
Visual Odometry

David Nistér Oleg Naroditsky James Bergen
Sarnoff Corporation

CN5300, Princeton NJ 08530 USA

Abstract

We present a system that estimates the motion of a stereo
head or a single moving camera based on video input. The
system operates in real-time with low delay and the motion
estimates are used for navigational purposes. The front end
of the system is a feature tracker. Point features are matched
between pairs of frames and linked into image trajectories
at video rate. Robust estimates of the camera motion are
then produced from the feature tracks using a geometric
hypothesize-and-test architecture. This generates what we
call visual odometry, i.e. motion estimates from visual input
alone. No prior knowledge of the scene nor the motion is
necessary. The visual odometry can also be used in con-
junction with information from other sources such as GPS,
inertia sensors, wheel encoders, etc. The pose estimation
method has been applied successfully to video from aerial,
automotive and handheld platforms. We focus on results
with an autonomous ground vehicle. We give examples of
camera trajectories estimated purely from images over pre-
viously unseen distances and periods of time.

1. Introduction

An important application of computer vision is to au-
tonomous navigation of vehicles and robots. Effective use
of video sensors for obstacle detection and navigation has
been a goal in ground vehicle robotics for many years.
Stereo vision for obstacle detection and ego-motion esti-
mation for platform localization are some of the key as-
pects of this endeavor. Closely related is what is known
in the robotics community as simultaneous localization and
mapping (SLAM). SLAM has most often been performed
using other sensors than regular cameras. However, rela-
tively recent performance improvements in both sensors and
computing hardware have made real-time vision processing
much more practical and as computer vision algorithms ma-
ture, we expect to see more of visually based navigation sys-
tems. Such real-time applications as stereo analysis for de-
tection of obstructions and curb or lane marker tracking for
on-road control have become tractable to implement within
standard PC-based systems. However, more general visual
estimation functions remain difficult to achieve within the

Figure 1: Left: Results with a single camera mounted
obliquely on an aerial platform. The aeroplane flies at a low
altitude and turns to make another sweep. The visual odom-
etry shown was estimated in real-time with low delay. The
result is based solely on visual input and no prior knowledge
of the scene nor the motion is used. A textured triangula-
tion in the frustum of the most recent camera position is
also shown. Right: Results from a stereo pair mounted on a
ground vehicle. The vehicle path is is over 600 meters long
and includes three tight loops.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

speed and latency constraints required for in-the-loop vehi-
cle control functions.

When obstacle detection and mapping is performed us-
ing visual input such as for example stereo data, it becomes
even more natural to use the visual input also to estimate
the motion of the platform. In this paper we describe a real-
time method for deriving vehicle motion from monocular
and stereo video sequences. All of the processing runs at
video rates on a 1GHz Pentium III class machine.

Some of the components of our system have been given
in detail in [13] and [15] and we will not reproduce those
here. Our system performs robust camera motion estima-
tion based on feature tracks and is in that respect a develop-
ment in the direction taken e.g. by authors [11, 5, 18] and
the commercial software [1]. However, it operates in real-
time and in a calibrated framework and is in this sense more
closely related to [3, 2, 10].

The rest of the paper is organized as follows. Sections 2
and 3 present feature detection and matching, respectively.
Section 4 discusses the robust estimation with one and two
cameras. Section 5 gives results and Section 6 concludes.

2. Feature Detection

In each frame, we detect Harris corners [7]. This type of
point feature has been found to give detections that are rela-
tively stable under small to moderate image distortions [20].
Since we are using video input, we can rely on distortions
between consecutive frames to be fairly small.

There are many details such as the exact choice of filter
taps, thresholding or order of computation and storage that
will affect the result quality, the cache performance and the
processing time. We will therefore describe our implemen-
tation in detail. Cache performance is often hard to predict
and we tried many different implementations before settling
on this one.

