m=s?,u , = 25m=s?,u , = 50 m=s?, and 0 olarg

U, = 200 m=s*. These values correspond tataust-to-weight frame-based camera. It is important to remark that, despite

ratio of approximatelyl:5, 2:8 5:2 and 20, respectively. The the numbers provided for the case = 200m=s* are very

rst three cover a large range of the lift capabilities opigh, they are not as far as one could think from what is
9 9 P currently achievable by agile quadrotors. Indeed, First-Person-

commercially available drones, while the fourth represent .
vehicle currently not yet available, but which might be availabsl\e/flew (FPV) quadrotors are currently capable of reaching speeds

. N AL . above40 m=s with thrust-to-weight ratios above 10 and, given
in the future. We assuntg = 0:25mandr, = 0:50 m, leading . . .
. ) the pace of the technological progress in the FPV community,
to an expanded obstacle sizerof 0:75m. o . . .
it is not hard to believe that, in the near future, quadrotors will
be able to reach speeds signi cantly beyond the current values.
D. Results In FPV racing, a small increase in the maximum ight speed
The results of our analysis for vision-based quadrotor ightan represent the step necessary to outperform other vehicles
are available in Tablg I. For each sensing modality ( rst colummarticipating in the race. This is particularly interesting in the
we combined three values for the sensing range (second colummtest of autonomous FVP drone racing, an extremely active
and the latency (third column), and computed the maximuanea of research [25], [26].
speed the robot can achieve depending on the maximum lateral
acceleration it can produce (fourth column). For frame-based V. EXPERIMENTS
camera (monocular and stereo), we considered as values for t

sensing range and the latency the lower-bound, the upper-boun otval_lﬁ]ate ourdar:alysllst,fwe perfgrmzd rfte:I—W()lrld_ e;tperl—
and the average between upper-bound and lower-bound. ments with a quadrofor piatiorm equipped with an Insighiness

Similarly, we considered three values for the sensing ran§ EMl sensoﬂ, a very compact neuromorph|c camera
of an event camera. However, as mentioned in B&83, the roviding standard frame, events and Inertial Measurement Unit
latency of event cameras is strictly connected to the roboqjgta' The obstacle was a _baII of rad'l_ﬁcm thrown towards
agility. As shown in SedS6-E of the supplementary materialt e quadrotor, and_the vehlclfa qnly relied on the oanard event
the theoretical latency of an event camera depends on bSﬂHEeTatLQ dgtect '.t alnd ta;/m:jh It. From tL\e petrhspecttl)w;: of our
its distance to the obstacle and its velocity towards it (cnﬂ0 ed’ th IS sthIVIa ent 1o tk? c?sev¥ ere i etrcc)j 0 mdoves
Eqg. (S.8). Broadly speaking, the faster the robot, the earli pwards the obstacle, since the ime 1o contact depends on
the desired amount of events for the detection are genera .al_)solute value of the relative longitudinal ve_locny. Th'.s
However, for the obstacle avoidance problem to be We”_posgépenmental setup allowed us to reach large relative velocities

the robot cannot be arbitrarily fast, but its speed must be sdgg?f con ned ds.patche.. Furtlr(ler detaﬂi z:)ogt ,, p?rtlrr]nental
that the avoidance maneuver requires an amount of time smallgiorm used in this work are avariablée in ot the

than the time to contact (Eq4) and (7). This means that Supplementary material.
the theoretical latency of an event camera depends also on
the maximum lateral input the robot can produce. Therefofe, Obstacle Detection with an Event Camera

for a given sensing range and robots maximum input, onety detect the obstacle, whose size is supposed to be known,
can compute the corresponding maximum velocity achievahig yse a variation of the algorithm proposed[in| [27] to remove

and, consequently, the latency of an event camera mouni&fnts generated by the static part of the environment due
on such a robot. Since different robots maximum input would

produce different maximum velocity, the same event camerahttp:/www.insightness.com/technolagy


http://www.insightness.com/technology
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Max. speed[m=s]

Sensor Type | Sensing Ranggm] | Latency [s] U,=10m=® U,=25m=2 U,=50m=2 U= 200m=s’
2.0 0.026 3.48 5.37 7.38 13.47
2.0 0.033 3.44 5.27 7.20 12.83
2.0 0.040 3.40 5.17 7.02 12.30
4.0 0.026 5.23 8.06 11.07 26.94
Mono Frame 4.0 0.033 5.17 7.91 10.79 25.73
4.0 0.040 5.10 7.76 10.53 24.62
6.0 0.026 6.97 10.74 14.76 40.41
6.0 0.033 6.89 10.54 14.39 38.59
6.0 0.040 6.81 10.35 14.03 36.93
2.0 0.017 3.54 5.51 7.64 14.37
2.0 0.043 3.38 5.13 6.93 12.06
2.0 0.070 3.24 4.80 6.35 10.39
5.0 0.017 8.86 13.77 19.11 35.93
Stereo Frame 5.0 0.043 8.50 12.83 17.34 30.16
5.0 0.070 8.10 12.01 15.88 25.98
8.0 0.017 14.17 22.03 30.57 57.50
8.0 0.043 13.54 20.53 27.75 48.25
8.0 0.070 12.95 19.21 25.40 41.56
2.0 0.002 - - - 16.12
Mono Event 2.0 0.003 - - 8.06 -
2.0 0.004 - 5.70 - -
2.0 0.007 3.60 - - -
5.0 0.004 - - 39.53
5.0 0.008 - 19.76 -
5.0 0.011 - 13.98 - -
5.0 0.017 8.84 - - -
8.0 0.006 - - 62.06
8.0 0.012 - 31.03 -
8.0 0.018 - 21.94 - -
8.0 0.029 13.88 -

