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Lab Exercise 3 - Today

Implement the Harris corner detection and matching




Outline

* Filters for Feature detection

* Point-feature extraction: today and next lecture



Filters for Feature Detection

* [n the last lecture, we used filters to reduce noise or enhance
contours (i.e., edge detection)

 However, filters can also be used to detect “features”

Goal: reduce amount of data to process in later stages, discard
redundancy to preserve only what is useful (leads to lower
bandwidth and memory storage)

* Edge detection (we have seen this already; edges can enable line or

shape detection)
* Template matching
* Keypoint detection




Filters for Template Matching

* Find locations in an image I that are similar to a template H

* If we look at filters as templates, we can use cross-correlation (see lecture 4, like convolution but without
rotating the filter) to detect these locations
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Template Matching

 What if the template is not identical to the object we want to detect?
* What about the pixels in the template’s background (object-background problem)?

* Template Matching will only work if scale, orientation, illumination, and, in general, the appearance of the
template (including anything in background) and the object to detect are very similar.
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Correlation as Scalar Product

* Consider two image patches H and F of same size as 1-dimensional vectors with n entries (where n is the
number of pixels), their cross-correlation can be written as an inner product:

H

(H,F)=|H]|F|cose p

F

* In Normalized Cross Correlation (NCC), we consider the unit vectors of H and F, hence we measure their
similarity based on the angle 6.

<H JF > Z ZH(u VF (u,v)
cos @ = NCC—\/ ==




Similarity Measures

* Normalized Cross Correlation (NCC): ranges between -1 and +1 and is exactly 1 if H and F are identical up to scale

Z ZH(u V)F(u,v)
NCC = o

\/Zk: > H(u,v)’ \/Z > F(u,v)’

u=—kv=—>k u=—kv=—k

* Sum of Squared Differences (SSD): awalys = 0. It’s exactly 0 only if H and F are identical

SSD = ZZ Hu,v)—F(u, v))

u=—hkv=—

* Sum of Absolute Differences (SAD) (used in optical mice): awalys = 0. It’s 0 only if H and F are identical

SAD = Z Z‘H(u v)—F(u, v)‘

u=—kv=—k



Zero-mean SAD, SSD, NCC

To account for the difference in the average intensity of two images (typically caused by additive illumination
changes), we subtract the mean value of each image:

Z ZH(u V) Uy = Z ZF(u V) n is the number of pixels of H or F

Ny kv=— ukv

* Zero-mean Normalized Cross Correlation (ZNCC)

S S (H )ty X ) - 11, ZNCC is invariant to
ZNCC = o affine intensity changes:

\/Zklzk:H(u,v)—sz\/zk:zk:F(uv) ,U 2 1'(x,y)=al(x,y)+,[>’

=k u=—kv=—k

e Zero-mean Sum of Squared Differences (ZSSD)

z8SD =3 N ((H (u,v) - payy )~ (F(u,v) = 1))

e Zero-mean Sum of Absolute Differences (ZSAD) (used in optical mice) Are these invariant to affine
illumination changes?

Z54D = ZZ‘(H(u,v)—yH)—(F(u,v)—,uF)‘

u=—kv=—k
12



Census Transform & Hamming Distance

* Maps an image patch to a bit string:

* if a pixel intensity is greater than or equal to the center pixel intensity, its corresponding bit is set to
1, elseto O

e Foraw X w patch, the string will be w? — 1 bits long
* The two bit strings are compared using the Hamming distance, which is the number of bits that are

different. This can be computed by counting the number of 1s in the Exclusive-OR (XOR) of the two bit
strings

Advantages

* No square roots or divisions are required,
thus very efficient to implement, especially
on FPGA

* |ntensities are considered relative to the center
pixel of the patch making it invariant to monotonic nonlinear

intensity changes 10101 101 o
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Outline

* Filters for Feature detection

* Point-feature extraction: today and next lecture
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Keypoint extraction and matching - Example

SVO with a single camera on Euroc dataset

Video from “Forster, Pizzoli, Scaramuzza, SVO: Semi-Direct Visual Odometry”. IEEE Transactions on Robotics, 2017. PDF. Video

15


http://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf
https://www.youtube.com/watch?v=2YnIMfw6bJY

Why do we need keypoints?

Recall the Visual-Odometry flow chart:

Image sequence

Feature detection

Feature matching (or tracking)

Motion estimation

Local optimization

Features tracked over multiple recent frames
overlaid on the last frame

16



Why do we need keypoints?

Keypoint extraction is the key ingredient of motion estimation

Image sequence

Feature detection

Feature matching (or tracking)

Motion estimation

Local optimization

Tyr—1 =71
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Keypoints are also used for:

* Panorama stitching

* Object recognition

* 3D reconstruction

* Place recognition

* Indexing and database retrieval (e.g., Google Images or http://tineye.com)

* These problems go under the name of Feature Matching problem: finding
similar keypoints between two images of the same scene taken under
different conditions


http://tineye.com/

Image matching: why is it challenging?