The incoming image is represented with 8 bits per pixel.
We first compute the strength s of the corner response. For
every output line of corner response, temporary filter out-
puts are needed for a certain number of lines above and
below the current output line. All filter outputs are com-
puted only once, and stored in wrap-around buffers for op-
timal cache performance. The wrap-around buffers repre-
sent the temporary filter outputs in a rolling window. The
rolling window contains the minimal number of lines nec-
essary in order to avoid recomputing any filter outputs. Let
Ix and Iy denote the horizontal and vertical derivatives of
the image. The wrap-around buffers and the resulting cor-
ner response are updated line by line, using four sweeps
per line. The first sweep updates wrap-around buffers for
IxIx, IxIy , IyIy . These buffers are 5 lines long and the typ-
ical sweep updates one line, positioned two lines ahead of
the current output line of corner response. The derivatives

Ix and Iy are computed by horizontal and vertical filters
of the type

[−1 0 1
]

and shifted down one bit be-
fore the multiplications to keep the input down to 8 bits
and output down to 16 bits. The second sweep convolves
all the five lines in the wrap-around buffers vertically with
the binomial filter

[
1 4 6 4 1

]
to produce the three

single lines gxx, gxy, gyy of 32 bit filter output. This is ac-
complished by shifts and additions to avoid expensive mul-
tiplications. The third sweep convolves horizontally with
the same binomial filter to produce the 32 bit single lines
Gxx, Gxy, Gyy , stored back in the same place, but shifted
two pixels. The fourth sweep computes the determinant
d = GxxGyy − GxyGxy , trace t = Gxx + Gyy and
the strength s = d − kt2 of the corner response, where
k = 0.06, all in floating point.

The filter sweeps are implemented in MMX in chunks
of 128 pixels and interleaved manually to avoid stalls and
make optimal use of both pipelines. For details on the rules
of thumb for MMX coding, see [9].

After the corner response is computed, non-max sup-
pression is used to define the actual feature points. A fea-
ture point is declared at each pixel where the response is
stronger than at all other pixels in a 5×5 neighborhood. No
subpixel precision detection is used. For this computation
step, it turns out that the lazy evaluation of AND statements
in C makes plain C code faster than any attempts to use
MMX for the non-max suppression. The reason is that on
average, a larger suppressing value is found long before the
whole 5 × 5 neighborhood is exhausted.

In contrast to popular practice, we do not use any ab-
solute or global thresholds on the strength of the corner
response. We only use a local saturation that limits the
number of detected features in a local region of the im-
age. This saturation only sets in when the feature density
becomes extremely excessive and threatens to hurt the pro-
cessing time significantly. We typically allow up to 5000
feature points distributed in 10 by 10 buckets of the image,
i.e. 100 features in each bucket. The survivor features in
each bucket are found with the quickselect algorithm [19]
based on the strength of the corner response. Note however
that the amount of allowed features is very generous. In fact,
for low resolution images the limit can not even be reached,
since a lower density is already enforced by the non-max
suppression. Here are the sweeps in pseudo-code:

Sweep 1: Let i,j indicate beginning of line
for(c=0;c<128;c++){

Ix=(img[i][j+c-1]-img[i][j+c+1])>>1;
Iy=(img[i-1][j+c]-img[i+1][j+c])>>1;
dxx[c]=Ix*Ix;
dxx[c+128]=Ix*Iy;
dxx[c+256]=Iy*Iy;}

Sweep 2: Let d0-d4 be pointers to the five buffer lines
for(c=0;c<128;c++){

dd=d2[c];
g[c]=d0[c]+(d1[c]<<2)+(dd<<2)+(dd<<1)+(d3[c]<<2)+d4[c];
dd=d2[c+128];
g[c+128]=d0[c+128]+(d1[c+128]<<2)+(dd<<2)+(dd<<1)+(d3[c+128]<<2)+d4[c+128];
dd=d2[c+256];
g[c+256]=d0[c+256]+(d1[c+256]<<2)+(dd<<2)+(dd<<1)+(d3[c+256]<<2)+d4[c+256];}

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Sweep 3: for(c=0;c<124;c++)
g[c]=g[c]+(g[c+1]<<2)+(g[c+2]<<2)+(g[c+2]<<1)+(g[c+3]<<2)+g[c+4];