TABLE I: The results of our case study. We compare monocular frame-based cameras, stereo frame-based cameras and ever
cameras for different robot agility values. The dashes in the columns reporting the maximum speed achievable with an event
camera are due to the fact that, given a value for the sensing range and the maximum lateral acceleration, we can compute the
maximum achievable speed and the corresponding latency (c.I}E. IV-D for a more detailed explanation).

to the motion of the camera. Different from [27], we do notlesigned with the aim of reducing the latency of the sensing

compensate for the camera’s motion using numerical optimizapeline and, during the tuning stage, speed was prioritized

tion, but rather exploiting the gyroscope’s measurements. Tligainst accuracy. Accurate obstacle detection with event
allows our pipeline to be faster, but comes at the cost ofcameras of obstacles of unknown size and shape is beyond of
higher amount of not compensated events. the scope of this paper.

We accumulate motion-compensated events over a sliding
window of 10 ms obtaining anevent-framecontaining the
timestamp of the events due to the motion of moving objects.
Such event-frame typically consists of several separated blo%s,
which are clustered together using the DBSCAN algorithm [28]

based on their relative distance, their direction of motiotn i : f cient t nerate an event. However. in our
(obtained using Lucas-Kanade trackihg|[29]) and the timestant1e age Is sutcient to generalte an event. HOWEVEr, in ou

of the events. We t a rectangle around the blobs belonging & periment we realized that a larger motion is necessary to
the same cluster and look for the rectangle having the md tain reliable obstacle detection with an event camera. More
similar aspect ratio to the expected one. Since we assume ?RSCi cally, the algorithm was able to detect the obstacle thrown
size of the obstacle to be known, we compute its expectggvards the vehicle whenever a displacement between of at least
aspect ratio and, after nding the most similar cluster, w pxl was veri ed. In SecS8-Gof the supplementary material

project its the centroid into the world frame using the s;tr:mdr:x‘(r'j‘fle analyze this aspect and d'SCUS.S th_e main reasons causing the
pinhole camera projection model. iscrepancy between the theoretical ideal model and real data.

_ _ Also, we exploited the model proposed in S&6-§ of the

_To render our algorithm most robust to outliers, we cogypplementary material to compute the theoretical latency for
sidered the obstacle to be detected only when at leastyy event camera having the same resolution of the sensor used
measurements in the world frame are obtained and their relatj¥g, experiments, for a pixel displacementsgixl. Sec[S8-B
distance is below a threshold. Our experimental evaluatigf he supplementary material reports the theoretical latency
showed that 2 consecutive measurements at a relative distagean obstacle detection pipeline based on an Insightness
lower than20 cm were suf cient to detect the ball in a reIiabIeSEEMl' and the measured latency for our algorithm. As one
way. Als_o, we xed the sensing range by discarding detectiong,, see from Fid-]9, Fig. 10, and Tap. | in the supplementary
happening when the ball was at a distance from the robot largghterial, the experimental data agree with the theoretical
than its sensing range. model. Sec[S8-G of the supplementary material discusses

It is important to note that our detection algorithm wathe discrepancy between our model and actual data.

Expected and Measured Latency

Theoretically, al pxI motion of the projection of point in
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(6]

We performed experiments where the quadrotor described
in Sec[S8-A of the supplementary material, equipped with an7]
Insightness SEEML1 sensor and running the detection algorithm
described in SefV-A] was commanded to avoid a ball thrown (8]
towards it. The ball was thrown with a speed spanning between
¢1 = 5m=s and{¢; = 9m=s. The sensing range w&&sm,
meaning that any detection at distance larger than this amou[r%{
was neglected. Therefore, the time to contact spanned between in IEEE Intl. Solid-State Circuits Conf. (ISSGG006, pp. 2060 2069.
tc = 0:22sandt, = 0:40s The robot was commanded tol10] M. Guo, J. Huang, and S. Chen, Live demonstration: A 768x215; 640

execute an avoidance maneuver either upwards, laterally or
diagonally. The obstacle radius wag = 10cm, while the

(11]

robot’s size was computed as either its height£ 15cm)

or half its tip-to-tip diagonal iy, = 25cm), depending on

12]

the direction of the the avoidance maneuver. Therefore, the

expanded obstacle radius spanned between25cm and
r = 35cm. The avoidance spanned betwedgr 0:17 sand

ts = 0:25s In all the experiments, the ball would have hit

the vehicle if the avoidance maneuver was not ex

con rmed by ground truth data provided by the motion—captur%4
system.

