D . . £ __—7 ROBOTICS &
D =2~ PERCEPTION
Sl Universityo .~ GROUP

1 Zurich*™

Vision Algorithms for Mobile Robotics

Lecture 04
Image Filtering

Davide Scaramuzza / Leonard Bauersfeld
https://rpg.ifi.uzh.ch



https://rpg.ifi.uzh.ch/

Today’s Outline

* Low-pass filtering
e Linear filters
 Non-linear filters

* Edge Detection
* Canny edge detector



Image filtering

* The word filter comes from frequency-domain processing, where “filtering” refers to the process of accepting or
rejecting certain frequency components

* We distinguish between low-pass and high-pass filtering
* A low-pass filter smooths an image (retains low-frequency components)
* A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image/




Today’s Outline

e Linear filters
 Non-linear filters

[- Low-pass filtering ]

* Edge Detection
* Canny edge detector



Low-pass filtering applied to noise reduction

» Salt and pepper noise: random occurrences of black and
white pixels

* Impulse noise: random occurrences of white pixels

* Gaussian noise: variations in intensity drawn from a
Gaussian distribution

Salt and pepper noise and Impulse noise are caused by
e data transmission errors,

e failure in memory cell, or

e analog-to-digital converter errors.

Gaussian noise is caused by

* quantization error,

» pixel imperfections in the detection of photons (especially in
ow light),

 thermal noise

Impulse noise Gaussian noise



Example: Noise in a black picture

 Take a “black”
Image, e.g. cover
the camera

* Only noise is
recorded

e Fven modern
sensors have
noise

* Today’s lecture is
very relevant in
practice!




Additive Independent and Identically Distributed Gaussian noise

It is Independent and Identically Distributed (l.1.D.) noise drawn from a zero-
mean Gaussian distribution:

n(x,y)~N(0, o)

Ideal image  Noise
Ix,y) = TI'(xy) + nxy)

How can we reduce the noise to recover the “ideal image”?



Moving average

e Replaces each pixel with an average of all the values in its neighborhood

e Assumptions:
* Expect noise process to be i.i.d. Gausian
* Expect pixels to be like their neighbors



Moving average

e Replaces each pixel with an average of all the values in its neighborhood

e Moving average in 1D:




Weighted Moving Average

. iform weights: [1,1,1,1,1] /5




Weighted Moving Average

. -uniform weights: [1, 4, 6, 4, 1] / 16

--001464100---




This operation is called convolution

* Example of convolution between two signals
* One of the sequences is flipped (right to left) before sliding over the other
* Notation: axb
* Nice properties: linearity, associativity, commutativity, etc.

In ut signal a
1.5 L. g T

0'51 H“ TTm P —
,mnﬂllm HH HH W ;5
L

L L ! ! | L 1
-10 -5 0 5 10 15 20 25 30 35



This operation is called convolution

* Example of convolution between two signals
* One of the sequences is flipped (right to left) before sliding over the other
* Notation: axb
* Nice properties: linearity, associativity, commutativity, etc.

lnput si gnal a
T

“ Thm

10 15 20 25 30 35

Input signal b and reversed & shlfted signal a

L ]

Convolutlon a* b

A e

-10 -5 30 35




2D Filtering via 2D Convolution

* Flip the filter in both dimensions (top to bottom, right to left) (=180 deg turn)

* Then slide the filter over the image and compute sum of products

I'[x,y] = Zk: Zk: I[x —u,y —v]H|u,v] D H

u=—-k v=-—-~k

, 180 deg turn
I'=1+«H

* Convolution replaces each pixel with a weighted sum of its neighbors

* The filter H is also called “kernel” or “mask”

15



Review: Convolution vs. Cross-correlation

Convolution: I'=1xH

* Properties: linearity, associativity, commutativity

K k
I'[x,y] = z Z I[x —u,y — v]|H|[u, v]

u=-k v=—-~k

For a Gaussian or box filter, will the

lati = 7 output of convolution and correlation
Cross-correlation: =1Q be different?