Sweep 4: for(c=0;c<124;c++){
Gxx=gxx[c];
Gxy=gxy[c];
Gyy=gyy[c];
d=Gxx*Gyy-Gxy*Gxy;
t=Gxx+Gyy;
s[c]=d-k*t*t;}

Non-max Suppression: for(i=top;i<=bottom;i++) for(j=left;j<=right;j++){
v=s[i][j];
if(
v>s[i-2][j-2]&&v>s[i-2][j-1]&&v>s[i-2][j]&&v>s[i-2][j+1]&&v>s[i-2][j+2]&&
v>s[i-1][j-2]&&v>s[i-1][j-1]&&v>s[i-1][j]&&v>s[i-1][j+1]&&v>s[i-1][j+2]&&
v>s[i][j-2]&&v>s[i][j-1]&& v>s[i][j+1]&&v>s[i][j+2]&&
v>s[i+1][j-2]&&v>s[i+1][j-1]&&v>s[i+1][j]&&v>s[i+1][j+1]&&v>s[i+1][j+2]&&
v>s[i+2][j-2]&&v>s[i+2][j-1]&&v>s[i+2][j]&&v>s[i+2][j+1]&&v>s[i+2][j+2])

Declare Feature}

3. Feature Matching
The features points are matched between pairs of frames.
In contrast to the KLT tracker [21], we detect features in
all frames and only allow matches between features. A fea-
ture in one image is matched to every feature within a fixed
distance from it in the next image. That is, we match all
features that are within a certain disparity limit from each
other. We typically use a disparity limit that is 10% of the
image size, but depending on the speed requirements and
the smoothness of the input, we sometimes use as low as
3% and as high as 30% of the image size. Normalized cor-
relation over an 11× 11 window is used to evaluate the po-
tential matches. For speed considerations, uniform weight-
ing is used across the whole window. The key to achiev-
ing fast matching is to minimize the amount of computa-
tion spent on each potential matching feature pair. In com-
parison, computation spent on features separately in each
image is negligible, since such computation is done only
once per feature point, while every feature point is involved
in a large number of potential matches. Since we only al-
low feature-to-feature matches we can preprocess the image
patches separately. Each 11×11 patch centred on a detected
feature is copied from the image and laid out consecutively
in memory as an n = 121 byte vector (in fact, we pad to
128 bytes for convenience). At the same time, the values

A =
∑

I (1)

B =
∑

I2 (2)

C =
1√

nB − A2
(3)

are precomputed for each patch. For each potential match,
all we have to do is compute the scalar product

D =
∑

I1I2 (4)

between the two patches. The normalized correlation is then

(nD − A1A2)C1C2. (5)

The scalar product between two 128 byte vectors is com-
puted very efficiently with MMX instructions. In fact, the
multiplications can be carried out just as fast as the values
can be fetched from and stored back into memory. This
brings us to an interesting point. It is a common belief that
the sum of absolute differences (SAD) is more efficient than
normalized correlation, which is of course true in some cir-
cumstances or when considering the amount of chip surface
spent in dedicated hardware, but this is not true in our set-
ting. Changing the multiplications to subtractions would
achieve nothing, since memory speed is the bottleneck.

To decide which matches to accept, we use an old but
powerful trick, namely mutual consistency check. Every
feature is involved in a number of normalized correlations
with features from the other image, decided by the maxi-
mum disparity limit. The feature from the other image that
produces the highest normalized correlation is the preferred
mate. The feature from the other image also in its turn has
a preferred mate. Only pairs of features that ’want to get
married’, i.e. mutually has each other as the preferred mate,
are accepted as a valid match. Note that with good book-
keeping, the mutual consistency check can be accomplished
without computing the correlations more than once.

We use the accepted matches both in stereo and in video
to produce tracks. For tracking, we simply link the ac-
cepted matches between pairs of frames into tracks over
time. Thus, we do not really distinguish between matching
and tracking.

Figure 2: Input frame (left) and feature tracker output
(right). Circles represent current feature locations and
curves are feature tracks through the image.

4. Robust Estimation
The feature tracking operates without any geometric con-
straints. The resulting tracks are then fed forward to ge-
ometry estimation. For the geometry estimation part of the
system we have several incarnations. One is using monoc-
ular video as input and another one uses stereo. We also
have versions that perform mosaicing with much the same
methodology.