[15]
VI. CONCLUSIONS

ecuted, a?

A. J. Barry, P. R. Florence, and R. Tedrake, Highspeed autonomous
obstacle avoidance with pushbroom stereb, Field Robot. vol. 35,

no. 1, pp. 52 68, 1 2018.

S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, A direct visual
servoingbased framework for the 2016 iros autonomous drone racing
challenge, J. Field Robot, vol. 35, no. 1, pp. 146 166, 5 2017.

C. Greatwood, L. Bose, T. Richardson, W. Mayol, J. Chen, S. Carey,
and P. Dudek, Agile control of a uav by tracking with a parallel visual
processor, iNl[EEE/RSJ Int. Conf. Intell. Robot. Syst. (IRO3)17.

P. Lichtsteiner, C. Posch, and T. Delbruck, A 128x128 120dB 30mWwW
asynchronous vision sensor that responds to relative intensity change,

pixels 200meps dynamic vision sensor, IBEE Int. Symp. Circuits Syst.
(ISCAS) May 2017.

C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct
monocular visual odometry, itEEE Int. Conf. Robot. Autom. (ICRA)
2014, pp. 15 22.

A. I. Mourikis and S. I. Roumeliotis, A multi-state constraint Kalman
Iter for vision-aided inertial navigation, inlEEE Int. Conf. Robot.
Autom. (ICRA) Apr. 2007, pp. 3565 3572.

[13] T. Rosinol Vidal, H. Rebecq, T. Horstsafer, G. Gallego, and D. Scara-

muzza, Ultimate slam? combining events, images, and imu for robust
visual slam in hdr and high speed scenariéBEE Robot. Autom. Lett.
vol. PP, no. 99, pp. 11, 2018.

A. Zhu, N. Atanasov, and K. Daniilidis, Event-based visual inertial
odometry, in IEEE Int. Conf. Comput. Vis. Pattern Recog. (CVPR)
2017.

A. Handa, R. Newcombe, A. Angeli, and A. Davison, Real-time camera
tracking: When is high frame-rate best? Eur. Conf. Comput. Vis.
(ECCV) 2012.

In this work, we studied the effects that perception Iatencf:%ﬁl M. Vincze, Dynamics and system performance of visual servoing, in

has on the maximum speed a robot can reach to safely naviq%?

through an unknown environment. We provided a general
analysis for a robot modeled as a linear second-order system VIl Springer Berlin Heidelberg, 2004, pp. 712 719.

with bounded inputs. We showed how the maximum laten

IEEE Int. Conf. Robot. Autom. (ICRAyol. 1, 2000, pp. 644 649 vol.1.
S. Behnke, A. Egorova, A. Gloye, R. Rojas, and M. Simon, Predicting
away robot control latency, ifrRoboCup 2003: Robot Soccer World Cup

] P. Sermanet, R. Hadsell, J. Ben, A. Erkan, B. Flepp, U. Muller,

and Y. LeCun, Speed-range dilemmas for vision-based navigation in

the robot can tolerate to guarantee safety is related to the unstructured terrain, ir6th IFAC Symposium on Intelligent Autonomous
desired speed, the agility of the platform (e.g., the maximum_ Vehicles vol. 6, 2007, pp. 300 305.

acceleration it can produce), as well as other percepti N

] M. W. Spong, Partial feedback linearization of underactuated mechanical

systems, IN[EEE/RSJ Int. Conf. Intell. Robot. Syst. (IRO&)I. 1, Sep

parameters (e.g., the sensing range). We compared frame-basedi994, pp. 314 321 vol.1.

cameras (monocular and stereo) against event cameras(ddrM. A. Henson and D. E. Seborg, Edonlinear Process Control
quadrotor ight. Our analysis showed that the advantage &fl]
using an event camera is higher when the robot is particularly” Athena Scienti ¢, 2005.
agile. We validated our study with experimental results onl2?!
quadrotor avoiding a ball thrown towards it a speeds up to
9 m=s using an event camera. Future work will investigate thes]

use of event cameras for obstacle avoidance on a comple
vision-based quadrotor platform, using on-board Visual-Inerti

Odometry for state estimation.
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How Fast is Too Fast?
The Role of Perception Latency in High-Speed
Sense and Avoid

Davide Falanga, Suseong Kim and Davide Scaramuzza

S1. GBSTACLE AVOIDANCE: BRAKE OR AVOID? wo. T 0.05 s, uy =50 m/s’ s =2.5m, v, =10 m/s

To avoid an obstacle, a robot can either stop before colliding

or circumvent it by moving laterally. Fid.]1 shows a com- Sonsi
. : S . . ensing Range s

parison between (i) the minimum tinte= o required for a
robot to brake and stop before colliding, and (ii) the minimum ot <
time required to avoid the obstacle laterally without braking
(see Sed. 1I-BR). We considered =u , = 25m=s?, and the
horizontal axis reports the longitudinal speed towards the
obstacle. The results show that the lateral avoidance maneuve= _igo ‘ ‘ |
requires less time at high speed, allowing faster navigation -100 -50 o0 100
along the longitudinal axis. Additionally, a continuous motion Parameter variation [%]
along the desired direction is preferable ovestap-avoid-go Fig. 2: Sensitivity of the maximum speed with respect to the
behaviour, since would allow the robot to navigate faster afgrception ¢, ) and actuatioru(z) parameters of the system
reach its goal earlier. Therefore, we consider only the cafg the cases=2:5m, =0:055u,=50m=s.
where the robot does not brake to prevent the collision, but
rather executes a lateral avoidance maneuver.