NASA Mars Rover images

19



Image matching: why is it challenging?

e Answer below

NASA Mars Rover images with SIFT feature matches

20



Example: panorama stitching

How does it work?

AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html
M. Brown and D. G. Lowe. Recognising Panoramas, International Conference on Computer Vision (ICCV), 2003. PDF.

21


http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/papers/iccv2003.pdf

Local features and alighnment

 We need to align two images
* How would you do it?

22



Local features and alighnment

ldea:
e Detect point features in both images
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Local features and alignmen

ldea:
e Detect point features in both images
e Find corresponding pairs

24



Local features and alighnment

ldea:

e Detect point features in both images

e Find corresponding pairs

e Use these pairs to align the images: what image transformation would you use?

25



Matching with Features

Problem 1: How to detect the same points independently in both images?

no chance to match!

We need a repeatable feature detector. Repeatable means that the detector should be able to re-detect the same feature
in different images of the same scene, so it should be robust to geometric and photometric changes.

This property is called Repeatability of a feature detector.

26




Matching with Features

Problem 2: For each point, how to match its corresponding point in the other image

We need a distinctive feature descriptor. A descriptor is a “description” of the pixel information around a feature (e.g.,
patch intensity values, gradient values, etc.). Distinctive means that the descriptor uniquely identifies a feature from other
features without ambiguity. This property is called Distinctiveness of a feature descriptor.

The descriptor must also be robust to geometric and photometric changes.

27




Geometric changes

 Rotation

e Scale (i.e., zoom)
* Viewpoint (i.e., perspective changes)

Multiple View
Geometry

I8 Comnuter vision

TN ey wond Al oo Tomanr i an
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Photometric Changes (i.e., lllumination changes)

* Small illumination changes are modelled with an affine transformation
(so called affine illumination changes):

I'(x,y) =al(x,y) + B
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Local Invariant Features

The key to feature detection and matching is to find repeatable features and distinctive
descriptors that are invariant to geometric and photometric transformations. Basic steps:

1. Detect repeatable and distinctive interest points
2. Extract invariant descriptors

J\

b Y

i

I
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Main questions

 What features are repeatable and distinctive?

* How to describe a feature?
* How to establish correspondences, i.e., compute matches?
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What is a Repeatable & Distinctive feature?

Consider the images below with some patches. Notice how some patches can be localized or matched with
higher accuracy than others

Image 2

32



Point Features: Corners vs Blob detectors

* A corner is defined as the intersection of two or more edges
e Corners have high localization accuracy — corners are good for VO

e Corners are less distinctive than blobs
* E.g., Harris, Shi-Tomasi, SUSAN, FAST

* A blob is any other image pattern that is not a corner and differs significantly from its
neighbors (e.g., a connected region of pixels with similar color, a circle, etc.)
* Blobs have less localization accuracy than corners

* Blobs are more distinctive than corners — blobs are better for place recognition
e E.g., MSER, LOG, DOG (SIFT), SURF, CenSurk, etc.




Corner Detection

e Key observation: in the region around a corner, the image gradient has two
or more dominant directions

e Corners are repeatable and distinctive



The Moravec Corner detector (1980)

e How do we identify corners? Look at a region of pixels through a small window

e Shifting a window in any direction should cause large intensity changes (e.g., in SSD)

/

4_
“flat” region: “edge”: “corner”:
no intensity change no change along the edge direction significant change in all directions
(i.e., SSD = 0 in all directions) (i.e., SSD = 0 along edge but > 0 in (i.e., SSD > 0 in all directions)

other directions)

H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, PhD thesis, Chapter 5,
Stanford University, Computer Science Department, 1980.



http://www.frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html
http://www.frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html

The Moravec Corner detector (1980)

Consider the reference patch centered at (x, y) and the shifted window centered at (x + Ax, y + Ay). The

patch has size (). The Sum of Squared Differences between them is:

)

SSD(Ax,Ay) = z (I(x,y) —I(x + Ax,y + Ay))? . (x +Ax,y + Ay)

xX,yEQ

“Sums of squares of differences of pixels adjacent in each of four directions (horizontal, vertical and two diagonals) over each window
are calculated, and the window's interest measure is the minimum of these four sums. Features are chosen where the interest measure

has local maxima.” [Moravec’80, PhD thesis, Chapter 5, link]

Poo Bor oo £as Poo [ Po1 [Po2 | Pos

Pro Bt 25 Pro|P1a [ P12 | Pla

The disadvantage of the Moravec corner detector is that we need e g DR A DA s

to compute four SSDs, one for each shifted version of the patch e e Ll T
(1 pixel right, down, down right, and down left). 221" 221"

Can we make it more efficient? Poa [ Pou [P P Pox [or [ [Bas

Can we do it without shifting the patch at all? ‘ N i : : 2

R T TR o e

2 2
Z(P u'P m,m) Z(P u'P 1»1,:-1)

36


https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html

The Harris Corner detector (1988)

It implements the Moravec corner detector without having to physically shift the window
but rather by just looking at the patch itself, by using differential calculus.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector”. Proceedings of the 4th Alvey Vision Conference. 1988. PDF.
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf

How do we implement this?

* Consider the reference patch centered at (x, y) and the shifted window centered at (x + Ax,y + Ay). The patch
has size (). The Sum of Squared Differences between them is:

I
()
SSD(Ax,Ay) = Y (ICx,y) = [(x + Ax,y + £y))? oty i)
xX,yE) .\0
« Let/ = 81(ax,y) and [, =@. Approximating with a 15t order Taylor expansion:
X V
I(x+ Ax,y +Ay) = [(x,y) + L(x,y)Ax + I, (x,y)Ay
SSD(Ax, Ay)

= SSD(Ax,Ay)~ Y (I.(x, y)Ax+1,(x,»)Ap)f

x,yed

* This is a quadratic function in two variables (Ax, Ay) (i.e., a paraboloid).

How can the shape of this paraboloid reveal whether the patch is a corner,
an edge or a constant region? 18



How do we implement this?

SSD(Ax, Ay) ~ Z(]x (x, »)Ax+1 (X, MAY)J

x,yeQ)
Notice that these are NOT

matrix products but
* This can be written in a matrix form as: pixel-wise products!

SSD(Ax,Ay) ~ Y [Ax Ay]{[x2 ]xlyMAx} _[Ax Ay][ 21 ZA?HM}

2
11, I,

x,yeQ xXTy

Z‘nd

moment matrix

39



What does this matrix reveal?

0
e Since M is symmetric, it can always be decomposed into M = Rl{/g ; }R
2

: : Ax : : :
* We can visualize [Ax Ay]M{AJJ =const as an ellipse with axes’ lengths determined by the

eigenvalues and the orientation determined by R (i.e., the eigenvectors of M)

* The two eigenvectors identify the directions of quickest and slowest changes of SSD

direction of quickest change

55D of SSD

direction of the slowest
change of SSD

40



Example

First, consider an edge and a flat region

-l & X e o]

{zﬁz Zaa]_{OO}

In presence of noise, we can conclude that if
one eigenvalue is much larger than the Edge
other then we have an edge. If they are
both small, then we have a flat region.

U =
S, 3] oo
, ] ) ] Flat region
Now, let’s consider an axis-aligned corner:
2 cosz —sinZ cosZ sinZ
[Zl fofy} 4 4 P 0} 4 4
2
211 Zly sinz cosz 0 4 -sinz cosZ
4 4 4

Corner

We can observe that the directions of quickest and slowest change of SSD are at 45 degrees with the x
and y axes

We can thus conclude that if both eigenvalues are much larger than 0 then we have a corner



Review: How to compute A4, A,, R from M Eigenvalue/eigenvector

* You can easily prove that A{, A, are the eigenvalues of M.

* The eigenvectors and eigenvalues of a square matrix A are the vectors x and scalars A that satisfy:

Ax = Ax
* The scalar A is the eigenvalue corresponding to x
* The eigenvalues are found by solving: det(A—Al) =0
my, — A m,
e Inourcase, A = M is a 2x2 matrix, so we have: det =0
My, My — A
o 1
* The solution is: Mo = > [(mn +m,,) & \/4m12m21 + (mqq — mzz)zl

. . . . my, — A m, X
* Once you know 2, you find the two eigenvectors x (i.e., the two columns of R) by solving:
21



Visualization of 2" moment matrices




Visualization of 2" moment matrices
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NB: here the ellipses here are plotted proportionally to the eigenvalues and not as iso-SSD
ellipses as explained before. So small ellipses here denote a flat region, and big ones, a corner.



Interpreting the eigenvalues

Classification of image points using eigenvalues of M

A corner can then be identified by checking whether the minimum of the two eigenvalues of M is larger
than a certain user-defined threshold

= R =min(A, ,) > threshold A,

R is called “cornerness function”

The corner detector using this criterion
is called «Shi-Tomasi» detector

J. Shiand C. Tomasi. "Good Features to Track,". 9th IEEE
Conference on Computer Vision and Pattern Recognition. 1994

A, and A, are small;
SSD 1s almost constant::>

in all directions

GGFlat,,
region



http://citeseer.ist.psu.edu/shi94good.html
http://www.inf.fu-berlin.de/lehre/SS06/SeminarComputerVision/origReport_von_Carlo_Tomasi.pdf
http://citeseer.ist.psu.edu/shi94good.html

Interpreting the eigenvalues

* Computation of A, and A, is expensive = Harris & Stephens suggested using a different cornerness
function:

R=AA, —k(4 + /12)2 =det(M)—k tracez(M)
7\‘2
k is a magic number in the range (0.04 to 0.15)

* The corner detector using this criterion is called
«Harris» detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector”,
Proceedings of the 4th Alvey Vision Conference, 1988.



http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf

Harris Detector: Workflow




Harris Detector: Workflow

* Compute corner response R




Harris Detector: Workflow

* Thresholding: Find points with large corner response: R > threshold




Harris Detector: Workflow

* Non-Maxima Suppression: detect local maxima of thresholded R




Harris Detector: Workflow

What parameters can we tune to detect more or fewer corners?




Harris (or Shi-Tomasi) Corner Detector Algorithm

Algorithm:
1. Compute derivatives in x and y directions (I, I,,) e.g. with Sobel filter
2. Compute Ixz, Iyz, L1,

3. Convolve %, Iyz, I,.1,, with a box filter to get ), LY 1%Y I, 1,,, which are the entries of the

matrix M (optionally use a Gaussian filter instead of a box filter to avoid aliasing and give more
“weight” to the central pixels)

4. Compute Corner Measure R according to Shi-Tomasi or Harris
Find points with large corner response (R > threshold)

6. Take the points of local maxima of R

From now on, whenever we talk about the Harris corner detector we will be referring to either the original
Harris detector (1988) or to its modification by Shi-Tomasi (1994).
The Shi-Tomasi detector, despite being a bit more expensive, yet has a small advantage... see next slide
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Harris vs. Shi-Tomasi

Harris’cornerness
response

Shi-Tomasi’s
COrnerness response

Image [




Harris Detector: Some Properties

Repeatability:

* How does the Harris detector behave with geometric and photometric
changes, i.e. can it re-detect the same corners when the image exhibits
changes in

* Rotation,

* Scale (zoom),
* View-point,

* |llumination ?



Harris Detector: Some Properties

e The Harris detector is rotation invariant

Image 1 Image 2

> A
&2 S

Ellipse rotates but its shape (i.e., eigenvalues of M) remains the same

Corner response R is invariant to image rotation




Harris Detector: Some Properties

e The Harris detector is not scale invariant

Image 1 Image 2

All points will be classified as edges Corner!



Harris Detector: Some Properties

* Repeatability of the Harris detector for different scale changes

100
90

8o \

Repeatability=
or Scaling the image by x2
# correspondences detected 60 = ~18% of correspondences get
matched

50

# correspondences present

40

30+

Repeatability rate %

20

10

()

0

Scale



Harris Detector: Some Properties

Is it invariant to:

e Affine illumination changes?

* Generally yes, why?
* Any monotonic, nonlinear illumination changes?

* Generally yes, why?

 Hint: remember that Harris corners are local maxima of the cornerness response function
* View point invariance?

* Does the same corner look like a corner from a different view point?

* |t depends on the view point change, why?
Hint: remember that Harris corners are local maxima of the cornerness response function
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Summary (things to remember)

Filters as templates
Correlation as a scalar product

Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform

Point feature detection
* Properties and invariance to transformations
* Challenges: rotation, scale, view-point, and illumination changes
* Extraction
* Moravec
* Harris and Shi-Tomasi
* Invariance to rotation, scale, illumination changes



Readings

n. 7.1 and Ch. 9.1 of Szeliski book, 2"d Edition
napter 4 of Autonomous Mobile Robots book: link

n. 13.3 of Peter Corke book


http://rpg.ifi.uzh.ch/docs/teaching/2023/Ch4_AMRobots.pdf

Understanding Check

Are you able to:

Explain what is template matching and how it is implemented?

Explain what are the limitations of template matching? Can you use it to recognize cars?

lllustrate the similarity measures: SSD, SAD, NCC, and Census transform?

What is the intuitive explanation behind SSD and NCC?

Explain what are good features to track? In particular, can you explain what are corners and blobs together with their pros and cons?
How is their localization accuracy?

Explain the Harris corner detector? In particular:

Use the Moravec definition of corner, edge and flat region.

Show how to get the second moment matrix from the definition of SSD and first order approximation (show that this is a
quadratic expression) and what is the intrinsic interpretation of the second moment matrix using a paraboloid and using an
ellipse?

What is the M matrix like for an edge, for a flat region, for an axis-aligned (90-degree) corner and for a non-axis aligned corner?
What do the eigenvalues of M reveal?

Can you compare Harris detection with Shi-Tomasi detection?

Can you explain whether the Harris detector is invariant to illumination or scale changes? Is it invariant to view point changes?
What is the repeatability of the Harris detector after rescaling by a factor of 2?
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