4.1 The Monocular Scheme

The monocular version operates as follows.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

1. Track features over a certain number of frames. Es-
timate the relative poses between three of the frames
using the 5-point algorithm [13] and preemptive
RANSAC [15] followed by iterative refinement.

2. Triangulate the observed feature tracks into 3D points
using the first and last observation on each track and
optimal triangulation according to directional error.
This can be achieved in closed form [17]. If this is not
the first time through the loop, estimate the scale fac-
tor between the present reconstruction and the previous
camera trajectory with another preemptive RANSAC
procedure. Put the present reconstruction in the coor-
dinate system of the previous one.

3. Track for a certain additional number of frames. Com-
pute the pose of the camera with respect to the known
3D points using the 3-point algorithm [6] and preemp-
tive RANSAC followed by iterative refinement.

4. Re-triangulate the 3D points using the first and last ob-
servations on their image track. Repeat from Step 3 a
certain number of times.

5. Repeat from Step 1 a certain number of times.

6. Insert a firewall and repeat from Step 1.

The meaning of “firewall” in this context is the follow-
ing. From the system point of view, error accumulation and
propagation is a serious concern. For example, if the pose
is incorrectly estimated, this will lead to incorrectly posi-
tioned 3D points, which will in turn hurt subsequent pose
estimates and the system will never recover. However, the
above scheme opens up the possibility of building a firewall
against error propagation by simply prescribing that trian-
gulation of 3D points is never performed using observations
beyond the most recent firewall. That is, for purposes of tri-
angulation, the frame after the most recent firewall is con-
sidered the first frame. Our system then gets the desirable
property that after a firewall, the relative poses will be es-
timated exactly as if the system was started afresh. The
state of the system before the firewall can only affect the
choice of coordinate system for subsequent poses, nothing
else. The firewall helps protecting both against propagation
of gross errors and slow error buildup that is not fully sup-
pressed by the iterative refinements.

Our current real-time scheme is simplistic in the way it
chooses which frames to use for relative orientation. We
also have a version that uses model selection to choose the
frames in the same spirit as [11]. This has given promising
results in offline simulations. However, it has not yet proved
fast enough to improve upon the real-time results. One of
the advantages of using a stereo head is that these choices
are largely avoided.

4.2 The Stereo Scheme

When a stereo rig is available, we can avoid the difficult
relative orientation step and instead perform triangulation
followed by pose repeatedly. Moreover, the relative poses
can be estimated in a known scale, since we know the size
of the stereo baseline. This makes the estimates more useful
and manageable. The stereo version of the system operates
as follows.

1. Match feature points between the left and right images
of the stereo pair. Triangulate the observed matches
into 3D points.

2. Track features for a certain number of frames. Com-
pute the pose of the stereo rig with preemptive
RANSAC followed by iterative refinement. The 3-
point algorithm (considering the left image) is used
as the hypothesis generator. The scoring and itera-
tive refinement are based on reprojection errors in both
frames of the stereo pair.

3. Repeat from Step 2 a certain number of times.

4. Triangulate all new feature matches using the observa-
tions in the left and right images. Repeat from Step 2
a certain number of times.

5. Re-triangulate all 3D points to set up a firewall. Repeat
from Step 2.

Figure 3: Camera path output from the stereo scheme in 3D.

The reader might wonder why an absolute orientation be-
tween 3D points is not used in Step 2, since 3D points can be
obtained with the stereo rig at each time instance. We have
also tried such a scheme and found it to be greatly inferior.
The reason is the way ambiguity impacts the estimates. The
triangulations are much more uncertain in the depth direc-
tion. When the same points are triangulated in two different
stereo frames, there are therefore large discrepancies along
the depth direction. For alignment between small sets of
3D points, this has a devastating effect on the results. This

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Figure 4: A picture of the autonomous ground vehicle. Note
the two stereo heads mounted in the front. For this plat-
form, a specifically tailored version of the camera motion
estimation system is used. The available stereo input is
leveraged to obtain even more stable visual odometry. The
feature tracking front end is essentially the same, but the the
known stereo geometry is used in the robust motion estima-
tion. The somewhat more difficult relative orientation step
used in the single camera case can thus be avoided. The sys-
tem then essentially performs triangulation of scene points
followed by estimation of pose from the structure that was
previously determined. A significant advantage is that in
this mode the system can perform well despite little or even
no camera motion.

might be avoided with larger sets of points, but that would
compromise the robustness against outliers that we achieve
with the RANSAC scheme.