Max. Input
Latency 7

Max Velocity Variation [%)]

always be possible to reduce the sensing latency, or it might be

|[——Break = - —Avoid (1 = 025m) ~ - ~Avoid (r = 0m) - = ~Awid ('~ Im)  petter tg change some other parameters of the system (e.g., the
1 sensing range or the maximum acceleration), since this might
produce better improvements at a lower cost. By performing
08} a sensitivity analysis, we can study the impact of the sensing
range, the latency, and the maximum input on the speed that
=06y the robot can reach.
5 R <o To do so, it is necessary to rst de ne a set of parameters.
For example, we consider the casee2:5m, =0:055
i u, =50m=s%. This set of parameters, chosen as a representa-
o ‘ ‘ ‘ ‘ tive case for the study in Sec. ]IV, according [i¢ (9) allow the
0 5 10 15 20 25 robot to navigate at a maximum speed= 10 m=s. Based on
v [m/s] these values, we vary each of the parameters while keeping

Fig. 1: Comparison between the minimum time required forthe others con_stant to understand how the maximum speed the

robot to completely stop before colliding (solid blue line) an§PPot can achieve changes.

the minimum time required to move laterally by an amount  Fig. [ shows the results of this numerical analysis for a

(dashed lines), depending on the sp&edhorizontal axis). variation of the parameters betweerl00% and 100% of

the reference value (horizontal axis). On the vertical axis the

percentage variation of; is reported. As one can see;

is very sensitive to the sensing range, whereas, except for

extreme decreases of the maximum lateral acceleration (far
Eq. (9) is particularly interesting for robot design to analyzeft end of the blue line), the sensitivities with respecti to

what the best con guration in terms of perception and actuand are comparable. However, it is not always possible to

tion systems is. As one can easily derive frdm (9), reducirghange the range of a sensing pipeline, whereas it could be

the latency increases the maximum speed at which the ropossible to reduce its latency. This is the case, for example, of

can navigate the environment safely. However, it might nat DAVIS [1]], a neuromorphic sensor comprising a frame and

S2. ENSITIVITY ANALYSIS



an event camera sharing the same pixel array and optics. In
such a case, it is possible to use frames or events depending on
the need, but the sensing range, which depends on the sensor
itself, cannot be modi ed for one modality without affecting
the other. For this reason, in the remainder of this work will
focus on the impact of the latency on the maximum speed a
robot can navigate.

S3. GENERALIZATION TO MULTIPLE OBSTACLES Fig. 3: A schematics representing the_obstacle ip front of the
. camera. The obstacle is represented in red, while the camera
So far, we only considered the case where the robot face 3 black on the left side of the image and has resolutjon
single obstacle and needs to avoid it. Although mathematica Yo eld of view is highlighted in green, while the angle

simple, our approach can generalize to multiple ObStaC'gﬁanned by the obstacle in the imagés highlighted in blue.
i

by iteratively running the same considerations previous s the distance between the camera and the obstacle, while
described. Independently of the number of obstacles, we @ the focal length of the camera

always consider the closest obstacle to the robot along its
direction of motion and perform the evaluation of Sec. T|-B™.
and[Tl-B3. If the robot reaches a safe lateral position withi-~ 6
the time to contac{{3), we can consider the obstagigided s
and the robot has to avoid the next obstacle along its path. 1
only difference with respect to the previously avoided obstac = 4
is the distance between the obstacle and the robot along
longitudinal and lateral axes.

A conservative, yet effective analysis can be conducted 1=
the case of navigation in environments with multiple obstaché
by using our formulation under the following assumptions: (2O 1L ‘ ‘ ‘ | ‘ |
all the obstacles are considered to have the same size ( 90 100 110 120 130 140 150 160
the size of the largest obstacle); (ii) the distance between t Field of View a [deg]
consecutive obstacles along the longitudinal axis is suf cient‘gi

large to guarantee that the avoidance time in the case of ng 4 The sensing rangsu for a monocular system_ de-
latency is lower than the time to contact. pending on the eld of view . The the number of pixels

N necessary to detect an obstacle of sigze= 0:5m are
computed as a percentaleof the image resolution.

n
=
5]

wn
i

[\

S4. MONOCULAR FRAME-BASED CAMERA

A. Sensing Range

For an obstacle to be detected with a frame-based camé&fd; [S:1) shows that the sensing range of a monocular camera
it has to occupy a suf ciently large number of pixels in th&léPends on its angular resolution Fig.[4 shows the range
image. LetN be the number of pixels necessary to detect & Which a monocular system can detect an obstacle of size
obstacle. Furthermore, letbe the eld of view of the sensor. Mo = 0:5mwhen this occupies a percentage 5%, k = 10%
Without loss of generality, we only consider the projection dNdk = 15% of the image size.
an object along the horizontal axis of the camera, but similar
results apply to the vertical axis. B. Latency

