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Today’s Outline

• Low-pass filtering
• Linear filters

• Non-linear filters

• Edge Detection
• Canny edge detector
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Image filtering

• The word filter comes from frequency-domain processing, where “filtering” refers to the process of accepting or 
rejecting certain frequency components

• We distinguish between low-pass and high-pass filtering

• A low-pass filter smooths an image (retains low-frequency components)

• A high-pass filter retains the contours (also called edges) of an image (high frequency)
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• Low-pass filtering
• Linear filters
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• Canny edge detector
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Low-pass filtering applied to noise reduction

• Salt and pepper noise: random occurrences of black and 
white pixels

• Impulse noise: random occurrences of white pixels

• Gaussian noise: variations in intensity drawn from a 
Gaussian distribution

Salt and pepper noise and Impulse noise are caused by 
• data transmission errors, 
• failure in memory cell, or 
• analog-to-digital converter errors.

Gaussian noise is caused by 
• quantization error, 
• pixel imperfections in the detection of photons (especially in 

low light), 
• thermal noise
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Example: Noise in a black picture

• Take a “black” 
image, e.g. cover 
the camera

• Only noise is 
recorded

• Even modern 
sensors have 
noise

• Today’s lecture is 
very relevant in 
practice!
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Additive Independent and Identically Distributed Gaussian noise

It is Independent and Identically Distributed (I.I.D.) noise drawn from a zero-
mean Gaussian distribution:
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How can we reduce the noise to recover the “ideal image”?

𝐼 𝑥, 𝑦  =  𝐼′ 𝑥, 𝑦  +  𝜂(𝑥, 𝑦)

Ideal image Noise

𝜂(𝑥, 𝑦)~Ɲ(0, 𝜎)



Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Assumptions: 

• Expect noise process to be i.i.d. Gausian

• Expect pixels to be like their neighbors

9



Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Moving average in 1D:
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Weighted Moving Average

• Can add weights to our moving average

• Uniform weights: [1, 1, 1, 1, 1]  / 5 
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Weighted Moving Average

• Non-uniform weights: [1, 4, 6, 4, 1] / 16
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This operation is called convolution

• Example of convolution between two signals

• One of the sequences is flipped (right to left) before sliding over the other

• Notation:  𝑎∗𝑏

• Nice properties: linearity, associativity, commutativity, etc.
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2D Filtering via 2D Convolution

• Flip the filter in both dimensions (top to bottom, right to left) (=180 deg turn)

• Then slide the filter over the image and compute sum of products

• Convolution replaces each pixel with a weighted sum of its neighbors

• The filter 𝑯 is also called “kernel” or “mask”
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𝐼′ 𝑥, 𝑦 = ෍

𝑢=−𝑘 

𝑘

෍

𝑣=−𝑘 

𝑘

𝐼[𝑥 − 𝑢, 𝑦 − 𝑣]𝐻 𝑢, 𝑣

𝐼′ = 𝐼 ∗ 𝐻
I

H

180 deg turn



Review: Convolution vs. Cross-correlation

Convolution:    𝐼′ = 𝐼 ∗ 𝐻

• Properties: linearity, associativity, commutativity

Cross-correlation:    𝐼′ = 𝐼 ⊗ 𝐻
Properties: linearity, but no associativity and no commutativity
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For a Gaussian or box filter, will the 
output of convolution and correlation 

be different?

𝐼′ 𝑥, 𝑦 = ෍

𝑢=−𝑘 

𝑘

෍

𝑣=−𝑘 

𝑘

𝐼[𝑥 − 𝑢, 𝑦 − 𝑣]𝐻 𝑢, 𝑣

𝐼′ 𝑥, 𝑦 = ෍

𝑢=−𝑘 

𝑘

෍

𝑣=−𝑘 

𝑘

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣]𝐻 𝑢, 𝑣
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Box Filter
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Box Filter
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Box Filter
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Box filter: 
white = max value, black = zero value

original filtered



Gaussian Filter

What if we want center pixels to have higher influence on the output?
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𝐻 𝑢, 𝑣
1