Instead, we use the 3-point algorithm for single camera
pose. It is less affected by uncertainty in depth of the 3D
points. The reason is that it is based on image quantities
and that the new camera pose is not very far from the pose
from where the 3D point was originally triangulated. The
uncertainty in depth is caused essentially by the fact that
moving the 3D point in the depth direction does not cause
much change in the reprojected image position. Turning
this around, it means that changes in depth do not change
the pose estimates much. In a nutshell, if we stick to using
image based quantities, the uncertainty effects ’cancel’ to a
large extent.

However, for the benefit of using image based quanti-
ties, we pay the penalty of using only one of the images in
the hypothesis generation. To mitigate the effect of this, it
is important to score and optimize using both images. We
have tested the scheme without this improvement. The tri-
angulation is then carried out using both views, balancing
the reprojection errors between the two, but the pose is only
based on one view. Any imperfections in the geometry, such
as small calibration errors, will bias the triangulated posi-
tions of the 3D points. A pose estimate that only considers

one view will then accomodate for some of the bias by ’for-
getting’ about the requirements from the other view. When
the 3D points are then re-triangulated, they are again bi-
ased. This leads to a constant drift or torsion that increases
with the frequency of re-triangulation. This problem is very
much alleviated by scoring and optimizing based on both
views simultaneously. At least, the pose estimate will not
drift when the rig is motionless. Since the balanced repro-
jection error is essentially the same score that was used in
triangulation to place the 3D points at the best possible lo-
cation relative to the stereo rig, the position estimates for the
stereo rig will have no reason to move based on that score.

Also, to make the hypothesis generation more symmet-
ric between the images, we have developed a generalized
version of the 3-point pose algorithm that can use non-
concurrent rays [16]. With this generalization, it will be
possible to pick the minimal sets randomly with points from
both images.

The choices between triangulation and re-triangulation
in the above scheme were made to accommodate certain
trade-offs. We wish to re-triangulate all features quite fre-
quently to put up firewalls against error propagation. We
also wish to triangulate new features as they begin to track
to avoid running out of 3D points. On the other hand, in or-
der to suppress drift to the largest extent possible, we wish
to use 3D points that were triangulated as far back in time
as possible.

A significant advantage of the stereo scheme is that it can
operate correctly even without any camera motion. This is
also an indication of its greater stability, since many of the
difficulties in monocular ego-motion estimation are caused
by small motions.

4.3 Preemptive RANSAC and Scoring

For all the camera motion estimation, we use preeemptive
RANSAC as presented in [15]. Multiple (typically 500)
minimal random samples of feature correspondences are
taken. Each sample contains the smallest number of fea-
ture correspondences necessary to obtain a unique solution
for the camera motion. All the motion hypotheses thus gen-
erated then compete in a preemptive scoring scheme that
is designed to quickly find a motion hypothesis that enjoys
a large support among all the feature correspondences. All
estimations are finished off with an iterative refinement with
the support as objective function. Support is measured by
a robust reprojection error. We assume Cauchy distribution
for the reprojection errors and ignore constant factors of the
likelihood whenever possible. This means that if the scaled
squared magnitude of a reprojection error is u, it contributes
a term − ln(1 + u) to the log-likelihood. Most robustifica-
tion kernels require expensive transcendental functions like
in this case, the logarithm. Cauchy distribution has the ad-

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

vantage that we can use the following trick to prevent the
logarithm from becoming a major bottleneck. The repro-
jection errors are taken in groups of ten and the robust log-
likelihood for each group is computed as

− ln
10∏

i=1

(1 + ui). (6)

Larger groups should be avoided to ensure that the calcula-
tion stays within the floating point range.