Properties: linearity, but no associativity and no commutativity

k k

I'[x,y] = z z I[x +u,y +v]H|u,v]

u=—k v=—-k
16



“box filter”

Input image

Ix,y]

Box Filter

Filtered image

I'[x,y]

17



“box filter”

1/9

1 /9

1/9

1/9

1/9

1 /9

1/9

1 /9

1/9

Input image

Ix,y]

Box Filter

Filtered image

I'[x,y]

18



“box filter”

1/9

1 /9

1/9

1/9

1/9

1 /9

1/9

1 /9

1/9

Input image

Ix,y]

Box Filter

Filtered image

I'[x,y]

20

19



Box Filter

Input image Filtered image

Ix,y] I'[x,y]

“box filter”

0 10 | 20 § 30 ‘\

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9




Box Filter

Input image Filtered image

Ix,y] I'[x,y]

“box filter”

o | 10| 20 30

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9




“box filter”

1/9

1 /9

1/9

Input image

Ix,y]

Box Filter

Filtered image

I'[x,y]

1/9

1 /9

1 /9

1/9

1 /9

1 /9

22



original

Box Filter

Box filter:
white = max value, black = zero value

filtered

23



Gaussian Filter

What if we want center pixels to have higher influence on the output?

This kernel is the
approximation of a
Gaussian function:

121
1
— 2|42
16

121

24



Gaussian Filter

25



Comparison with Box Filter

This “web”-like effect is called aliasing
and is caused by the high frequency
components of the box filter

26



e Box filter:

 Gaussian filter:

e Sobel filter:

Separable Filters

] = Yo teoa
9_1 1 1 3_1_ 3

N F I Y B
16 1 2 1 4_1_ 4

—1 0 1 1

-2 0 2 = |[2]-]-1 0 1]
-1 0 1. 1.




Separable Filters

2

* A convolution with a 2D filter of w X w pixel size requires w* multiply-add operations

per pixel

» 2D convolution can be sped up if the filter is separable, i.e., can be written as the product
of two 1D filters (i.e., H = v - h'): first perform a 1D horizontal convolution with h
followed by a 1D vertical convolution with v:

I'=1«H=({U*h") xv

» Separable filters require only 2w multiply-add operations per pixel
» Box filters and Gaussian filters are separable



Point Spread Function

* Convolution of kernel f with Dirac Signal 6
returns the convolution kernel itself

* In image processing, think of Dirac function
as a very bright, small light source (a point)

I mm

* However, “filtering” also happens during
image formation.
» Recall lecture on image formation
* Narrow aperture blurs image

(.6mm 0.35 mm

* Point-Spread Function (PSF) describes how
a point is rendered, e.g. the kernel of
physical image formation process 015 mm 007 mm

29




Point Spread Function

Can we express the blurring related to small
apertures as a convolution?

2 mm I mm

Yes! The blur is described by a convolution
with the Bessel-Function

0.4

0).6mm 0.35 mm

0.6

0.8

1.0 0.15S mm 0.07 mm
30




Gaussian Filter

What parameters matter?
e Size of the kernel

* NB: a Gaussian function has infinite support, but discrete filters use finite kernels

o =5 pixels o =5 pixels
with 10 X 10 pixel kernel with 30 X 30 pixel kernel

Which one approximates better the ideal Gaussian filter, the left or the right one?

31



Gaussian Filter

What parameters matter?
e Variance of Gaussian: controls the amount of smoothing

* Recall: standard deviation = o [pixels], variance = o? [pixels?]

o = 2 pixels o =5 pixels
with 30 X 30 pixel kernel with 30 X 30 pixel kernel

32



Gaussian Filter

o is called “scale” of the Gaussian kernel, and controls the amount of smoothing.