2𝜋𝜎2
𝑒

−
𝑢2+𝑣2

2𝜎2



Gaussian Filter
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Comparison with Box Filter
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This “web”-like effect is called aliasing
and is caused by the high frequency 

components of the box filter



Separable Filters

• Box filter:

• Gaussian filter:

• Sobel filter: 
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Separable Filters

• A convolution with a 2D filter of 𝑤 × 𝑤 pixel size requires 𝑤𝟐 multiply-add operations 
per pixel

• 2D convolution can be sped up if the filter is separable, i.e., can be written as the product 
of two 1D filters (i.e., 𝐻 = 𝑣 ∙ ℎT): first perform a 1D horizontal convolution with ℎ 
followed by a 1D vertical convolution with 𝑣:

𝐼′ = 𝐼 ∗ 𝐻 = (𝐼 ∗ ℎT) ∗ 𝑣

• Separable filters require only 𝟐𝒘 multiply-add operations per pixel

• Box filters and Gaussian filters are separable
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Point Spread Function

• Convolution of kernel 𝑓 with Dirac Signal 𝛿 
returns the convolution kernel itself

𝛿 ∗ 𝑓 = 𝑓

• In image processing, think of Dirac function 
as a very bright, small light source (a point)

• However, “filtering” also happens during 
image formation.
• Recall lecture on image formation

• Narrow aperture blurs image

• Point-Spread Function (PSF) describes how 
a point is rendered, e.g. the kernel of 
physical image formation process
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Point Spread Function

Can we express the blurring related to small 
apertures as a convolution?

Yes! The blur is described by a convolution 
with the Bessel-Function
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Gaussian Filter

What parameters matter?

• Size of the kernel

• NB: a Gaussian function has infinite support, but discrete filters use finite kernels

31Which one approximates better the ideal Gaussian filter, the left or the right one?

σ = 5 pixels
with 30 × 30 pixel kernel

σ = 5 pixels
with 10 × 10 pixel kernel



Gaussian Filter

What parameters matter?

• Variance of Gaussian: controls the amount of smoothing

• Recall: standard deviation =  [pixels],   variance = 2 [pixels2]
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σ = 2 pixels
with 30 × 30 pixel kernel

σ = 5 pixels
with 30 × 30 pixel kernel



Gaussian Filter

𝜎 is called “scale” of the Gaussian kernel, and controls the amount of smoothing.
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…



Sample Matlab code

>> hsize = 20;

>> sigma = 5;

>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread('panda.jpg');

>> outim = imfilter(im, h);

>> imshow(outim);
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outimim



Boundary issues

• What about near the image edges?

• the filter window falls off the edges of the image

• need to pad the image borders

• methods:
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Boundary issues

• What about near the image edges?

• the filter window falls off the edges of the image

• need to pad the image borders

• methods:

• zero padding (black)
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Boundary issues

• What about near the image edges?

• the filter window falls off the edges of the image

• need to pad the image borders

• methods:

• zero padding (black)

• wrap around

• copy edge

38



Boundary issues

• What about near the image edges?

• the filter window falls off the edges of the image

• need to pad the image borders

• methods:

• zero padding (black)

• wrap around

• copy edge

• reflect across edge
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Summary on (linear) smoothing filters

• Smoothing filter
• removes “high-frequency” components; “low-pass” filter

• has positive values (also called coefficients)

• sums to 1 → preserve brightness of constant regions
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Today’s Outline

• Low-pass filtering
• Linear filters

• Non-linear filters

• Edge Detection
• Canny edge detector
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Effect of smoothing filters

42

Linear smoothing filters do not alleviate salt and pepper noise!