The reprojection errors for single poses and the stereo
rig are straightforward to compute since we have the 3D
points. For scoring the three-view relative pose estimates,
we use a trifocal Sampson error, which is significantly faster
than the previous state of the art [22]. The closed form trifo-
cal Sampson error is described in [16]. The iterative refine-
ment for three views is however carried out with a complete,
hand-optimized bundle adjustment, since full bundle adjust-
ment turns out to be faster than any attempts to eliminate the
structure parameters.

5. Results
The visual odometry system was integrated into a mobile
robotic platform equipped with a Differential Global Posi-
tioning System (DGPS) as well as a high precision Inertial
Navigation System (INS). DGPS functioning in RT-2 mode
allowed us to collect position data with up to 2cm relative
accuracy. We compare the visual odometry output to the
integrated INS/DGPS navigation system, which we treat as
ground truth. We show that the visual odometry pose esti-
mates are accurate and reliable under a variety of maneuvers
in realistic ground vehicle scenarios. We also demonstrate
the usefulness of visual odometry for map building and ob-
stacle avoidance.

No a priori knowledge of the motion was used to produce
the visual odometry. A completely general 3D trajectory
was estimated in all our experiments. In particular, we did
not explicitly force the trajectory to stay upright or within a
certain height of the ground plane. The fact that it did any-
way is a strong verification of the robustness and accuracy
of the result.

5.1 System Configuration

The vehicle was equipped with a pair of synchronized ana-
log cameras. Each camera had a horizontal field of view of
50◦, and image fields of 720× 240 resolution were used for
processing. The stereo pair was tilted toward the side of the
vehicle by about 10◦ and had a baseline of 28cm (see Fig-
ure 4). Due to a variety of other tasks running concurrently
on the system, the visual odometry’s frame processing rate
was limited to around 13Hz.

Run Frames DGPS(m) VisOdo(m) % error
Loops 1602 185.88 183.90 1.07

Meadow 2263 266.16 279.77 4.86
Woods 2944 365.96 372.02 1.63

Table 1: Metric accuracy of visual odometry position esti-
mates. The number of frames processed is given in column
2. Total vehicle path lengths estimated by DGPS and visual
odometry are given in columns 3 and 4 with relative error
in distance given in column 4.

During each run of the vehicle we collected time
stamped pose data from visual odometry and the vehicle
navigation system (VNS), which includes GPS and INS. To
obtain quantitative comparisons, the coordinate systems of
the visual odometry and the VNS were aligned by a least
squares fit of the initial twenty poses. In the absence of
VNS, visual odometry can be used directly for navigation
relative to the vehicle’s initial pose. Note that there is no
need to estimate a scale factor between the coordinate sys-
tems since we can take advantage of the known stereo base-
line to determine absolute scale.

The VNS was designed to select the highly accurate
DGPS position estimate over the inertial estimate when both
are available. The orientation of the vehicle, on the other
hand, always came from the inertial sensors.

5.2 Visual Odometry vs. DGPS

Our experiments prove that visual odometry is highly ef-
fective for estimating position of the vehicle. Table 1 com-
pares the estimates of total distance travelled by the vehicle
in three outdoor runs conducted on a trail in a wooded area.

Figure 5 shows side-by-side plots of vehicle trajectories
as recorded by DGPS and visual odometry. Figure 6 shows
the visual odometry overlaid on the vehicle’s position in
DGPS North-East-Down coordinates. In each case the vi-
sual odometry is stable and performs correctly over thou-
sands of frames of dead reckoning and hundreds of meters
of uneven terrain. This figure also illustrates the result of
using visual odometry as sole means of navigation for the
vehicle.