H )
10
20
30

0 10 20 30 0 10 20 30 0 10 20 30

33



>>
>>
>>

>>

>>

>>

>>
>>

Sample Matlab code

hsize = 20;
sigma = 5;
h = fspecial ('gaussian',
mesh (h) ;
. | i
imagesc (h) ;

QO
im = imread('panda.jpg');
outim = imfilter (im, h);
imshow (outim) ;

hsize,

sigma) ;

outim

34



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:

35



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)

36



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)
* wrap around

37



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)
* wrap around
e copy edge

38



Boundary issues

 What about near the image edges?

* the filter window falls off the edges of the image
* need to pad the image borders
* methods:

e zero padding (black)

* wrap around

e copy edge

* reflect across edge

39



Summary on (linear) smoothing filters

* Smoothing filter
* removes “high-frequency” components; “low-pass” filter
* has positive values (also called coefficients)
* sums to 1 — preserve brightness of constant regions



* Low-pass filtering
* Linear filters

[

* Non-linear filters ]

* Edge Detection
* Canny edge detector

Today’s Outline

41



Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

42



e |tis a non-linear filter

e Removes spikes:
good for “impulse noise”
and “salt & pepper noise”

Median Filter

Input patch

Median value

\

10 15 20 23 |27

Output patch

10|15/20
2390| #*=p Element to be
33(31/30 replaced

1 Sort

30 31 33 90

10(15|20
23 g Replace element
33(31|30




Median Filter

e |tis a non-linear filter

Median
' filtered

Salt and
pepper noise

e Removes spikes:
good for “impulse noise”
and “salt & pepper noise”

o0 AN T
" il -
T“W_! 1 O

o
30 o S i o ) 0 0 0 =) 00

Plots of one row of the image
44



o

Median Filter

It is a non-linear filter

Removes spikes:
good for “impulse noise”
and “salt & pepper noise”

Differently from linear filters,
it preserves strong edges.

But

* it’s less effective than Gaussian filters with
Gaussian noise,

¢ fine textures or small details can be lost or
distorted by the median filter.

INPUT

L B O B

MEDIAN

MEAN

45



Gaussian vs. Median Filter

* Gaussian filters do not preserve strong egdes (discontinuites). This is because they apply the same kernel
everywhere.

* Median filters do preserve strong edges but don’t smooth as good as Gaussian filters with Gaussian noise
and remove small details.

Image patch Kernel

o -l
I*n\
.

Gaussian filter

46



Bilateral Filter

 Bilateral filters solve this by adapting the kernel locally to the intensity profile, so they are patch-content
dependent

* Bilateral filters only smooth pixels with brightness similar to the center pixel and ignore influence of pixels
with different brightness across the discontinuity

Image patch Kernel

o <
I*n\
A < K

Bilateral filter 47




1
Wplx, y]

smoothed image

Bilateral Filter

1D Gaussian range spatial
K K component component
Z Z Ix —u,y —v]Gs (I[x —u,y —v] — I[x,y])Gg, [w, V]
u=—kv=-k
1
Wplx, vl
normalization input image adaptive filter
factor

k

k
Woboyl = Y > Gy Ulx —wy = v] = I[%,YDGy, [, v]

u=—-kv=-=k

Normalization factor

(so that the filter values sum to 1)
48



input

larger neighborhoods
are smoothed

Bilateral Filter

Stronger edges are
are smoothed

0=
(Gaussian blur)

49



* Low-pass filtering
e Linear filters
 Non-linear filters

[- Edge Detection ]
* Canny edge detector

Today’s Outline

50



Edge Detection

e Goal: to find the boundaries (edges) of objects within images




Edge Detection

* Edges look like steep cliffs in the I(x,y) function

A

Original image I(x, y) Image plotted as I(x, y) function

52



Derivatives and Edges

* An edge is a place of fast change in the image intensity function

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to
local extrema of derivative



Differentiation and Convolution

* For a continuous function I(x, y) the partial derivative along x is:

A(x,y) .. Ilx+ey)—I(xy)
= lim
0x £-0 €

* For a discrete function, we can use adjacent or central finite differences:

Al(x,y) I(x+1,y)—I1(x,y) Al(x,y) Ix+1Ly)—I(x—1,y)
~ or ~
0x 1 ox 2

What would be the respective filters along x and y to implement the partial derivatives as a
convolution?

54



Partial Derivatives using Adjacent Differences

4 )
NB: Derivative filters must always

sum to 0 to get no response in
constant brightness regions

y,
al(x,y) Al (x,y)
d0x dy
-1
1)1 1

55



Partial Derivatives using Central Differences

-1 0 1 -1 -1 -1
Prewitt filter Gx=[—1 0 1] , Gy=[0 0 0]
-1 0 1 1 1 1
-1 0 1 -1 -2 -1
Sobel filter Gx=[—z 0 2] , Gyz[o 0 0]
-1 0 1 1 2 1

Sample Matlab code

>> im = imread('lion.jpg'):;
>> h = fspecial ('sobel');
>> outim = imfilter (double (im), h);

>> 1magesc (outim) ;
>> colormap gray;



Image Gradient

The image gradient: VI = [al ol

The gradient points in the direction of steepest ascent:

= [2,0] T VIW v=[5

Vi= [o,g—;

dl a1

The gradient direction (perpendicular to the edge) is given by: 9 = atan? <a >
y 0X

ar\* (ol
The edge strength is given by the gradient magnitude VI = \/(a> + (@)

dl 0l

)

ax’ﬁ

57



Effects of Noise

e Consider a single row or column of the image

1(x)

.....................................................

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000

dl(x)
0x

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?



Solution: smooth first

Sigma = 50

Kernel

Convolution

Differentiation

Signal

200 400 600 800 1000 1200 1400 1600 1800 2000
"""" i I | I 1 I I T‘_ [
200 400 600 800 1000 1200 1400 1600 1800 2000
. . D
Location of edges: look for peaksin — (I * H)



Alternative: combine derivative and smoothing filter

* Differentiation property of convolution: ai (IxH)=1x% Z—H
X X

Sigma = 50
T

.................................................

I ™
E .................................................................................................
=
0y
, , , , ] .......... ; .......... ; .......... r_._._] ........ _
1] 200 400 600 800 1000 1200 1400 1600 1800 2000
oH g,/ % |
—_ @
¥
0x
| | | | | | | | |
1] 200 400 600 800 1000 1200 1400 1600 1800 2000
I ]
S
oH = : |
] : :
* —— £ : ;
dx 8 ; ;
Op-—-— | I I 1 I . ]

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000



Derivative of Gaussian filter G along x

(I«G)*xH=1x*(G=*H)

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219 *
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030




Derivative of Gaussian Filters

i

x-direction y-direction

62



1(x)

0%H
dx2

0°H
dx2

Laplacian of Gaussian

0% 0%
ey =1+ 50
dx 0x
i | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
! ! ! ! ! ! ! ! !
Laplacian‘of Gaussian @ |
. ope ratO_r
i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
! ) ) I .
5 : 5 :
| : : :
e :
o : : :
O ; ; :
I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Location of edges: look for Zero-crossings of I *

2

0x?2



Laplacian of Gaussian (LoG)

* The Laplacian of Gaussian is a circularly symmetric filter defined as:

V26, =

_I_

V2 is the Laplacian operator: V? =

 Two commonly used approximations of LoG filter:

0
1
0

902G, 092G,

0x*  0dy?

1 0
-4 1
1 0.

0x2

A

A

A

1 1]
-8 1

1 1

64



Example: Convolving an Image with V4G,

65



Example: Convolving an Image with V4G,

66



Example: Convolving an Image with V4G,

sigma = 3.1296

67



Example: Convolving an Image with V4G,

sigma = 4.8972

68



Summary on Linear Filters

* Smoothing filter
* removes “high-frequency” components; “low-pass” filter
* has positive values (also called coefficients)
* sums to 1 — preserve brightness of constant regions

e Derivative filter:
* highlights “high-frequency” components: “high-pass” filter
* has opposite signs used to get high response in regions of high contrast
* sums to 0 — no response in constant regions



* Low-pass filtering
e Linear filters
 Non-linear filters

* Edge Detection
[ e Canny edge detector ]

Today’s Outline

70



The Canny Edge-Detection Algorithm (1986)

Despite invented in 1986, the Canny edge detector is still the
most popular edge detection algorithm today

This image is called Lenna image and was a standard
benchmark in edge detection and image processing: -
https://en.wikipedia.org/wiki/Lenna

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 71


https://ieeexplore.ieee.org/document/4767851
https://en.wikipedia.org/wiki/Lenna

The Canny Edge-Detection Algorithm (1986)

1. Take a grayscale image. If RGB, convert it into a grayscale
I(x,y) by replacing each pixel by the average value of its
R, G, B components.

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 72


https://ieeexplore.ieee.org/document/4767851

The Canny Edge-Detection Algorithm (1986)

2. Convolve the image I with x and y derivatives of Gaussian
filter and compute the edge strength ||V I||

G, al G,
—_— —_— ) —
ox ax ax
dG, al dG,
_— —_— = ] *

dy - dy dy

Edge strength: ||VI|| = \/(g—i)z + (2—;)2 —

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 73


https://ieeexplore.ieee.org/document/4767851

The Canny Edge-Detection Algorithm (1986)

3. Thresholding: set to 0 all pixels of ||V I|| whose value is
below a given threshold

Thresholded ||V I|| —

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


https://ieeexplore.ieee.org/document/4767851

The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the
direction of the gradient

Thresholded ||V I|| —

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


https://ieeexplore.ieee.org/document/4767851

The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the
direction of the gradient

Edge image: each pixel that is a local maximum of the edge
strength in the direction of gradient is set to 1

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


https://ieeexplore.ieee.org/document/4767851

The Canny Edge-Detection Algorithm (1986)

What parameters can we tune to remove high frequency details?




Today: Deep Learning-based Edge Detection

Supervised learning from human annotations

HED!l: CNN-based Detector in 2015 EDTER2: State-of-the-art approach
* >30% better performance * Fine edges detection using Transformer model
* less computation than Canny * Integration with global information

,,‘?“;A{‘ e ’(‘&) B (> / \p @ \/‘I \)
lfgh‘{’? €3 m{@ | k5 = ij S}"\\ # Ao
N AN | 5] G ~ o7 ()
o B U 20l
RSN a5 B AU (L o B PU AL -
ok Sl S IS

(g) Canny: 0 = 2 (h) Canny: 0 = 4 (i) Canny: 0 =8

[1] Xie et al., Holistically-Nested Edge Detection, International Conference on Computer Vision (ICCV), 2015. PDF.

[2] Pu et al., EDTER: Edge Detection with Transformer, Conference on Computer Vision and Pattern Recognition (CVPR), 2022. PDF. g


https://arxiv.org/pdf/1504.06375.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Pu_EDTER_Edge_Detection_With_Transformer_CVPR_2022_paper.pdf

Summary (things to remember)

Image filtering (definition, motivation, applications)

Moving average

Linear filters and formulation: box filter, Gaussian filter
Boundary issues

Non-linear filters

Median & bilateral filters

Edge detection

Derivating filters (Prewitt, Sobel)

Combined derivative and smoothing filters (deriv. of Gaussian)
Laplacian of Gaussian

Canny edge detector



Readings

e Ch. 3.2, 3.3, 7.2.1 of Szeliski book, 2" Edition



Understanding Check

Are you able to:

* Explain the differences between convolution and cross-correlation?

Explain the differences between a box filter and a Gaussian filter?

* Explain why one should increase the size of the kernel of a Gaussian filter if 20 is close to the size of the kernel?
* Explain when we would need a median & bilateral filter?

* Explain how to handle boundary issues?

* Explain the working principle of edge detection with a 1D signal?

* Explain how noise does affect this procedure?

* Explain the differential property of convolution?

* Show how to compute the first derivative of an image intensity function along x and y?
* Explain why the Laplacian of Gaussian operator is useful?

* List the properties of smoothing and derivative filters?

* lllustrate the Canny edge detection algorithm?

* Explain what non-maxima suppression is and how it is implemented?



	Slide 1: Vision Algorithms for Mobile Robotics  Lecture 04  Image Filtering
	Slide 3: Today’s Outline
	Slide 4: Image filtering
	Slide 5: Today’s Outline
	Slide 6: Low-pass filtering applied to noise reduction
	Slide 7: Example: Noise in a black picture
	Slide 8: Additive Independent and Identically Distributed Gaussian noise
	Slide 9: Moving average
	Slide 10: Moving average
	Slide 11: Weighted Moving Average
	Slide 12: Weighted Moving Average
	Slide 13: This operation is called convolution
	Slide 14: This operation is called convolution
	Slide 15: 2D Filtering via 2D Convolution
	Slide 16: Review: Convolution vs. Cross-correlation
	Slide 17: Box Filter
	Slide 18: Box Filter
	Slide 19: Box Filter
	Slide 20: Box Filter
	Slide 21: Box Filter
	Slide 22: Box Filter
	Slide 23: Box Filter
	Slide 24: Gaussian Filter
	Slide 25: Gaussian Filter
	Slide 26: Comparison with Box Filter
	Slide 27: Separable Filters
	Slide 28: Separable Filters
	Slide 29: Point Spread Function
	Slide 30: Point Spread Function
	Slide 31: Gaussian Filter
	Slide 32: Gaussian Filter
	Slide 33: Gaussian Filter
	Slide 34: Sample Matlab code
	Slide 35: Boundary issues
	Slide 36: Boundary issues
	Slide 37: Boundary issues
	Slide 38: Boundary issues
	Slide 39: Boundary issues
	Slide 40: Summary on (linear) smoothing filters
	Slide 41: Today’s Outline
	Slide 42: Effect of smoothing filters
	Slide 43: Median Filter
	Slide 44: Median Filter
	Slide 45: Median Filter
	Slide 46: Gaussian vs. Median Filter
	Slide 47: Bilateral Filter
	Slide 48: Bilateral Filter
	Slide 49: Bilateral Filter
	Slide 50: Today’s Outline
	Slide 51: Edge Detection
	Slide 52: Edge Detection
	Slide 53: Derivatives and Edges
	Slide 54: Differentiation and Convolution
	Slide 55: Partial Derivatives using Adjacent Differences
	Slide 56: Partial Derivatives using Central Differences
	Slide 57: Image Gradient
	Slide 58: Effects of Noise
	Slide 59: Solution: smooth first
	Slide 60: Alternative: combine derivative and smoothing filter
	Slide 61: Derivative of Gaussian filter cap G along 𝑥
	Slide 62: Derivative of Gaussian Filters
	Slide 63: Laplacian of Gaussian
	Slide 64: Laplacian of Gaussian (LoG)
	Slide 65: Example: Convolving an Image with dell squared , cap G sub sigma 
	Slide 66: Example: Convolving an Image with dell squared , cap G sub sigma 
	Slide 67: Example: Convolving an Image with dell squared , cap G sub sigma 
	Slide 68: Example: Convolving an Image with dell squared , cap G sub sigma 
	Slide 69: Summary on Linear Filters
	Slide 70: Today’s Outline
	Slide 71: The Canny Edge-Detection Algorithm (1986)
	Slide 72: The Canny Edge-Detection Algorithm (1986)
	Slide 73: The Canny Edge-Detection Algorithm (1986)
	Slide 74: The Canny Edge-Detection Algorithm (1986)
	Slide 75: The Canny Edge-Detection Algorithm (1986)
	Slide 76: The Canny Edge-Detection Algorithm (1986)
	Slide 77: The Canny Edge-Detection Algorithm (1986)
	Slide 78: Today: Deep Learning-based Edge Detection
	Slide 79: Summary (things to remember)
	Slide 80: Readings
	Slide 81: Understanding Check