Median Filter

• It is a non-linear filter

• Removes spikes: 
good for “impulse noise” 
and “salt & pepper noise”
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Input patch

Output patch

Median value

10   15   20   23   27   30   31   33   90

Sort

303133
279023
201510

303133
272723
201510

Element to be 
replaced

Replace element



Salt and 
pepper noise

Median 
filtered

Plots of one row of the image

Median Filter
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• It is a non-linear filter

• Removes spikes: 
good for “impulse noise” 
and “salt & pepper noise”



Median Filter
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• It is a non-linear filter

• Removes spikes: 
good for “impulse noise” 
and “salt & pepper noise”

• Differently from linear filters, 
it preserves strong edges.

• But 

• it’s less effective than Gaussian filters with 
Gaussian noise, 

• fine textures or small details can be lost or 
distorted by the median filter.



Gaussian vs. Median Filter

• Gaussian filters do not preserve strong egdes (discontinuites). This is because they apply the same kernel 
everywhere.

• Median filters do preserve strong edges but don’t smooth as good as Gaussian filters with Gaussian noise
and remove small details.
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Image patch Kernel

Gaussian filter



Bilateral Filter

• Bilateral filters solve this by adapting the kernel locally to the intensity profile, so they are patch-content 
dependent

• Bilateral filters only smooth pixels with brightness similar to the center pixel and ignore influence of pixels 
with different brightness across the discontinuity
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Image patch Kernel

Bilateral filter



Bilateral Filter
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spatial 
component

1D Gaussian range 
component

×

=
1

𝑊𝑝[𝑥, 𝑦]
.

𝑊𝑝[𝑥, 𝑦] = ෍

𝑢=−𝑘

𝑘

෍

𝑣=−𝑘

𝑘

𝐺𝜎𝑟
𝐼 𝑥 − 𝑢, 𝑦 − 𝑣 − 𝐼 𝑥, 𝑦 𝐺𝜎𝑠

𝑢, 𝑣

𝐼′ 𝑥, 𝑦 =
1

𝑊𝑝[𝑥, 𝑦]
෍

𝑢=−𝑘

𝑘

෍

𝑣=−𝑘

𝑘

𝐼[𝑥 − 𝑢, 𝑦 − 𝑣]𝐺𝜎𝑟
𝐼 𝑥 − 𝑢, 𝑦 − 𝑣 − 𝐼 𝑥, 𝑦 𝐺𝜎𝑠

𝑢, 𝑣

input image 
smoothed image

normalization
factor

adaptive filter

Normalization factor
(so that the filter values sum to 1)

(𝑥, 𝑦)



Bilateral Filter
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larger neighborhoods 
are smoothed

Stronger edges are 
are smoothed



Today’s Outline

• Low-pass filtering
• Linear filters

• Non-linear filters

• Edge Detection
• Canny edge detector
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Edge Detection

• Goal: to find the boundaries (edges) of objects within images
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Edge Detection

• Edges look like steep cliffs in the 𝐼(𝑥,𝑦) function

52Original image 𝐼(𝑥, 𝑦) Image plotted as 𝐼(𝑥, 𝑦) function



Derivatives and Edges

• An edge is a place of fast change in the image intensity function

53

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
local extrema of derivative



Differentiation and Convolution

• For a continuous function 𝐼(𝑥, 𝑦) the partial derivative along 𝑥 is:

• For a discrete function, we can use adjacent or central finite differences:

54

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
= lim

𝜀→0

𝐼(𝑥 + 𝜀, 𝑦) − 𝐼(𝑥, 𝑦)

𝜀

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
≈

𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦)

1

What would be the respective filters along 𝑥 and 𝑦 to implement the partial derivatives as a 
convolution?

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
≈

𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)

2
or 



Partial Derivatives using Adjacent Differences
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-1     
1-1    1

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦

𝑥

𝑦

NB: Derivative filters must always 
sum to 0 to get no response in 

constant brightness regions



Partial Derivatives using Central Differences

Sample Matlab code

>> im = imread('lion.jpg');

>> h = fspecial('sobel');

>> outim = imfilter(double(im), h); 

>> imagesc(outim);

>> colormap gray;
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𝐺𝑥 =
−1 0 1
−1 0 1
−1 0 1