5.3 Visual Odometry vs. INS

We compare the vehicle yaw angle logged by the INS to
the one from visual odometry. Unlike GPS, both the vi-
sual odometry and the INS direction sensor function incre-
mentally by dead reckoning, and therefore accumulate error
over time. Table 2 shows the mean frame to frame accumu-
lation of discrepancy in yaw magnitude between the visual
odometry and the INS for each of our three sequences.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

0 10 20

0

5

10

15

20

25

30

East

N
or

th

0 10 20

0

10

20

30

East

Loops

m m

m

Figure 5: Vehicle positions estimated with visual odometry
(left) and DGPS (right). These plots show that the vehicle
path is accurately recovered by visual odometry during tight
cornering as well as extended operation. In this example
the vehicle completes three tight laps of diameter about 20
meters (travelling 184 meters total) and returns to the same
location. The error in distance between the endpoints of the
trip is only 4.1 meters.

Run Std. Dev.(◦) Mean (◦)
Loops 0.50 1.47·10−2

Meadow 0.59 −1.02·10−2

Woods 0.53 2.39·10−4

Table 2: Frame-to-frame error analysis of the vehicle head-
ing estimates. Column 2 shows the standard deviation of
the errors plotted in Figure 7 (d), and column 3 shows the
mean of the distribution. We observe the approximately
zero mean, which suggests that our estimates are not bi-
ased. Note that the magnitudes of these errors depend on
the vehicle speed and cornering behavior during the run.

Figure 7 further illustrates the correspondence between
yaw angles of the vehicle recovered from visual odometry
and INS. In most cases visual odometry exhibits subdegree
accuracy in vehicle heading recovery.

5.4 Application to Mapping

Combining visual odometry and obstacle detection will al-
low unmanned ground vehicles to maintain a coherent map
of the world over periods of extended autonomous opera-
tion. Visual odometry can also be used to supplement tra-
ditional navigation systems since it is not affected by GPS
dropouts due to obstacles, wheel slip in uneven terrain or
other adverse conditions.

0 20 40
0

20

40

60

80

100

120

140

160

Woods

East

N
or

th

0 20 40 60
0

50

100

150

200

Meadow

East
m m

m

Figure 6: Visual odometry vehicle position (light red) su-
perimposed on DGPS output (dark blue). No a priori knowl-
edge of the motion was used to produce the visual odome-
try. A completely general 3D trajectory was estimated in all
our experiments. In particular, we did not explicitly force
the trajectory to stay upright or within a certain height of
the ground plane. The fact that it did anyway is a strong
verification of the robustness and accuracy of the result.

6. Summary and Conclusions
We presented a system for real-time ego-motion estimation
of a single camera or stereo rig. This is the first time we
present all the details of our system, including feature track-
ing and robust estimation. We concentrated on results with
stereo cameras mounted on an autonomous ground vehi-
cle. Coherent and surprisingly accurate results for hundreds
of meters of driving were demonstrated, based only on vi-
sual input from relatively small field of view cameras. The
results were evaluated quantitatively by comparing with a
highly accurate integrated INS/DGPS navigation system.
Encouraged by the speed, low latency, accuracy and robust-
ness of our results, we call our output visual odometry.

References
[1] 2d3 Ltd. Boujou, http://www.2d3.com.

[2] A. Chiuso, P. Favaro, H. Jin and S. Soatto, 3-D Motion
and Structure Causally Integrated over Time: Implementa-
tion, Proc. European Conference on Computer Vision, LNCS
1842:735-750, Springer Verlag, 2000.

[3] Real-Time Simultaneous Localization and Mapping with a
Single Camera, A. Davison, IEEE International Conference
on Computer Vision, pp. 1403-1410, 2003.

This work was sponsored by DARPA, under contract ’Perception for Off-Road Mobility (PerceptOR)’ (contract
number MDA972-01-9-0016). The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing official policies or endorsements, expressed or implied, of the U.S. Govern-
ment.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

0 1000 2000

−100

0

100

Meadow

Y
aw

 A
ng

le

0 500 1000 1500

−100

0

100

Loops

0 1000 2000 3000

−100

0

100

Frame

Y
aw

 A
ng

le

Woods

0 1000 2000 3000
−5

0

5

10

Frame

D
eg

re
es

 Y
aw

 E
rr

or

Woods

Figure 7: Yaw angle in degrees from INS and visual odom-
etry. The correspondence is readily apparent. In most cases,
visual odometry yields subdegree accuracy in vehicle head-
ing recovery. The accumulated yaw angle is shown, except
for on the bottom right, were the frame to frame yaw angle
discrepancy is shown.