Let g be the horizontal resolution of a camera. The angular The latency of a camera-based perception system depends
resolution of the camera can be computed as ;. Letro on (i) the timet; between two consecutive images, (ii) the
be the size of an obstacld,its distance to the camera, anchumber of images necessary for detection, and (iii) the time to
assume it is placed such that the camera optical axis passgstess each image. The rst one only depends on the sensor
through its center (cf. Fid.]3). The obstacle spans an angiéelf, and includes, among the other things, the exposure

=2arctan %3 . For the obstacle to be visible in the imagetime and the transfer time. The second and the third depend
it must be at a distanced such that = , which would on the sensor, the computational power available and the
result in a projection in the image dfpxl. However,1pxl algorithm used to detect the obstacle. It is therefore hard to
is typically not suf cient to detect an obstacle. LEt be the provide an exact estimate of the actual latency of a perception
number of pixels one needs to detect an obstacle. For #&tem based on a monocular camera, since it depends on
obstacle to occupy at leadt pixels in the image, we want a large variety of factors. Thus, in this work we analyze its
that N . We de ne the sensing range of a monoculatheoretical upper-bound and lower-bound to providmek-of-
camerasy the maximum distance at which the obstacle is stithe-envelopenalysis of the possible performance achievable.
detectable, namely the distance at which the previous conditiorFor a vision-based perception system to be effective, it has
is satis ed with the equality constraint: to produce its output in real-time. This means thatnifs

S ro ) (S.1) the number of images necessary for the detection, the latter
M v E— .

- 2tan M- must happen before the franme+ 1 arrives. Therefore, the



frame-ratet; of a camera provides an upper-bound for th ——VGA,ez=5%

latency of a monocular vision system. Assuming that 2 fram ——QVGA,ez=5%
are suf cient to detect an obstacle along the robot’s path, ti == -VGA,ez=20% P
latency for a monocular camera has an upper-bound given £ 8 =~ ~QVGA ez =20 % -7

m = 2t go _-" -7

To have an estimate of the theoretical lower-bound of ttg 6 _--"

latency of a frame-based camera, we neglect the process % L= - |
time and only consider the delays caused by how such ca% 4t e e=="T
eras work. More speci cally, in the ideal case of negligible. + - - _ae=mT

processing time, the lower-bound of the latency depends ong Y S
the timet; between two consecutive triggers of the sensor, (i :///’—_

the exposure timéz, and (iii) the timett necessary to transfer : : : !
each frame. In the ideal case of no processing time, the later " oo Basenoﬁi b [m] 0420 1
of a frame-based camera has a lower-bouypd t; + tr + tg.

Typically, an image is transferred to the processing unit bef
the next one arrives, which meafi<tt <t;. The timett
depends on the size of the image and the protocol used?
communicate with the sensor. For example, a gray-scale V@€ actual depth.
resolution image (i.e.640 480pxl) has a size oR:1 Mbit

and can be transferred in approximatélyns with a USB h ional ilabl d th luti f th
2.0 connection 480 Mbit=s) and 0:4ms with a USB 3.0 the computational power available and the resolution of the

connection § Gbit=s). The exposure time depends on th utput, the latency of a stereo system can vary signi cantly.
amount of light available in the environment and cannot pr example, the Intel RealSense, provides a depth map at a

€ ;
larger than the time between two consecutive frames, i>§equency 0f60 Hz (RealSense RZED while the Bumblebee
O<tg<ts.

ordg. 5: The sensing rang® for a stereo system depending on
the baselind for a focal length o4 mm. This sensing range
j4prantees that the uncertainty is below 5% and 20% of

B:ﬂ only provides its output at up td6Hz However,
computing the latency of those measurements is not an easy
task, since most of the commercially available sensors do not
_ provide such information in their datasheets. An estimate of
A. Sensing Range the latency of a wide variety of depth cameras is available

Using stereo cameras, it is possible to triangulate points ubanks to the effort of the robotics commufijtyaccording to
ing only one measurement consisting of two frames grabbedndiich most of the stereo systems have a latency of one frame.
the same time. Leb be the baseline between the two camerasherefore, we consider as a lower-bound for stereo cameras
f their focal length andl the disparity between the two imageghe inverse of the frame-rate of the fastest sensor currently
of a point of interest. The depth of such a point is given byvailable on the market, namely the Intel RealSense, leading
d = f 2. However, the uncertainty in the depth estimatign to a lower-bound s = 0:017's For the upper-bound, instead,
grows proportional to the square of the distance between te can refer to the datasheet of the Stereolab ZED fini
camera and the scerfé [2], namely= Z- p, where p is the Which has an estimated latency = 0:07's
uncertainty in the disparity matching. Therefore, we consider
the sensing range for a stereo cangyas the maximum depth S6. MONOCULAR EVENT CAMERA
such that the uncertainty in the depth estimation is below a .
given percentage threshokd A. Sensing Range

kb Since monocular frame-based cameras and event camera
= — (S.2) often share the same sensor, we can (S.1) to compute

P the sensing range of an event camera. However, the amount

Fig. [§ shows the sensing range of a stereo camera agtaixels the obstacle must occupy in the image in order to
function of the baselin® such that the depth uncertainty e detected is signi cantly smaller. In principle, the obstacle

is below 5% and 20% of the actual depth, for the cases ofyqyld generate an event when each of its two edges occupy
VGA (640  480px)) and QVGA 820 240 pxl) resolutions, 4t |eastl pxl in the image. However, due to the noise of this

S5. SSEREOFRAME-BASED CAMERA

Ss

assuming p = 1 pxl. sensor, the obstacle can be detected with an event camera
when it occupies an amount of pixels in the image which
B. Latency is signi cantly larger than the amount of pixels it has to move

Differently from monocular systems, stereo cameras captifedenerate an event (see Sec. $6-B of this document). In this
simultaneously two frames using two cameras placed atVQ'k, we assume that the obstacle size in the image must be at
relative distanceb. It is therefore possible to use a singld®ast one order of magnitude larger than the amount of pixels

measurement, i.e. two frames from two different cameras, tq .

. . . https://tinyurl.com/realsenser200
detect obstacles, for example computing the disparity betweelg.mtps, Jitinyurl.com/bumblebeexb3
such frames, a depth map or an occupancy map. Depending Ghitps:/irosindustrial.org/3d-camera-survey/

the technique used to detect obstacle using a stereo camerfjtps://www.stereolabs.com/zed-mini/


https://tinyurl.com/realsenser200
https://tinyurl.com/bumblebeexb3
https://rosindustrial.org/3d-camera-survey/
https://www.stereolabs.com/zed-mini/
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Fig. 6: A schematics representing the translation necessary ui vi [m/]

the obstacle to generate an event. The obstacle (in red on i@ 7: The latency g for an event camera depending on its
left side of the picture) is projected on the image plane dfistance from the obstactkand the speed;. We considered

a point which has horizontal componantdepending on the the case of an event camera with a VGA resolution sensor and
distanced; from the camera. The quantityd represents the a focal length of4 mm.

distance the camera has to move such that the projection edge

of the obstacle on the image plane moveslipxl.

The time it takes the robot to cover such a distanckdepends

) on its speed;:
it has to move to re an event. Therefore, we compute the

sensing range of an event camera using](S.1) Witk 10. E= 1 uds : (S.5)
This leads to a sensing range for an event camera which, Mifro+ udg

depending on the eld of view of the sensor, can span betwee®. [S%) shows the time necessary to get an event from the
SE = 10m and SE = 20m for an obstacle of Slze, = 0:5m. edge of the aforementioned obstacle.

It is important to note that, since the transfer time for
an event is in the order of a few microseconds [5], we
consider it negligible. Similarly, we neglect the processing
time for the case of event-based vision, since each pixel

, triggers asynchronously from the other and, therefore, the
In this work, we assume that an obstacle can be deteclgfly nt of data to be processed is signi cantly lower than

using an event camera whenever its edg'es gener.ate an _e‘fﬁetcase where an entire frame has to be analyzed.

For this to happen, there must be suf cient relative motion

between the camera and the obstacle to cause a change 5i9- [1 shows the latency for an event camera](S.5) de-
intensity suf ciently large to let an event re. Typically, asPending on its distance from the obstacleand the speed
shown in [3], the edge of an obstacle generates an event wiferin the case of VGA resolution and focal length #fnm.

its projection on the image plane moves by at lehgkl. It is clear that the theoretical latency of an eyent camera is
Without loss of generality, we analyze the horizontal motiofot constant, but rather depends on the relative distance and
of the obstacle in the image. Létbe the distance between théhe speed between the camera and the obstacle. Therefore,
robot and the obstacle along the camera optical axis, amg lef® compute the maximum latency that a robot can tolerate in
be the radius of the obstacle. Furthermore, assume the optRi&ler to safely navigate using an event camera, it is necessary
axis of the camera to pass through the geometric center of {Rdointly consider the sensing range (Sec. TM}B3), and Ep. (8)

obstacle, which we model here as a segment (cf.[Fig. 6). TRRd [S.b). Intuitively speaking, this is due to the fact that event
projection of a pointp into the image plane has horizontaf@meras are motion activated sensors. In order for the edges of

componenu given by [2]: an obstacle to generate an event, their projection in the image
P must move by at leadtpxl. For this to happen, the robot must
f o (5.3) move towards the obstacle by a quantitygl which depends
cP on its distance to the obstacle throu@h [S.4). Therefore, the
where cpx and cp, are the components gf in the camera |atency of an event camera, i.e. the time it takes the obstacle
reference frame, andl is the camera focal length. In ourig generate an event, is given by the ratio between such a
case,cpx = o andcp, = d. We can compute (S.3) for two gistance d and the robot's speetl;, as shown by[(S]5).
valuesd; andd; = d;  d of the distance along the opticaljowever, the relative distance and speed between the robot
axis, obtaining two different values, anduy, respectively. and the obstacle also in uence the time to cont@gt (3), which
Equating u=u, U, tothe desired translation in the imagémust be larger than the avoidance tifig¢ (4) for the robot the
plane necessary to generate an event (in our cases 1 pxl),  aple to avoid the obstacle before colliding with it. Therefore,
we can compute the camera translatiod as: it is not possible to arbitrarly reduce the latency of an event
ud? camera for obstacle avoidance by increasing the robot’s speed,
T fro+ udy (S-4) since this might result in unfeasible avoidance maneuvers.

B. Latency

u=



S7. DISCUSSION
A. Stereo Frame or Monocular Event?

As shown in Tab[]l, stereo cameras and event cameras
provide results that, at least for currently available quadrotors,
are comparable in terms of magnitude. Stereo cameras are
currently still among the best options for autonomous quadro-
tor ight, since they provide a good compromise between
latency and sensing range, without being very expensive.
However, technological development in the event cameras
might render them better solutions in the the future since
() increasing the resolution would lead to higher angular
resolution, which results in longer ranges, and (ii) they will be
become cheaper as mass-production starts. Also, the sensing
range of stereo cameras strongly depends on the baseline
between the two cameras, which for small quadrotors are not
always possible. Additionally, carrying one camera instead of )
two makes the platform lighter and, therefore, more agile [6]i9- 8: The quadrotor used for the experiments. (1) The
Finally, event cameras have other advantages comparedngjgthness SEEM1 sensor. (2) The Intel Upboard computer,
frame-based cameras such as: (i) high dynamic range, whitRning the detection algorithm. (3) The Lumenier F4 AIO
makes them more suited for navigation in adverse Iightin@ht controller, receiving commands from the ground station.

conditions, where frame-based cameras might fail; (ii) their

latency does not depend on the exposure time, which plays an h then d . he ti Theref in th
important role in frame-based cameras and can signi can'g_?-”c then determines the time to contact. Therefore, in the

increase their latency: (iii) high temporal resolution, whic ase of a robot navigating through moving obstacles, a broader

reduces the motion blur and makes obstacle detection eagig? more detailed analysis of the dependence of the maximum

at high speed; (iv) low power consumption, which is desirabﬂecmev_abl? Spee‘?‘ on each lparamelterh.ishr;'e%esiary. ¢
with small-scale robots [7]. Intuitively, moving obstacles would highlight the bene ts o

event cameras against other sensors. To compute the latency
) of an event camera, we considered the case of a robot moving
B. Dynamic Obstacles towards a static obstacle, placed in the center of the image,
In this work, we only considered the case of navigatioglong a direction parallel to the camera’s optical axis. This
through static obstacles. Nevertheless, the mathematical fl’amﬁyresents a sort ofiorst casefor event cameras, since the
work provided in Sed. ]I can be used to consider the case gfparent motion between the sensor and the obstacle is small.
moving obstacles by taking into account that, in that case, tt®nversely, an obstacle moving along the lateral axis would
time to contact and the avoidance time depend on the relatidérease the apparent motion in the image and, therefore,
distance and speed between the robot and the obstacle algegerate an event earlier than in the case of static obstacles.
the longitudinal and the lateral axes. Additionally, when obstacles enter the sensing area at a short
A fundamental assumption of our work is that the robdfistance, the importance of latency increases as the time
moves along a direction which makes the obstacle detectafyecontact decreases. For this reason, we expect that event
and eventually leads to a collision. In the case of movingameras would allow faster ight in the case of moving
obstacles, this might not always be the case. Indeed, dependipgtacles, especially for short sensing ranges (or, equivalently,
on the relative distance and speed between the robot and féteobstacles entering the sensing area at short distances). We
obstacle, a number of cases can occur: (i) the robot detects ihe currently working on analyzing the impact of the sensing
obstacle, but their relative motion does not lead to a collisiopipeline’s parameters (latency, sensing range and eld of view)
(i) the robot detects the obstacle, and their relative motiger the case of moving obstacles from a mathematical point
leads to a collision; (iii) the robot cannot detect the obstaclef view.
and their relative motion does not lead to a collision; (iv)
the robot cannot detect the obstacle, but their relative motion
leads to a collision. It is clear that, in the case of movin
obstacle, the amount of cases to be taken into account
the parameters to be considered increases signi cantly. FolWe used a custom-made quadrotor platform to perform the
example, the eld of view of the robot also plays a cruciaéxperiments. The vehicle was built using the DJI F330 frame,
role in the case of moving obstacles. Indeed, for a givemd was equipped with Cobra CM2208 motors and Dalprop
relative speed, depending on the eld of view of the sensirg045 propellers. The tip-to-tip diagonal of the quadrotor was
pipeline it is equipped with, the robot might or might not b&0 cm, with an overall take-off weight of approximate860 g
able to detect the obstacle. In the case it is able to detect #rel a thrust-to-weight ratio of roughly 3.5. We used an
obstacle, the relative distance at the moment the latter ent@stitrack motion-capture system to measure the state of the
the sensing range depends on how large the eld of view iguadrotor, as well as the position and velocity of the ball.

S8. EXPERIMENTS
gExperimental Platform



sm | [s] | Is]
1 [ 0.0037| 0.0030
2 | 0.0688| 0.0474
3 | 0.1832]| 0.0766

TABLE I: The mean and standard deviation of the latency
for the obstacle detection algorithm proposed in this work
based on the Insighthess SEEM1 sensor.

The ball measurements were not used by the vehicle, which
only relied on the information coming from the onboard

obstacle detection algorithm, and were used as ground triii- 9: The theoretical latency for the Insigthness SEEM1

to benchmark the sensing pipeline. To detect the obstaél'é,ed in our experiments, depending on its distance from the
we mounted an Insightness SEEIﬁ]lneuromorphic SEensor obstaclad and the spee#;. We considered the case of an event

looking forward, and an Intel UpBoard computer running theamera with a QVGA resolution sensor and a focal length of

obstacle detection algorithm described in the previous secti§{nm-
The horizontal eld of view of the sensor was approximately

90 . Whenever the obstacle was detected, a trigger signal was
sent to a ground-station computer connected to the motion-
capture system and running the control stack described in [8],
which then initiated the avoidance maneuver. The control
commands (i.e., collective thrust and body rates) were sent

to a Lumenier F4 AIO ight controller by the ground-station
through a Laird RM024 radio module.

B. Obstacle Detection with an Event Camera: Theoretical and
Practical Latency
Fig. 10: The measured latency of our event-based obstacle
As described in Seg¢. ]V of the main manuscript, we pegtetection algorithm using an Insightness SEEM1, depending

formed actual experiment on a quadrotor equipped with @ its distance from the obstadeand the speett;.
Insightness SEEM1 sensor having QVGA resolution (i.e.,

320 240pxl). We estimated that, in order to obtain reliable
measurements of the obstacle, a displacementof 5pxI C. Obstacle Detection with an Event Camera: Discrepancy
was typically necessary. Fif] 9 shows the theoretical latenggtween Theory and Practice

of such a sensor for obstacle detection, according to the mod

dinS B, f i e aif, 2 d X
proposed in Se¢. S&tB, for a sensing rang man theoretical lower-bound of the latency expected for the sensor

3m, with u=5pxl. i : .
. _._..used in our experiments, shown in . 9. Tgb. | reports the
To validate these results, we performed a quanhtaﬂ@ P Fig L P

e . , ,
}\s one can notice, the results in Fg.] 10 agree with the

Vsi ) d truth dat ided b Ontit ean and standard deviation of the latency of our event-
analysis using ground fru ala provided by an Uplrag,seq opstacle detection algorithm, depending on the desired
motion-capture system. More speci cally, we performed 10

. ts throwing the ball hored to a table th ensing range. As the sensing range increases, also the error
expenments throwing the bal, ancnored 1o a table roughog ween the mean value and the expected theoretical latency

leash to prevent <_:oII|3|ons, towards the quadrotor, and YSfidreases. Similarly, the standard deviation becomes larger. We

data from the motion-capture sys_tem to measure the MoMBAtieve this effects to be mainly due to two factors.

\_’rvﬁiznwt;: n?::u:;?tesrg(tj t;h?r]rzeemjil;gr(ar?tr?/zrjégejs;aTrira. First, the output of an event camera is particularly noisy. The

s=2m ands = 3?;] For each of these values \,Ne c;om ’utepigher the noise level, the larger the amount of events that need
e ~ s - ' P be processed and, therefore, the higher the computational

the time when the sensing pipeline detected the ball for the ;ﬁ%st of our algorithm. In our case, the noise comes from

v )

time, and compared it to the time when the obstacle actu th actual sensor noise and events generated by the static

entered the sensing range using data from the motion-captHret of the scene which are not perfectly compensated by our
system. This comparison allowed us to estimate the latency orithm

our event-based obstacle detection algorithm, and the resu . . . .
econd, the resolution of our sensor is particularly low. This

are shown in Fig[ 10 for a range of obstacle speeds betweneans a twofold consequence. The rst is that the size of the
5m=sand9m=s.

obstacle in the image is not very large when it is far away
from the camera. The second is that, when the obstacle is far
Shttp://www.insightness.com/technolagy from the camera, it needs to move by a signi cant amount in


http://www.insightness.com/technology

order for its projection in the image to move by an amount

u =5pxl. The closer it gets to the camera, the smaller the
distance it has to travel to produce such displacement
which, for a constant velocity of the obstacle, translates into
a lower detection latency. Additionally, when the obstacle is
close to the camera, it occupies a signi cant portion of the
image, making its detection easier.

Therefore, as the sensing range increases, the difference be-
tween the theoretical model (Sgc. Sp-B) and the actual sensing
pipeline becomes more and more important. However, near-
future improved versions of event-based sensors can bridge
this gap and render event-based obstacle detection pipelines
closer to the theoretical model we propose in this work.
More speci cally, we believe that event cameras with higher
resolution could lead to better and faster obstacle detection
pipelines. An additional benet of large resolutions is the
possibility of mounting lenses providing larger eld of views,
which are desirable to sense obstacles, without sacri cing the
angular resolution of the sensor.
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