      ,       𝐺𝑦 =
−1 −1 −1
0 0 0
1 1 1

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

      ,       𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

Prewitt filter

Sobel filter



Image Gradient

• The image gradient:

• The gradient points in the direction of steepest ascent:

• The gradient direction (perpendicular to the edge) is given by:

• The edge strength is given by the gradient magnitude
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∇I =
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦

∇I=
𝜕𝐼

𝜕𝑥
, 0

∇I= 0,
𝜕𝐼

𝜕𝑦

∇I =
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦

𝜃 = 𝑎𝑡𝑎𝑛2
𝜕𝐼

𝜕𝑦
,

𝜕𝐼

𝜕𝑥

∇𝐼 =
𝜕𝐼

𝜕𝑥

2

+
𝜕𝐼

𝜕𝑦

2



Effects of Noise

• Consider a single row or column of the image
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Where is the edge?

𝜕𝐼(𝑥)

𝜕𝑥

𝐼 𝑥



Solution: smooth first
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Location of edges: look for peaks in   

𝜕

𝜕𝑥
𝐼 ∗ 𝐻

𝜕

𝜕𝑥
𝐼 ∗ 𝐻

𝐼

𝐻

𝐼 ∗ 𝐻



Alternative: combine derivative and smoothing filter

• Differentiation property of convolution:
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𝜕

𝜕𝑥
𝐼 ∗ 𝐻 = 𝐼 ∗

𝜕𝐻

𝜕𝑥

𝐼

𝜕𝐻

𝜕𝑥

𝐼 ∗
𝜕𝐻

𝜕𝑥



Derivative of Gaussian filter 𝐺 along 𝑥
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 11* − 
0.0030    0.0133    0.0219    0.0133    0.0030

    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0219    0.0983    0.1621    0.0983    0.0219
    0.0133    0.0596    0.0983    0.0596    0.0133
    0.0030    0.0133    0.0219    0.0133    0.0030

𝐼 ∗ 𝐺 ∗ 𝐻 = 𝐼 ∗ (𝐺 ∗ 𝐻)



Derivative of Gaussian Filters
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𝑥-direction 𝑦-direction



Laplacian of Gaussian
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𝜕2

𝜕𝑥2 𝐼 ∗ 𝐻 = 𝐼 ∗
𝜕2𝐻

𝜕𝑥2

Laplacian of Gaussian
operator

Location of  edges: look for Zero-crossings of 𝐼 ∗
𝜕2𝐻

𝜕𝑥2

𝐼 𝑥

𝜕2𝐻

𝜕𝑥2

𝐼 ∗
𝜕2𝐻

𝜕𝑥2



Laplacian of Gaussian (LoG)

• The Laplacian of Gaussian is a circularly symmetric filter defined as:

• Two commonly used approximations of LoG filter:
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∇2𝐺𝜎 =
𝜕2𝐺𝜎

𝜕𝑥2
+

𝜕2𝐺𝜎

𝜕𝑦2

∇2 is the Laplacian operator: ∇2 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2

0 1 0
1 −4 1
0 1 0

1 1 1
1 −8 1
1 1 1



Example: Convolving an Image with ∇2𝐺𝜎
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Example: Convolving an Image with ∇2𝐺𝜎
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Example: Convolving an Image with ∇2𝐺𝜎
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Example: Convolving an Image with ∇2𝐺𝜎
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Summary on Linear Filters

• Smoothing filter
• removes “high-frequency” components; “low-pass” filter

• has positive values (also called coefficients)

• sums to 1 → preserve brightness of constant regions

• Derivative filter:
• highlights “high-frequency” components: “high-pass” filter 

• has opposite signs used to get high response in regions of high contrast

• sums to 0 → no response in constant regions
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Today’s Outline

• Low-pass filtering
• Linear filters

• Non-linear filters

• Edge Detection
• Canny edge detector
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The Canny Edge-Detection Algorithm (1986)

Despite invented in 1986, the Canny edge detector is still the 
most popular edge detection algorithm today

71

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

This image is called Lenna image and was a standard 
benchmark in edge detection and image processing: 
https://en.wikipedia.org/wiki/Lenna 

https://ieeexplore.ieee.org/document/4767851
https://en.wikipedia.org/wiki/Lenna


The Canny Edge-Detection Algorithm (1986)

1. Take a grayscale image. If RGB, convert it into a grayscale 
𝐼(𝑥, 𝑦) by replacing each pixel by the average value of its 
R, G, B components.
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Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

https://ieeexplore.ieee.org/document/4767851


The Canny Edge-Detection Algorithm (1986)

2. Convolve the image 𝐼 with 𝑥 and 𝑦 derivatives of Gaussian 
filter and compute the edge strength ‖𝛻 𝐼‖
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Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

𝜕𝐺𝜎

𝜕𝑥

𝜕𝐺𝜎

𝜕𝑦

𝜕𝐼

𝜕𝑥
= 𝐼 ∗

𝜕𝐺𝜎

𝜕𝑥

𝜕𝐼

𝜕𝑦
= 𝐼 ∗

𝜕𝐺𝜎

𝜕𝑦

Edge strength: ∇𝐼 =
𝜕𝐼

𝜕𝑥

2
+

𝜕𝐼

𝜕𝑦

2
  →

https://ieeexplore.ieee.org/document/4767851


The Canny Edge-Detection Algorithm (1986)

3. Thresholding: set to 0 all pixels of ‖𝛻 𝐼‖ whose value is 
below a given threshold
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Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

Thresholded ‖𝛻 𝐼‖   →

https://ieeexplore.ieee.org/document/4767851


The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the  
direction of the gradient
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Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

Thresholded ‖𝛻 𝐼‖   →

https://ieeexplore.ieee.org/document/4767851


The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the  
direction of the gradient
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Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
(T-PAMI), 1986. PDF.

Edge image: each pixel that is a local maximum of the edge 
strength in the direction of gradient is set to 1

https://ieeexplore.ieee.org/document/4767851


The Canny Edge-Detection Algorithm (1986)

What parameters can we tune to remove high frequency details?
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Today: Deep Learning-based Edge Detection
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HED[1]: CNN-based Detector in 2015

• >30% better performance 

• less computation than Canny

EDTER[2]: State-of-the-art approach

• Fine edges detection using Transformer model

• Integration with global information

[1] Xie et al., Holistically-Nested Edge Detection, International Conference on Computer Vision (ICCV), 2015. PDF.
[2] Pu et al., EDTER: Edge Detection with Transformer, Conference on Computer Vision and Pattern Recognition (CVPR), 2022. PDF.

Supervised learning from human annotations

https://arxiv.org/pdf/1504.06375.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Pu_EDTER_Edge_Detection_With_Transformer_CVPR_2022_paper.pdf


Summary (things to remember)

• Image filtering (definition, motivation, applications)

• Moving average

• Linear filters  and formulation: box filter, Gaussian filter

• Boundary issues

• Non-linear filters

• Median & bilateral filters

• Edge detection

• Derivating filters (Prewitt, Sobel)

• Combined derivative and smoothing filters (deriv. of Gaussian)

• Laplacian of Gaussian

• Canny edge detector
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Readings

• Ch. 3.2, 3.3, 7.2.1 of Szeliski book, 2nd Edition
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Understanding Check

Are you able to:

• Explain the differences between convolution and cross-correlation?

• Explain the differences between a box filter and a Gaussian filter?

• Explain why one should increase the size of the kernel of a Gaussian filter if  2𝜎 is close to the size of the kernel?

• Explain when we would need a median & bilateral filter?

• Explain how to handle boundary issues?

• Explain the working principle of edge detection with a 1D signal?

• Explain how noise does affect this procedure?

• Explain the differential property of convolution?

• Show how to compute the first derivative of an image intensity function along 𝑥 and 𝑦?

• Explain why the Laplacian of Gaussian operator is useful?

• List the properties of smoothing and derivative filters?

• Illustrate the Canny edge detection algorithm?

• Explain what non-maxima suppression is and how it is implemented?
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