[4] M. Fischler and R. Bolles, Random Sample Consensus: a
Paradigm for Model Fitting with Application to Image Anal-
ysis and Automated Cartography, Commun. Assoc. Comp.
Mach., 24:381-395, 1981.

[5] A. Fitzgibbon and A. Zisserman, Automatic Camera Recov-
ery for Closed or Open Image Sequences, Proc. European
Conference on Computer Vision, pp. 311-326, (1998).

[6] R. Haralick, C. Lee, K. Ottenberg and M. Nölle, Review and
Analysis of Solutions of the Three Point Perspective Pose Es-
timation Problem, International Journal of Computer Vision,
13(3):331-356, 1994.

[7] C. Harris and M. Stephens, A Combined Corner and Edge
Detector, Proc. Fourth Alvey Vision Conference, pp.147-151,
1988.

[8] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, ISBN 0-521-
62304-9, 2000.

[9] Intel Corp., C. DuLong, M. Gutman, M. Julier and M. Keith,
The Complete Guide to MMX Technology, McGraw-Hill,
ISBN 0-070-06192-0, 1997.

[10] H. Jin, P. Favaro and S. Soatto, Real-time 3-D motion and
structure from point features: a front-end system for vision-
based control and interaction, Proc. IEEE Intl. Conf. on Com-
puter Vision and Pattern Recognition pp. 778-779, 2000.

[11] D. Nistér. Reconstruction From Uncalibrated Sequences
with a Hierarchy of Trifocal Tensors, Proc. European Con-
ference on Computer Vision, Volume 1, pp. 649-663, 2000.

[12] D. Nistér. Automatic dense reconstruction from uncalibrated
video sequences, PhD Thesis, Royal Institute of Technology
KTH, ISBN 91-7283-053-0, March 2001.

[13] D. Nistér. An Efficient Solution to the Five-Point Relative
Pose Problem, IEEE Conference on Computer Vision and Pat-
tern Recognition, Volume 2, pp. 195-202, 2003.

Figure 8: Visual odometry poses can be used to build ac-
curate obstacle maps. Visual odometry poses are combined
with a stereo obstacle avoidance algorithm, resulting in a
map (bottom left). Note that the map is a successful merge
of about 500 separate pose estimates. Obstacles such as
people and buildings are retained by the vehicle despite the
cameras having a small field of view (50◦). The bottom
right image shows the visual odometry data overlaid on an
aerial photograph of the site.

[14] D. Nistér. An Efficient Solution to the Five-Point Relative
Pose Problem, IEEE Transactions on Pattern Analysis and
Machine Intelligence, to appear, 2004.

[15] D. Nistér. Preemptive RANSAC for Live Structure and Mo-
tion Estimation, IEEE International Conference on Computer
Vision, pp. 199-206, 2003.

[16] D. Nistér. A Minimal Solution to the Generalised 3-Point
Pose Problem, submitted to IEEE Conference on Computer
Vision and Pattern Recognition, 2004.

[17] J. Oliensis and Y. Genc, New Algorithms for Two-Frame
Structure from Motion, Proc. International Conference on
Computer Vision, pp. 737-744 ,1999.

[18] M. Pollefeys, F. Verbiest and L. Van Gool, Surviving Dom-
inant Planes in Uncalibrated Structure and Motion Recovery,
Proc. European Conference on Computer Vision, Volume 2,
pp. 837-851, 2002.

[19] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Nu-
merical recipes in C, Cambridge University Press, ISBN 0-
521-43108-5, 1988.

[20] C. Schmid, R. Mohr and C. Bauckhage, Evaluation of In-
terest Point Detectors, International Journal of Computer Vi-
sion, 37(2), 151-172, 2000.

[21] J. Shi and C. Tomasi, Good Features to Track, IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 593-
600, 1994.

[22] P. Torr and A. Zisserman, Robust Parameterization and Com-
putation of the Trifocal Tensor, Image and Vision Computing,
15:591-605, 1997.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

	footer1:

