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SVO: Semidirect Visual Odometry for Monocular
and Multicamera Systems

Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide Scaramuzza

Abstract—Direct methods for visual odometry (VO) have gained
popularity for their capability to exploit information from all in-
tensity gradients in the image. However, low computational speed
as well as missing guarantees for optimality and consistency are
limiting factors of direct methods, in which established feature-
based methods succeed instead. Based on these considerations, we
propose a semidirect VO (SVO) that uses direct methods to track
and triangulate pixels that are characterized by high image gradi-
ents, but relies on proven feature-based methods for joint optimiza-
tion of structure and motion. Together with a robust probabilistic
depth estimation algorithm, this enables us to efficiently track pix-
els lying on weak corners and edges in environments with little
or high-frequency texture. We further demonstrate that the algo-
rithm can easily be extended to multiple cameras, to track edges,
to include motion priors, and to enable the use of very large field of
view cameras, such as fisheye and catadioptric ones. Experimen-
tal evaluation on benchmark datasets shows that the algorithm is
significantly faster than the state of the art while achieving highly
competitive accuracy.

Index Terms—Robot vision, simultaneous localization and
mapping (SLAM).

1. INTRODUCTION

STIMATING the six degrees-of-freedom (DoF) motion
E of a camera merely from its stream of images has been
an active field of research for several decades [1]-[6]. Today,
state-of-the-art visual simultaneous localization and mapping
(SLAM) (V-SLAM) and visual odometry (VO) algorithms runin
real time on smartphone processors and approach the accuracy,
robustness, and efficiency that is required to enable various
interesting applications. Examples comprise the robotics and
automotive industry, in which the ego-motion of a vehicle must
be known for autonomous operation. Other applications are
virtual and augmented reality, which require precise and low-
latency pose estimation of mobile devices.
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The central requirement for the successful adoption of vision-
based methods for such challenging applications is to obtain
highest accuracy and robustness with a limited computational
budget. The most accurate camera motion estimate is obtained
through joint optimization of structure (i.e., landmarks) and
motion (i.e., camera poses). For feature-based methods, this is
an established problem that is commonly known as bundle ad-
Jjustment [7], and many solvers exist who address the underlying
nonlinear least squares problem efficiently [8]—[11]. The follow-
ing three aspects are key to obtain the highest accuracy when
using sparse feature correspondence and bundle adjustment:

1) long feature tracks with minimal feature drift;

2) a large number of uniformly distributed features in the

image plane; and

3) reliable association of new features with old landmarks

(i.e., loop closures).

The probability that many pixels are tracked reliably, e.g., in
scenes with little or high-frequency texture (such as sand [12] or
asphalt [13]), is increased when the algorithm is not restricted
to use local point features (e.g., corners or blobs) but may track
edges [14] or, more generally, all pixels with gradients in the
image, such as in dense [15] or semidense approaches [16].
Dense or semidense algorithms that operate directly on pixel-
level intensities are also denoted as direct methods [17]. Direct
methods minimize the photometric error between correspond-
ing pixels in contrast to feature-based methods, which minimize
the reprojection error. The great advantage of this approach is
that there is no prior step of data association: this is implic-
itly given through the geometry of the problem. However, joint
optimization of dense structure and motion in real time is still an
open research problem, as is the optimal and consistent [18], [19]
fusion of direct methods with complementary measurements
(e.g., inertial). In terms of efficiency, previous direct methods
are computationally expensive as they require a semidense [16]
or dense [15] reconstruction of the environment, while the dom-
inant cost of feature-based methods is the extraction of fea-
tures and descriptors, which incurs a high constant cost per
frame.

In this paper, we propose a VO algorithm that combines the
advantages of direct and feature-based methods. We introduce
the sparse image alignment algorithm in Section V, an efficient
direct approach to estimate frame-to-frame motion by minimiz-
ing the photometric error of features lying on intensity corners
and edges. The three-dimensional (3D) points corresponding to
features are obtained by means of robust recursive Bayesian
depth estimation (see Section VI). Once feature correspon-
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dence is established, we use bundle adjustment for refinement of
the structure and the camera poses to achieve highest accuracy
(see Section V-B). Consequently, we name the system semidi-
rect visual odometry (SVO).

Our implementation of the proposed approach is exception-
ally fast, requiring only 2.5 ms to estimate the pose of a frame
on a standard laptop computer, while achieving comparable
accuracy with respect to the state of the art on benchmark
datasets. The improved efficiency is due to the following three
reasons. First, SVO extracts features only for selected keyframes
in a parallel thread, hence decoupled from hard real-time con-
straints. Second, the proposed direct tracking algorithm removes
the necessity for robust data association. Finally, contrarily to
previous direct methods, SVO requires only a sparse reconstruc-
tion of the environment.

This paper extends our previous work [20], which was also
released as open source software.! The novelty of this paper
is the generalization to wide field of view (FoV) lenses (see
Section VII), multicamera systems (see Section VIII), the in-
clusion of motion priors (see Section IX), and the use of edgelet
features. Additionally, we present several new experimental re-
sults in Section XI, with comparisons to previous works.

II. RELATED WORK

Methods that simultaneously recover camera pose and scene
structure can be divided into the following two classes.

A. Feature Based

The standard approach to solve this problem is to extract
a sparse set of salient image features (e.g., corners, blobs) in
each image; match them in successive frames using invariant
feature descriptors; robustly recover both camera motion and
structure using epipolar geometry; and finally, refine the pose
and structure through reprojection error minimization. The ma-
jority of VO and V-SLAM algorithms [6] follow a variant of
this procedure. A reason for the success of these methods is
the availability of robust feature detectors and descriptors that
allow matching images under large illumination and view-point
changes. Feature descriptors can also be used to establish fea-
ture correspondences with old landmarks when closing loops,
which increases both the accuracy of the trajectory after bundle
adjustment [7], [21] and the robustness of the overall system
due to relocalization capabilities. This is also where we draw
the line between VO and V-SLAM: While VO is only about in-
cremental estimation of the camera pose, V-SLAM algorithms,
such as [22], detect loop closures and subsequently refine large
parts of the map.

The disadvantage of feature-based approaches is their
low speed due to feature extraction and matching at ev-
ery frame, the necessity for robust estimation techniques that
deal with erroneous correspondences (e.g., RANSAC [23],
M-estimators [24]), and the fact that most feature detectors are
optimized for speed rather than precision. Furthermore, relying

Thttp://github.com/uzh-rpg/rpg_svo.
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only on well-localized salient features (e.g., corners), only a
small subset of the information in the image is exploited.

In SVO, features are extracted only for selected keyframes,
which reduces the computation time significantly. Once ex-
tracted, a direct method is used to track features from frame to
frame with subpixel precision. Apart from well-localized corner
features, the proposed approach allows tracking any pixel with
nonzero intensity gradient.

B. Direct Methods

Direct methods estimate structure and motion directly by min-
imizing an error measure that is based on the image’s pixel-level
intensities [17]. The local intensity gradient magnitude and di-
rection is used in the optimization compared to feature-based
methods that consider only the distance to a feature location.
Pixel correspondence is given directly by the geometry of the
problem, eliminating the need for robust data association tech-
niques. However, this makes the approach dependent on a good
initialization that must lie in the basin of attraction of the cost
function.

Using a direct approach, the 6 DoF motion of a camera can be
recovered by image-to-model alignment, which is the process of
aligning the observed image to a view synthesized from the es-
timated 3-D map. Early direct VO methods tracked and mapped
few—sometimes manually selected—planar patches [25]-[29].
By estimating the surface normals of the patches [30], they could
be tracked over a wide range of viewpoints. In [31], the local
planarity assumption was relaxed and direct tracking with re-
spect to arbitrary 3-D structures computed from stereo cameras
was proposed. For RGB-D cameras, where a dense depthmap
for each image is given by the sensor, dense image-to-model
alignment was subsequently introduced in [32]-[34]. In con-
junction with dense depth registration, this has become the stan-
dard in camera tracking for RGB-D cameras [35]-[38]. With
DTAM [15], a direct method was introduced that computes a
dense depthmap from a single moving camera in real time. The
camera pose is found through direct whole image alignment us-
ing the depthmap. However, inferring a dense depthmap from
monocular images is computationally intensive and is typically
addressed using GPU parallelism, such as in the open-source
REMODE algorithm [39]. Early on, it was realized that only
pixels with an intensity gradient provide information for mo-
tion estimation [40]. In this spirit, a semidense approach was
proposed in [41], where the depth is only estimated for pixels
with high intensity gradients. In our experimental evaluation in
Section XI-A, we show that it is possible to reduce the number
of tracked pixels even more for frame-to-frame motion esti-
mation without any noticeable loss in robustness or accuracy.
Therefore, we propose the sparse image-to-model alignment al-
gorithm that uses only sparse pixels at corners and along image
intensity gradients.

Joint optimization of sparse structure and motion, minimizing
the photometric error, has recently been demonstrated in [42].
However, joint optimization of dense structure and motion in
real time is still an open research problem. The standard ap-
proach is to estimate the latest camera pose with respect to a
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Fig. 1. Tracking and mapping pipeline.

previously accumulated dense map and subsequently, given a
set of estimated camera poses, update the dense map [15], [43].
Clearly, this separation of tracking and mapping only results in
optimal accuracy when the output of each stage yields the opti-
mal estimate. Other algorithms optimize a graph of poses but do
not allow a deformation of the structure once triangulated [16].
Contrarily, some algorithms ignore the camera poses and instead
allow nonrigid deformation of the 3-D structure [36], [38]. The
obtained results are accurate and visually impressive; however,
a thorough probabilistic treatment is missing when processing
measurements, separating tracking and mapping, or fixating and
removing states. To the best of our knowledge, it is, therefore,
currently not possible to obtain accurate covariance estimates
from dense VO. Hence, the consistent fusion [18], [44] with
complementary sensors (e.g., inertial) is currently not possible.
In this paper, we use direct methods only to establish feature
correspondence. Subsequently, bundle adjustment is used for
joint optimization of structure and motion where it is also possi-
ble to include inertial measurements, as we have demonstrated
in previous work [45].

III. SYSTEM OVERVIEW

Fig. 1 provides an overview of the proposed approach. We use
two parallel threads (as in [21]), one for estimating the camera
motion, and a second one for mapping, as the environment is
being explored. This separation allows fast and constant-time
tracking in one thread, while the second thread extends the map,
decoupled from hard real-time constraints.

The motion-estimation thread implements the proposed
semidirect approach to motion estimation. Our approach is
divided into three steps: sparse image alignment, relaxation,
and refinement (see Fig. 1). Sparse image alignment estimates

frame-to-frame motion by minimizing the intensity difference
of features that correspond to the projected location of the same
3-D points. A subsequent step relaxes the geometric constraint
to obtain subpixel feature correspondence. This step introduces
a reprojection error, which we finally refine by means of bundle
adjustment.

In the mapping thread, a probabilistic depth filter is initialized
for each feature for which the corresponding 3-D point is to
be estimated. New depth filters are initialized whenever a new
keyframe is selected for corner pixels as well as for pixels along
intensity gradient edges. The filters are initialized with a large
uncertainty in depth and undergo a recursive Bayesian update
with every subsequent frame. When a depth filter’s uncertainty
becomes small enough, a new 3-D point is inserted in the map
and is immediately used for motion estimation.

IV. NOTATION

The intensity image recorded from a moving camera C at
timestep k is denoted with I% : Q€ C R? — R, where QF is
the image domain. Any 3-D point p € R3 maps to the image
coordinates u € R? through the camera projection model: u =
m(p). Given the inverse scene depth p > 0 at pixel u € R,
the position of a 3-D point is obtained using the backprojection
model p = 7, (u), where Rf C Q denotes those pixels for
which the depth is known at time % in camera C. The projection
models are known from prior calibration [46].

The position and orientation of the world frame W with re-
spect to the kth camera frame is described by the rigid body
transformation Trw € SE(3) [47]. A 3-D point wp that is ex-
pressed in world coordinates can be transformed to the kth
camera frame using ; p = Trw wpP-

V. MOTION ESTIMATION

In this section, we describe the proposed semidirect approach
to motion estimation, which assumes that the position of some
3-D points corresponding to features in previous frames are
known from prior depth estimation.

A. Sparse Image Alignment

Image-to-model alignment estimates the incremental cam-
era motion by minimizing the intensity difference (photometric
error) of pixels that observe the same 3-D point.

To simplify a later generalization to multiple cameras, we
introduce a body frame B that is rigidly attached to the cam-
era frame C with known extrinsic calibration Tcg € SE(3) (see
Fig. 2). Our goal is to estimate the incremental motion of the
body frame Ty;_1 = T, ,_, such that the photometric error is
minimized as

. 1
Theo1 = arg min Z §||1‘15 (Tre-1) 13, (1
- uersS |

where the photometric residual ric is defined by the intensity
difference of pixels in subsequent images IE and Ig_l that
observe the same 3-D point p,,

ric (Treo1) = I (7(TegTrr—1 Pu)) — Iy (7(Tcp py))- (2)
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Fig.2.  Changing therelative pose T, ;1 between the currentand the previous
frame implicitly moves the position of the reprojected points in the new image
u’. Sparse image alignment seeks to find Ty, ; _; that minimizes the photometric
difference between image patches corresponding to the same 3-D point (blue
squares). Note, in all figures, the parameters to optimize are drawn in red and
the optimization cost is highlighted in blue.

(a) (b) (c)

Fig. 3. Image from the /CL-NUIM dataset (Section XI-B3) with pixels used
for image-to-model alignment (marked in green for corners and magenta for
edgelets) for sparse, semidense, and dense methods. (c) Dense approaches use
every pixel in the image, (b) semidense use just the pixels with high intensity
gradient, and the proposed (a) sparse approach uses selected pixels at corners
or along intensity gradient edges.

The 3-D point p,, (which is expressed in the reference frame
Bj:_1) can be computed for pixels with known depth by means
of backprojection

Pu = TBC 77;1 (u) VuemRS . 3)

However, the optimization in (1) includes only a subset of those
pixels R&l - Rgfl, namely, for which the back-projected
points are also visible in the image I¢

7@%71 = {u ’ uc R571 A W(TCBTkk—lTBC 7T;1<u)) € QC}.

Image-to-model alignment has previously been used in the lit-
erature to estimate camera motion. Apart from minor variations
in the formulation, the main difference among the approaches is
the source of the depth information as well as the region R,
in image Ig for which the depth is known. As discussed in
Section II, we denote methods that know and exploit the depth
for all pixels in the reference view as dense methods [15]. Con-
versely, approaches that only perform the alignment for pixels
with high image gradients are denoted as semidense [41]. In this
paper, we propose a novel sparse image alignment approach
that assumes known depth only for corners and features lying
on intensity edges. Fig. 3 summarizes our notation of dense,
semidense, and sparse approaches.

To make the sparse approach more robust, we propose to
aggregate the photometric cost in a small patch centered at the
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(b)

Fig. 4. Different alignment strategies for corners and edgelets. The alignment
of an edge feature is restricted to the normal direction n of the edge. (a) Edge
alignment. (b) Corner alignment.

feature pixel. Since the depth for neighboring pixels is unknown,
we approximate it with the same depth that was estimated for
the feature.

To summarize, sparse image alignment solves the nonlinear
least squares problem in (1) with RS , corresponding to small
patches centered at corner and edgelet features with known
depth. This optimization can be solved efficiently using standard
iterative nonlinear least squares algorithms such as Levenberg—
Marquardt. More details on the optimization, including the an-
alytic Jacobians, are provided in the appendix.

B. Relaxation and Refinement

Sparse image alignment is an efficient method to estimate the
incremental motion between subsequent frames. However, to
minimize drift in the motion estimate, it is paramount to register
a new frame to the oldest frame possible. One approach is to
use an older frame as reference for image alignment [16]. How-
ever, the robustness of the alignment cannot be guaranteed as
the distance between the frames in the alignment increases (see
experiment in Section XI-A). We, therefore, propose to relax the
geometric constraints given by the reprojection of 3-D points
and to perform an individual 2-D alignment of corresponding
feature patches. The alignment of each patch in the new frame
is performed with respect to a reference patch from the frame
where the feature was first extracted; hence, the oldest frame
possible, which should maximally minimize feature drift. How-
ever, the 2-D alignment generates a reprojection error that is
the difference between the projected 3-D point and the aligned
feature position. Therefore, in a final step, we perform bundle
adjustment to optimize both the 3-D point’s position and the
camera poses such that this reprojection error is minimized.

In the following, we detail our approach to feature alignment
and bundle adjustment. Thereby, we take special care of features
lying on intensity gradient edges.

2-D feature alignment minimizes the intensity difference of
a small image patch P that is centered at the projected feature
position u’ in the newest frame k& with respect to a reference
patch from the frame r where the feature was first observed (see
Fig. 4). To improve the accuracy of the alignment, we apply
an affine warping A to the reference patch, which is computed
from the estimated relative pose Ty, between the reference frame
and the current frame [21]. For corner features, the optimiza-
tion computes a correction Ju* € R? to the predicted feature
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position u’ that minimizes the photometric cost

%

=u'+6u", with u =7(Tcg Ts, Toc 7'(';1(11)) 4)

1 2
du* = argmin Z fHI% (0’ +du+Au) — 18 (u + AAu)H
ou AuePQ

where Au is the iterator variable that is used to compute the
sum over the patch P. This alignment is solved using the inverse
compositional Lucas—Kanade algorithm [48].

For features lying on intensity gradient edges, 2-D feature
alignment is problematic because of the aperture problem—
features may drift along the edge. Therefore, we limit the DoF
in the alignment to the normal direction to the edge. This is
illustrated in Fig. 4(a), where a warped reference feature patch
is schematically drawn at the predicted position in the newest
image. For features on edges, we, therefore, optimize for a
scalar correction du* € R in the direction of the edge normal n
to obtain the corresponding feature position u’* in the newest
frame

/

u* =u +6u* -n, with 5)

1 2
ou* :argrro_linz §HI% (0 +du-n+Au)—1¢(u + AAu)H .
uAuEP

This is similar to previous work on VO with edgelets, where
feature correspondence is found by sampling along the normal
direction for abrupt intensity changes [14], [49]-[53]. However,
in our case, sparse image alignment provides a very good ini-
tialization of the feature position, which directly allows us to
follow the intensity gradient in an optimization.

After feature alignment, we have established feature corre-
spondence with subpixel accuracy. However, feature alignment
violated the epipolar constraints and introduced a reprojection
error du, which is typically well below 0.5 pixels. Therefore,
in the last step of motion estimation, we refine the camera
poses and landmark positions X = {Tyw, p;} by minimizing
the squared sum of reprojection errors

. 1
A= argmind | 3 5w —w(Tes Tiw o)
kekiec{

1 *
FYY Ll (e T o)) )

k:E)CieL‘f

where [C is the set of all keyframes in the map, Ckc the set of
all landmarks corresponding to corner features, and £ the set
of all edge features that were observed in the kth camera frame.
The reprojection error of edge features is projected along the
edge normal because the component along the edge cannot be
determined.

The optimization problem in (6) is a standard bundle ad-
justment problem that can be solved in real-time using iISAM?2
[9]. In [45] we further show how the objective function can be
extended to include inertial measurements.

While optimization over the whole trajectory in (6) results
in the most accurate results (see Section XI-B), we found that
for many applications (e.g. for state estimation of microaerial

Fig. 5. Probabilistic depth estimate p; for feature 7 in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated depth
ﬁf computed from the point u/ of highest correlation with the reference patch.
The point of highest correlation lies always on the epipolar line in the new
image.

vehicles [20], [54]) it suffices to only optimize the latest camera
pose and the 3-D points separately.

VI. MAPPING

In the previous section, we assumed that the depth at sparse
feature locations in the image is known. In this section, we
describe how the mapping thread estimates this depth for newly
detected features. Therefore, we assume that the camera poses
are known from the motion estimation thread.

The depth at a single pixel is estimated from multiple ob-
servations by means of a recursive Bayesian depth filter. New
depth filters are initialized at intensity corners and along gradi-
ent edges when the number of tracked features falls below some
threshold and, therefore, a keyframe is selected. Every depth
filter is associated with a reference keyframe r, where the initial
depth uncertainty is initialized with a large value. For a set of
previous keyframes® as well as every subsequent frame with
known relative pose {I, Ty, }, we search for a patch along the
epipolar line that has the highest correlation (see Fig. 5). There-
fore, we move the reference patch along the epipolar line and
compute the zero mean sum of squared differences. From the
pixel with maximum correlation, we triangulate the depth mea-
surement pF, which is used to update the depth filter. If enough
measurements were obtained such that uncertainty in the depth
is below a certain threshold, we initialize a new 3-D point at
the estimated depth, which subsequently can be used for motion
estimation (see system overview in Fig. 1). This approach for
depth estimation also works for features on gradient edges. Due
to the aperture problem, we, however, skip measurements where
the edge is parallel to the epipolar line.

Ideally, we would like to model the depth with a nonpara-
metric distribution to deal with multiple depth hypotheses (top
rows in Fig. 6). However, this is computationally too expen-
sive. Therefore, we model the depth filter according to [55] with

2In the previous publication of SVO [20] and in the open source implementa-
tion we suggested to update the depth filter only with newer frames & > r, which
works well for down-looking cameras in micro aerial vehicle applications. How-
ever, for forward motions, it is beneficial to update the depth filters also with
previous frames k& < r, which increases the performance with forward-facing
cameras.
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Fig. 6. Illustration of posterior distributions for depth estimation. The his-

togram in the top rows show the measurements affected by outliers. The dis-
tribution in the middle rows show the posterior distribution when modeling the
depth with a single variate Gaussian distribution. The bottom rows show the
posterior distribution of the proposed approach that is using the model from
[55]. The distribution is bivariate and models the inlier probability (vertical
axis) together with the inverse depth (horizontal axis). (a) After three measure-
ments with 70% inlier probability. (b) After 30 measurements with 70% inlier
probability.

a 2-D distribution: the first dimension is the inverse depth p
[56], while the second dimension v is the inlier probability (see
bottom rows in Fig. 6). Hence, a measurement pf is modeled
with a Gaussian + Uniform mixture model distribution: an in-
lier measurement is normally distributed around the true inverse
depth p;, while an outlier measurement arises from a uniform

distribution in the interval [p™", o]

— N (5 iy 72) + (L= U (5, o)
(N

where 7;° is the variance of a good measurement that can be
computed geometrically by assuming a disparity variance of
one pixel in the image plane [39].

Assuming independent observations, the Bayesian estimation
for p on the basis of the measurements p, 11, ..., p; is given by
the posterior

p(Al1pi, i)

2

) o< p(o,) [ [ ploeloy)  ®)
k

(P, V[Pr i1,

with p(p, ) being a prior on the true inverse depth and the ratio
of good measurements supporting it. For incremental computa-
tion of the posterior, Vogiatzis and Hernandez [55] show that (8)
can be approximated by the product of a Gaussian distribution
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Fig. 7. Illustration of the epipolar search to estimate the depth of the pixel
in the center of the reference patch in the left image. Given the extrinsic and
intrinsic calibration of the two images, the epipolar line that corresponds to
the reference pixel is computed. Due to self-similar texture, erroneous matches
along the epipolar line are frequent.

for the depth and a Beta distribution for the inlier ratio

Q(pv 7‘ak7 br, i 5 01?) = Beta(f”ak ’ bk?)N(p‘;u'ka U}%) ©)

where a; and by are the parameters controlling the Beta
distribution. The choice is motivated by the fact that the
Beta x Gaussian is the approximating distribution minimizing
the Kullback—Leibler divergence from the true posterior (8).
Upon the kth observation, the update takes the form

p(ﬂvﬂﬁr-s-lv e 7ﬁk’) ~ Q(da”ﬂak—labk—hﬂk—h”}%—l)

- p(pr|d,y) - const (10)

and Civera et al. [55] approximated the true posterior (10) with a
Beta x Gaussian distribution by matching the first- and second-
order moments for d and ~. The updates formulas for ay, by,
1, and a,% are, thus, derived and we refer to the original work
in [55] for the details on the derivation.

Fig. 6 shows a small simulation experiment that highlights
the advantage of the model proposed in [55]. The histogram
in the top rows shows the measurements that are corrupted
by 30% outlier measurements. The distribution in the middle
rows show the posterior distribution when modeling the depth
with a single variate Gaussian distribution as used for instance
in [41]. Outlier measurements have a huge influence on the
mean of the estimate. The figures in the bottom rows show
the posterior distribution of the proposed approach that is using
the model from [55] with the inlier probability drawn in the
vertical axis. As more measurements are received at the same
depth, the inlier probability increases. In this model, the mean
of the estimate is less affected by outliers, while the inlier prob-
ability is informative about the confidence of the estimate. Fig. 7
shows qualitatively the importance of robust depth estimation in
self-similar environments, where outlier matches are frequent.

In [39], we demonstrate how the same depth filter can be used
for dense mapping.

VII. LARGE FOV CAMERAS

To model large optical distortion, such as fisheye and cata-
dioptric (see Fig. 8), we use the camera model proposed in
[57], which models the projection 7(-) and unprojection 7! (-)
functions with polynomials. Using the Jacobians of the camera
distortion in the sparse image alignment and bundle adjustment
step is sufficient to enable motion estimation for large FoV
cameras.
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. (a)

Fig. 8. Different optical distortion models that are supported by SVO.
(a) Perspective. (b) Fisheye. (c) Catadioptric.

Body Frame

Tpe,

Fig. 9. VO with multiple rigidly attached and synchronized cameras. The
relative pose of each camera to the body frame Tpc, is known from extrinsic
calibration and the goal is to estimate the relative motion of the body frame

Thk—1-

For estimating the depth of new features (cf., Section VI),
we need to sample pixels along the epipolar line. For distorted
images, the epipolar line is curved (see Fig. 7). Therefore, we
regularly sample the great circle, which is the intersection of
the epipolar plane with the unit sphere centered at the camera
pose of interest. The angular resolution of the sampling corre-
sponds approximately to one pixel in the image plane. For each
sample, we apply the camera projection model 7(+) to obtain
the corresponding pixel coordinate on the curved epipolar line.

VIII. MULTICAMERA SYSTEMS

The proposed motion estimation algorithm starts with an op-
timization of the relative pose Tj;_1. Since in Section V-A,
we have already introduced a body frame B, which is rigidly
attached to the camera, it is now straightforward to generalize
sparse image alignment to multiple cameras. Given a camera
rig with M cameras (see Fig. 9), we assume that the relative
pose of the individual cameras ¢ € C with respect to the body
frame Tcp is known from extrinsic calibration.® To generalize
sparse image alignment to multiple cameras, we simply need to
add an extra summation in the cost function of (1)

T = arg mln Z Z

CGC uGRC

(1)

|rIC (Tre-1) I3, -

The same summation is necessary in the bundle adjustment step
to sum the reprojection errors from all cameras. The remaining

3We use the calibration toolbox Kalibr [46], which is available at

https://github.com/ethz-asl/kalibr

steps of feature alignment and mapping are independent of how
many cameras are used, except that more images are available
to update the depth filters. To summarize, the only modification
to enable the use of multiple cameras is to refer the optimizations
to a central body frame, which requires us to include the extrinsic
calibration T¢g in the Jacobians, as shown in the Appendix.

IX. MOTION PRIORS

In feature-poor environments, during rapid motions, or in
case of dynamic obstacles, it can be very helpful to employ a
motion prior. A motion prior is an additional term that is added
to the cost function in (11), which penalizes motions that are
not in agreement with the prior estimate. Thereby, “jumps” in
the motion estimate due to unconstrained DoF or outliers can be
suppressed. In a car scenario, for instance, a constant velocity
motion model may be assumed as the inertia of the car prohibits
sudden changes from one frame to the next. Other priors may
come from additional sensors such as gyroscopes, which allow
us to measure the incremental rotation between two frames.

Let us assume that we are given a relative translation prior
Pri—1 (e.g., from a constant velocity assumption) and a relative
rotation prior Ry;_; (e.g., from integrating a gyroscope). In this
case, we can employ a motion prior by adding additional terms
to the cost of the sparse image alignment step

1
* _ . + 2
Tik-1 = arg min > D 5 Trg (Tri-1) 15,

c
ceC “ERA 1

1 ~ 2
+ §||pkk71 — Pkk-1 ||gp

+ 58T, mu 1) R, (12
where the covariances X, >y are set according to the uncer-
tainty of the motion prior and the variables (pji_1,Rixp—1) =
Trr—1 are the current estimate of the relative position and ori-
entation (expressed in body coordinates B). The logarithm map
maps a rotation matrix to its rotation vector [see (18)]. Note that
the same cost function can be added to the bundle adjustment
step. For further details on solving (12), we refer the interested
reader to the appendix.

X. IMPLEMENTATION DETAILS

In this section, we provide additional details on various as-
pects of our implementation.

A. Initialization

The algorithm is bootstrapped to obtain the pose of the first
two keyframes and the initial map using the five-point relative
pose algorithm from [58]. In a multicamera configuration, the
initial map is obtained by means of stereo matching.

B. Sparse Image Alignment

For sparse image alignment, we use a patch size of 4 x 4 pix-
els. In the experimental section, we demonstrate that the sparse
approach with such a small patch size achieves comparable
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performance to semidense and dense methods in terms of robust-
ness when the interframe distance is small, which is typically
true for frame-to-frame motion estimation. In order to cope with
large motions, we apply the sparse image alignment algorithm
in a coarse-to-fine scheme. Therefore, the image is half-sampled
to create an image pyramid of five levels. The photometric cost
is then optimized at the coarsest level until convergence, start-
ing from the initial condition Tj;_; = I;«4. Subsequently, the
optimization is continued at the next finer level to improve the
precision of the result. To save processing time, we stop af-
ter convergence on the third level, at which stage the estimate
is accurate enough to initialize feature alignment. To increase
the robustness against dynamic obstacles, occlusions, and re-
flections, we additionally employ a robust cost function [24],
[34].

C. Feature Alignment

For feature alignment, we use a patch size of 8 x 8 pixels.
Since the reference patch may be multiple frames old, we use
an affine illumination model to cope with illumination changes
[59]. For all experiments, we limit the number of matched fea-
tures to 180 in order to guarantee a constant cost per frame.

D. Mapping

In the mapping thread, we divide the image in cells of fixed
size (e.g., 32 x 32 pixels). For every keyframe, a new depth
filter is initialized at the FAST corner [60] with highest score
in the cell, unless there is already a 2-D to 3-D correspondence
present. In cells where no corner is found, we detect the pixel
with highest gradient magnitude and initialize an edge feature.
This results in evenly distributed features in the image.

To speed up the depth estimation, we only sample a short
range along the epipolar line; in our case, the range corresponds
to twice the standard deviation of the current depth estimate. We
use an 8 x & pixel patch size for the epipolar search.

XI. EXPERIMENTAL EVALUATION

We implemented the proposed VO system in C++ and tested
its performance in terms of accuracy, robustness, and computa-
tional efficiency. We first compare the proposed sparse image
alignment algorithm against semidense and dense image align-
ment algorithms and investigate the influence of the patch size
used in the sparse approach. Finally, in Section XI-B, we com-
pare the full pipeline in different configurations against the state
of the art on 22 different dataset sequences.

A. Image Alignment: From Sparse to Dense

In this section, we evaluate the robustness of the proposed
sparse image alignment algorithm (see Section V-A) and com-
pares its performance to semidense and dense image alignment
alternatives. Additionally, we investigate the influence of the
patch size that is used for the sparse approach.
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(e)

Fig. 10. Image from the Urban Canyon dataset [61] (see Section XI-A) with
pixels used for image-to-model alignment (marked in green) for sparse, semi-
dense, and dense methods. Dense approaches use every pixel in the image,
semidense use just the pixels with high intensity gradient, and the proposed
sparse approach uses selected pixels at corners or along intensity gradient edges.
(a) Synthetic scene. (b) Depth of the scene. (c) Sparse. (d) Semidense. (e) Dense.

The experiment is based on a synthetic dataset with known
camera motion, depth, and calibration [61].* The camera per-
forms a forward motion through an urban canyon, as the excerpt
of the dataset in Fig. 10(a) shows. The dataset consists of 2500
frames with 0.2 m distance between frames and a median scene
depth of 12.4 m. For the experiment, we select a reference im-
age I, with known depth [see Fig. 10(b)] and estimate the rela-
tive pose T, of 60 subsequent images k € {r 4+ 1,...,r 4+ 60}
along the trajectory by means of image-to-model alignment. For
each image pair {I,, I}, the alignment is repeated 800 times
with initial perturbation that is sampled uniformly within a 2 m
range around the true value. We perform the experiment at 18
reference frames along the trajectory. The alignment is consid-
ered converged when the estimated relative pose is closer than
0.1 m from the ground truth. The goal of this experiment is to
study the magnitude of the perturbation from which image-to-
model alignment is capable to converge as a function of the
distance to the reference image. The performance in this ex-
periment is a measure of robustness: successful pose estimation
from large initial perturbations shows that the algorithm is ca-
pable of dealing with rapid camera motions. Furthermore, large
distances between the reference image I, and test image I
simulates the performance at low camera frame-rates.

For the sparse image alignment algorithm, we extract 100
FAST corners in the reference image [see Fig. 10(c)] and ini-
tialize the corresponding 3-D points using the known depthmap
from the rendering process. We repeat the experiment with patch
sizes ranging from 1 x 1 pixels to 5 x 5 pixels. We evaluate the
semidirect approach (as proposed in the LSD framework [41])
by using pixels along intensity gradients [see Fig. 10(d)]. Fi-
nally, we perform the experiment using all pixels in the reference
image as proposed in DTAM [15].

4The Urban Canyon dataset [61] is available at http://rpg.ifi.uzh.ch/fov.html.
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The results of the experiment are shown in Fig. 11. Each
plot shows a variant of the image alignment algorithm with
the vertical axis indicating the percentage of converged tri-
als, and the horizontal axis indicating the frame index counted
from the reference frame. We can observe that the difference
between semidense image alignment and dense image align-
ment is marginal. This is because pixels that exhibit no intensity
gradient are not informative for the optimization as their Jaco-
bians are zero [40]. We suspect that using all pixels becomes
useful only when considering motion blur and image defocus,
which is out of the scope of this evaluation. In terms of sparse
image alignment, we observe a gradual improvement when in-
creasing the patch size to 4 x 4 pixels. A further increase of the
patch size does not show improved convergence and will even-
tually suffer from the approximations adopted by not warping
the patches according to the surface orientation.

Compared to the semidense approach, the sparse approaches
do not reach the same convergence radius, particularly in terms
of distance to the reference image. For this reason, SVO uses
sparse image alignment only to align with respect to the previous
image (i.e., k = r 4+ 1), in contrast to LSD [41] which aligns
with respect to the last keyframe.

In terms of computational efficiency, we note that the com-
plexity scales linearly with the number of pixels used in the
optimization. The plots show that we can tradeoff using a high
frame-rate camera and a sparse approach with a lower frame-
rate camera and a semidense approach. The evaluation of this
tradeoff would ideally incorporate the power consumption of
both the camera and processors, which is out of the scope of this
evaluation.

B. Real and Synthetic Experiments

In this section, we compare the proposed algorithm against
the state of the art on real and synthetic datasets. Therefore,
we present results of the proposed pipeline on the EUROC
benchmark [62], the TUM RGB-D benchmark dataset [63], the
synthetic ICL-NUIM dataset [37], and our own dataset that com-
pares different FoV cameras. A selection of these experiments,
among others (e.g., from the KITTI benchmark), can also be
viewed in the video attachment of this paper.

1) EUROC Datasets: The EUROC dataset [62] consists of
stereo images and inertial data that were recorded with a VI Sen-
sor [64] mounted on a microaerial vehicle. The dataset contains
11 sequences, totaling 19 min of video, recorded in three differ-
ent indoor environments. Extracts from the dataset are shown in
Fig. 12(a) and (b). The dataset provides a precise ground-truth
trajectory that was obtained using a Leica MS50 laser tracking
system.

In Table I, we present results of various monocular and stereo
configurations of the proposed algorithm. For comparison, we
provide results of ORB-SLAM [22], LSD-SLAM [16],and DSO
[42]. The listed results of ORB-SLAM and DSO were obtained
from [42], which provides results with and without enforcing
real-time execution. To provide a fair comparison with ORB-
SLAM and LSD-SLAM, their capability to detect large loop
closures via image retrieval was deactivated.
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Fig. 11.  Convergence probability of the model-based image alignment algo-
rithm as a function of the distance to the reference image and evaluated for
sparse image alignment with patch sizes ranging from 1 x 1 to 5 x 5 pixels,
semidense, and dense image alignment. The colored region highlights the 68%
confidence interval.
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Fig. 12.
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(a) and (b) Excerpts of the EUROC dataset [62] with tracked corners marked in green and edgelets marked in magenta. (c) and (d) Reconstructed

trajectory and point cloud on the first two trajectories of the dataset. (c) Machine Hall 1. (d) Machine Hall 2.

TABLE I
ABSOLUTE TRANSLATION ERRORS (RMSE) IN METERS OF THE EUROC DATASET AFTER TRANSLATION AND SCALE ALIGNMENT WITH THE
GROUND-TRUTH TRAJECTORY AND AVERAGING OVER FIVE RUNS

Stereo Monocular
SVO SVO SVO SVO SVO SVO SVO SVO ORB-SLAM DSO DSO LSD-SLAM
(edgelets)  (edgelets + (bundle (edgelets)  (edgelets + (bundle (no (real-time) (no loop-
prior) adjustment) prior) adjustment) loop-closure) closure)
Machine Hall 01 0.08 0.08 0.04 0.04 0.17 0.17 0.10 0.06 0.03 0.05 0.05 0.18
Machine Hall 02 0.08 0.07 0.07 0.05 0.27 0.27 0.12 0.07 0.02 0.05 0.05 0.56
Machine Hall 03 0.29 0.27 0.27 0.06 0.43 0.42 0.41 X 0.02 0.18 0.26 2.69
Machine Hall 04 2.67 2.42 0.17 X 1.36 1.00 043 0.40 0.20 2.50 0.24 2.13
Machine Hall 05 043 0.54 0.12 0.12 0.51 0.60 0.30 X 0.19 0.11 0.15 0.85
Vicon Room 1 01 0.05 0.04 0.04 0.05 0.20 0.22 0.07 0.05 0.04 0.12 0.47 1.24
Vicon Room 1 02 0.09 0.08 0.04 0.05 0.47 0.35 0.21 X X 0.11 0.10 1.11
Vicon Room 1 03 0.36 0.36 0.07 X X X X X X 0.93 0.66 X
Vicon Room 2 01 0.09 0.07 0.05 0.05 0.30 0.26 0.11 X 0.02 0.04 0.05 X
Vicon Room 2 02 0.52 0.14 0.09 X 0.47 0.40 0.11 X 0.07 0.13 0.19 X
Vicon Room 2 03 X X 0.79 X X X 1.08 X X 1.16 1.19 X

Loop-closure detection and optimization was deactivated for ORB and LSD-SLAM to allow a fair comparison with SVO. The results of ORB-SLAM were kindly provided by its authors

and the results of DSO were obtained from [42].

To understand the influence of the proposed extensions of
SVO, we run the algorithm in various configurations. We show
results with FAST corners only, with edgelets, and with using
motion priors from the gyroscope (see Section IX). In these
first three settings, we only optimize the latest pose; conversely,
the keyword “Bundle Adjustment” indicates that results were
obtained by optimizing the whole history of keyframes by means
of the incremental smoothing algorithm iSAM?2 [9]. Therefore,
we insert and optimize every new keyframe in the iSAM?2 graph
when a new keyframe is selected. In this setting, we do neither
use motion priors nor edgelets. Since SVO is a VO, it does not
detect loop closures and only maintains a small local map of
the last five to ten keyframes. Additionally, we provide results
with the same configuration using both image streams of the
stereo camera. Therefore, we apply the approach introduced in
Section VIII to estimate the motion of a multicamera system.

To obtain a measure of accuracy of the different approaches,
we align the final trajectory of keyframes with the ground-truth
trajectory using the least squares approach proposed in [65].
Since scale cannot be recovered using a single camera, we
also rescale the estimated trajectory to the best fit with the
ground-truth trajectory. Subsequently, we compute the Eu-
clidean distance between the estimated and ground-truth

keyframe poses and compute the mean, median, and root-mean-
square error (RMSE) in meters. We chose the absolute trajectory
error measure instead of relative drift metrics [63] because the
final trajectory in ORB-SLAM consists only of a sparse set of
keyframes, which makes drift measures on relatively short tra-
jectories less expressive. The reported results are averaged over
five runs.

The results show that using a stereo camera in general
results in higher accuracy. Apart from the additional visual
measurements, the main reason for the improved results is that
the stereo system does not drift in scale and intercamera tri-
angulations allow to quickly initialize new 3-D landmarks in
case of on-spot rotations. On this dataset, SVO achieves in most
runs a higher accuracy than LSD-SLAM. ORB-SLAM and DSO
achieve consistently very high accuracy and mostly outperform
SVO in the monocular setting. More elaborate photometric mod-
eling as proposed in DSO [42] may help SVO to cope with the
abrupt illumination changes that are present in the Vicon Room
sequences. Together with frequent on-spot rotations, this is the
main reason why SVO fails on these sequences.

The strength of SVO becomes visible when analyzing the
timing and processor usage, which are reported in Table II. In
the table, we report the mean time to process a single frame in
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TABLE II
FIRST AND SECOND COLUMN REPORT MEAN AND STANDARD DEVIATION OF
THE PROCESSING TIME IN MILLISECONDS ON A LAPTOP WITH AN
INTEL CORE 17 (2.80-GHZ) PROCESSOR

Mean St.D. CPU@20 fps
SVO Mono 2.53 0.42 55+ 10%
SVO Mono + Prior 2.32 0.40 70 £+ 8%
SVO Mono + Prior + Edgelet 2.51 0.52 73 + 7%
SVO Mono + Bundle Adjustment 5.25 10.89 72 4+ 13%
SVO Stereo 4.70 1.31 90 £ 6%
SVO Stereo + Prior 3.86 0.86 90 + 7%
SVO Stereo + Prior + Edgelet 4.12 1.11 91 +7%
SVO Stereo + Bundle Adjustment 7.61 19.03 96 + 13%
ORB Mono SLAM (No loop closure) 29.81 5.67 187 £+ 32%
LSD Mono SLAM (No loop closure) 23.23 5.87 236 +37%

Since all algorithms use multithreading, the third column reports the average
CPU load when providing new images at a constant rate of 20 Hz.

TABLE III
MEAN TIME CONSUMPTION IN MILLISECONDS BY INDIVIDUAL COMPONENTS
OF SVO MoNoO ON THE EUROC MACHINE HALL 1 DATASET

Thread Intel i7 [ms] Jetson TX1 [ms]
Sparse image alignment 1 0.66 2.54
Feature alignment 1 1.04 1.40
Optimize pose & landmarks 1 0.42 0.88
Extract features 2 1.64 5.48
Update depth filters 2 1.80 2.97

We report timing results on a laptop with Intel Core i7 (2.80 GHz) processor
and on the NVIDIA Jetson TX1 ARM processor.

milliseconds and the standard deviation over all measurements.
Since all algorithms make use of multithreading and the time
to process a single frame may, therefore, be misleading, we ad-
ditionally report the CPU usage (continuously sampled during
execution) when providing new images at a constant rate of
20 Hz to the algorithm. All measurements are averaged over
three runs of the first EUROC dataset and computed on the same
laptop computer (Intel Core 17-2760QM CPU). In Table III, we
further report the average time consumption of individual com-
ponents of SVO on the laptop computer and an NVIDIA TX1
ARM processor. The results show that the SVO approach is
up to ten times faster than ORB-SLAM and LSD-SLAM and
requires only a fourth of the CPU usage. The reason for this
significant difference is that SVO does not extract features and
descriptors in every frame, as in ORB-SLAM, but does so only
for keyframes in the concurrent mapping thread. Additionally,
ORB-SLAM—being a SLAM approach—spends most of the
processing time in finding matches to the map (see Table I in
[66]), which in theory results in a pose estimate without drift
in an already mapped area. Contrarily, in the first three config-
urations of SVO, we estimate only the pose of the latest cam-
era frame with respect to the last few keyframes. Compared to
LSD-SLAM, SVO is faster because it operates on significantly
less numbers of pixels, hence also does not result in a semi-
dense reconstruction of the environment. This, however, could
be achieved in a parallel process, as we have shown in [39], [54],
and [67]. The authors of DSO report timings between 151 ms

per keyframe and 18 ms for a regular frame in a single-threaded
real-time setting. For a five-times real-time setting, the numbers
are 65 ms and 9 ms, respectively. Similarly, processing of a
keyframe in SVO takes approximately 10 ms longer than a reg-
ular frame when bundle adjustment is activated, which explains
the high standard deviation in the timing results. Using a motion
prior further helps to improve the efficiency as the sparse image
alignment optimization can be initialized closer to the solution
and, therefore, needs less iterations to converge.

An edgelet provides only a 1-D constraint in the image
domain, while a corner provides a 2-D constraint. Therefore,
whenever sufficient corners can be detected, the SVO algorithm
prioritizes the corners. Since the environment in the EUROC
dataset is well textured and provides many corners, the use of
edgelets does not significantly improve the accuracy. However,
the edgelets bring a benefit in terms of robustness when the
texture is such that no corners are present.

2) TUM Datasets: A common dataset to evaluate VO al-
gorithms is the TUM Munich RGB-D benchmark [63]. The
dataset was recorded with a Microsoft Kinect RGB-D cam-
era, which provides images of worse quality (e.g., rolling
shutter, motion blur) than the VI-Sensor in the EUROC dataset.
Fig. 13 shows excerpts from the “fr2_desk”and “fr2_xyz"
datasets, which have a trajectory length of 18.8 m and 7 m,
respectively. Ground truth is provided by a motion capture sys-
tem. Table IV shows the results of the proposed algorithm
(averaged over three runs) and comparisons against related
works. The resulting trajectory and the recovered landmarks are
shown in Fig. 14. The results from related works were obtained
from the evaluation in [16] and [22]. We argue that the better
performance of ORB-SLAM and LSD-SLAM is due to the ca-
pability to detect loop closures.

3) ICL-NUIM Datasets: The ICL-NUIM dataset [37] is a
synthetic dataset that aims to benchmark RGB-D, VO, and
SLAM algorithms. The dataset consists of two times of four
trajectories of length 6.4, 1.9, 7.3, and 11.1 m. The synthesized
images are corrupted by noise to simulate the real camera im-
ages. The datasets are very challenging for purely vision-based
odometry due to difficult texture and frequent on-spot rotations
as can be seen in the excerpts from the dataset in Fig. 15.

Table V reports the results of the proposed algorithm (aver-
aged over five runs). Similar to the previous datasets, we re-
port the RMSE after translation and scale alignment with the
ground-truth trajectory. Fig. 16 shows the reconstructed maps
and recovered trajectories on the “living room” datasets. The
maps are very noisy due to the fine-grained texture of the scene.
We also run LSD-SLAM on the dataset and provide results of
ORB-SLAM and DSO that we both obtained from [42]. Due to
the difficult texture in this dataset, we had to set a particularly
low FAST corner threshold to enable successful tracking (to 5
instead of 20).

A lower threshold results in detection of many low-quality
features. However, features are only used in SVO once their
corresponding scene depth is successfully estimated by means
of the robust depth filter described in Section VI. Hence, the
process of depth estimation helps to identify the stable features
with low score that can be reliably used for motion estimation.
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TABLE IV
RESULTS ON THE TUM RGB-D BENCHMARK DATASET [63]

fr2_desk fr2_xyz
RMSE [cm] RMSE [cm]

SVO Mono (with edgelets) 9.7 1.1
SVO Mono + Bundle Adjustment 6.7 0.8
LSD-SLAM [16] O 4.5 1.5
ORB-SLAM [22] O 0.9 0.3
PTAM [21] x [/ x 0.2/243
Semi-Dense VO [41] 135 3.8
Direct RGB-D VO [34] % 1.8 1.2
Feature-based RGB-D SLAM [68] % O 95 2.6

Results for [16], [34], [41], and [68] were obtained from [16] and for PTAM
we report two results that were published in [22] and [41], respectively.
Algorithms marked with v use a depth-sensor, and () indicates loop-
closure detection. The symbol x indicates that tracking the whole trajectory
did not succeed.

(@) ' (b)

Fig. 13. Impressions from the TUM RGB-D benchmark dataset [63] with
tracked corners in green and edgelets in magenta. (a) fr2 desk. (b) fr2 xyz.
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Fig. 14.  Estimated trajectory and point cloud of the TUM “fr2_desk” dataset
(a) fr2_desk (side). (b) fr2 desk (top).

In this dataset, we were not able to refine the results of SVO
with bundle adjustment. The reason is that the iSAM?2 backend
is based on Gauss Newton, which is very sensitive to under-
constrained variables that render the linearized problem inde-
terminant. The frequent on-spot rotations and very low parallax
angle triangulations result in many underconstrained variables.
Using an optimizer that is based on Levenberg Marquardt or
adding additional inertial measurements [45] would help in such
cases.

4) Circle Dataset: Inthe last experiment, we want to demon-
strate the usefulness of wide FoV lenses for VO. We recorded
the dataset with a microaerial vehicle that we flew in a motion
capture room and commanded it to fly a perfect circle with down
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TABLE V
ABSOLUTE TRANSLATIONAL ERRORS (RMSE) IN METERS AFTER
TRANSLATION AND SCALE ALIGNMENT ON THE ICL-NUIM DATASET [37]
(AVERAGE OVER FIVE RUNS)

SVO SVO ORB- ORB- DSO DSO LSD-SLAM
(edgelets) SLAM (no SLAM (no (real-  (no loop-
loop- loop, time)  closure)
closure)  real-time)
Living 0.04 0.02 0.01 0.02 0.01 0.02 0.12
Room 0
Living 0.07 0.07 0.02 0.03 0.02 0.03 0.05
Room 1
Living 0.09 0.10 0.07 0.37 0.06 033 0.03
Room 2
Living x 0.07 0.03 0.07 0.03  0.06 0.12
Room 3
Office 0.57 0.34 0.20 0.29 021  0.29 0.26
Room 0
Office X 0.28 0.89 0.60 083 0.64 0.08
Room 1
Office x 0.14 0.30 0.30 036 023 0.31
Room 2
Office 0.08 0.08 0.64 0.46 0.64 046 0.56
Room 3

The symbol x indicates that tracking the whole trajectory did not succeed. Results of
ORB-SLAM and DSO were obtained from [42]. Loop closure detection and optimization
was deactivated for ORB and LSD-SLAM for a fair comparison with SVO.

-l ‘
(a)

Fig. 15.  Impressions from the synthetic ICL-NUIM dataset [37] with tracked
corners marked in green and edgelets in magenta.
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Fig. 16.  Results on the ICL-NUIM [37] noisy synthetic living room dataset.

(a) Living room 0. (b) Living room 3.

facing camera. Subsequently, we flew the exact same trajectory
again with a wide fisheye camera. Excerpts from the dataset
are shown in Fig. 17. We run SVO (without bundle adjustment)
on both datasets and show the resulting trajectories in Fig. 18.
To run SVO on the fisheye images, we use the modifications
described in Section VII. While the recovered trajectory from
the perspective camera slowly drifts over time, the result on the
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(a) (b)

Fig. 17.  SVO tracking with (a) perspective and (b) fisheye camera lens.
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Fig. 18. Comparison of perspective and fisheye lenses on the same circular

trajectory that was recorded with a microaerial vehicle in a motion capture room.
The ORB-SLAM result was obtained with the perspective camera images and
loop closure was deactivated for a fair comparison with SVO. ORB-SLAM with
a perspective camera and with loop closure activated performs as good as SVO
with a fisheye camera.

fisheye camera perfectly overlaps with the ground-truth trajec-
tory. We also run ORB-SLAM and LSD-SLAM on the trajec-
tory with the perspective images. The result of ORB-SLAM is
as close to the ground-truth trajectory as the SVO fisheye re-
sult. However, if we deactivate loop-closure detection (shown
result), the trajectory drifts more than SVO. We were not able
to run LSD-SLAM and ORB-SLAM on the fisheye images as
the open source implementations do not support very large FoV
cameras. Due to the difficult high-frequency texture of the floor,
we were not able to initialize LSD-SLAM on this dataset. A
more in-depth evaluation of the benefit of large FoV cameras
for SVO is provided in [61].

XII. DISCUSSION

In this section, we discuss the proposed SVO algorithm in
terms of efficiency, accuracy, and robustness.

A. Efficiency

Feature-based algorithms incur a constant cost of feature and
descriptor extraction per frame. For example, ORB-SLAM re-
quires 11 ms per frame for ORB feature extraction only [22].

This constant cost per frame is a bottleneck for feature-based
VO algorithms. On the contrary, SVO does not have this con-
stant cost per frame and benefits greatly from the use of high
frame-rate cameras. SVO extracts features only for selected
keyframes in a parallel thread, thus, decoupled from hard real-
time constraints. The proposed tracking algorithm, on the other
hand, benefits from high frame-rate cameras: the sparse im-
age alignment step is automatically initialized closer to the
solution and, thus, converges faster. Therefore, increasing the
camera frame-rate actually reduces the computational cost per
frame in SVO. The same principle applies to LSD-SLAM. How-
ever, LSD-SLAM tracks significantly more pixels than SVO and
is, therefore, up to an order of magnitude slower. To summarize,
on a laptop computer with an Intel i7 2.8 GHz CPU processor,
ORB-SLAM and LSD-SLAM require approximately 30 and
23 ms, respectively, per frame, while SVO requires only 2.5 ms
(see Table II).

B. Accuracy

SVO computes feature correspondence with subpixel accu-
racy using direct feature alignment. Subsequently, we optimize
both structure and motion to minimize the reprojection errors
(see Section V-B). We use SVO in two settings: if highest ac-
curacy is not necessary, such as for motion estimation of mi-
croaerial vehicles [54], we only perform the refinement step
(Section V-B) for the latest camera pose, which results in the
highest frame-rates (i.e., 2.5 ms). If highest accuracy is required,
we use iISAM2 [9] to jointly optimize structure and motion of
the whole trajectory. iSAM2 is an incremental smoothing algo-
rithm, which leverages the expressiveness of factor graphs [8]
to maintain sparsity and to identify and update only the typ-
ically small subset of variables affected by a new measure-
ment. In an odometry setting, this allows iISAM?2 to achieve the
same accuracy as batch estimation of the whole trajectory, while
preserving real-time capability. Bundle adjustment with iSAM?2
is consistent [45], which means that the estimated covariance
of the estimate matches the estimation errors (e.g., are not
overconfident). Consistency is a prerequisite for optimal fusion
with additional sensors [18]. In [45], we, therefore, show how
SVO can be fused with inertial measurements. LSD-SLAM, on
the other hand, only optimizes a graph of poses and leaves the
structure fixed once computed (up to a scale). The optimization
does not capture correlations between the semidense depth es-
timates and the camera pose estimates. This separation of depth
estimation and pose optimization is only optimal if each step
yields the optimal solution.

C. Robustness

SVO is most robust when a high frame-rate camera is used
(e.g., between 40 and 80 frames/s). This increases the resilience
to fast motions as it is demonstrated in the video attachment. A
fast camera, together with the proposed robust depth estimation,
allows us to track the camera in environments with repetitive
and high-frequency texture (e.g., grass or asphalt as shown in
Fig. 19). The advantage of the proposed probabilistic depth es-
timation method over the standard approach of triangulating
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Fig. 19.

Successful tracking in scenes of high-frequency texture.

points from two views is that we only observe far fewer outliers
as every depth filter undergoes many measurements until con-
vergence. Furthermore, erroneous measurements are explicitly
modeled, which allows the depth to converge in highly self-
similar environments.

A further advantage of SVO is that the algorithm starts di-
rectly with an optimization. Data association in sparse image
alignment is directly given by the geometry of the problem
and, therefore, no RANSAC [23] is required as it is typical in
feature-based approaches. Starting directly with an optimization
also simplifies the incorporation of rotation priors, provided by
a gyroscope, as well as the use of multicamera rigs. Using mul-
tiple cameras greatly improves resilience to on-spot rotations as
the FoV of the system is enlarged and depth can be triangulated
from intercamera-rig measurements.

Finally, the use of gradient edge features (i.e., edgelets) in-
creases the robustness in areas where only few corner features
are found. Our simulation experiments have shown that the pro-
posed sparse image alignment approach achieves comparable
performance as semidense and dense alignment in terms of ro-
bustness of frame-to-frame motion estimation.

XIII. CONCLUSION

In this paper, we proposed the semidirect VO pipeline “SVO,”
which is significantly faster than the current state-of-the-art VO
algorithms while achieving highly competitive accuracy. The
gain in speed is due to the fact that features are only extracted
for selected keyframes in a parallel thread and feature matches
are established very quickly and robustly with the novel sparse
image alignment algorithm. Sparse image alignment tracks a
set of features jointly under epipolar constrains and can be used
instead of KLT tracking [69] when the scene depth at the fea-
ture positions is known. We further propose to estimate the scene
depth using a robust filter that explicitly models outlier measure-
ments. Robust depth estimation and direct tracking allows us to
track very weak corner features and edgelets. A further benefit
of SVO is that it directly starts with an optimization, which al-
lows us to easily integrate measurements from multiple cameras
as well as motion priors. The formulation further allows using
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large FoV cameras with fisheye and catadioptric lenses. The
SVO algorithm has further proven to be successful in real-world
applications, such as vision-based flight of quadrotors [54]
or 3-D scanning applications with smartphones.

APPENDIX

In this section, we derive the analytic solution to the multi-
camera sparse image alignment problem with motion prior.

Given a rig of M calibrated cameras ¢ € C with known ex-
trinsic calibration Tcg, the goal is to estimate the incremental
body motion Tgg_; by minimizing the intensity residual ric
of corresponding pixels in subsequent images. Correspondiné
pixels are found by means of projecting a known point on the
scene surface p; = g_; p; (prefix B — 1 denotes that the point
is expressed in the previous frame of reference) into images of
camera C that were recorded at poses k& and k — 1, which are
denoted I§ and I{ |, respectively. To improve the convergence
properties of the optimization (see Section XI-A), we accumu-
late the intensity residual errors in small patches P centered at
the pixels where the 3-D points project. Therefore, we use the
iterator variable Au to sum the intensities over a small patch
‘P. We further assume that a prior of the incremental body mo-
tion Ty 1 = (R, p) is given. The goal is to find the incremental
camera rotation and translation Ty, _; = (R, p) that minimizes
the sum of squared errors
(R*,p*) = argmin C(R, p),

(R,p)

3

N
1 1 1
CRp) =33 37 Sl I, + 5l + 5l

ceC i=1 AueP
(13)

where IV is the number of visible 3-D points. We have further
defined the image intensity and prior residuals as

re = I (ea(Rp; + ) + Au) — I (n(Tes p) + Au)
rp = log(R'R)"

r, =p—p-. (14)

For readability, we write the cost function in matrix form as
C(R,p) =r(R,p)'S 'r(R,p) (15)

where X is a block diagonal matrix composed of the measure-
ment covariances. Since the residuals are nonlinear in (R, p), we
solve the optimization problem in an iterative Gauss—Newton
procedure [70]. Therefore, we substitute the following pertur-
bations in the cost function:

R — Rexp(ég"), p < p+Rip (16)

where the hat operator (.)" forms a 3 x 3 skew-symmetric ma-
trix from a vector in R3.

Asitis common practice for optimizations involving rotations
[45], [70], we use the exponential map exp(+) to perturb the rota-
tion in the tangent space of SO(3) which avoids singularities and
provides a minimal parametrization of the rotation increment.



FORSTER et al.: SVO: SEMIDIRECT VISUAL ODOMETRY FOR MONOCULAR AND MULTICAMERA SYSTEMS 263

The exponential map (at the identity) exp : s0(3) — SO(3) as-
sociates a 3 x 3 skew-symmetric matrix to a rotation and coin-
cides with the standard matrix exponential (Rodrigues’ formula)

sin(lgl) n  1—cos(lpl) a2
ol ¢t e @)

The inverse relation is the logarithm map (at the identity), which
associates R € SO(3) to a skew-symmetric matrix

¢-(R—RT) tr(R) — 1
“osin(g) 2> - a9

exp(¢") =T+ (17)

log(R) = with ¢ = cos ™ (
Note that log(R)" = ay, where a and ¢ are the rotation axis
and the rotation angle of R, respectively.

Substituting the perturbations makes the residual errors a
function defined on a vector space. This allows us to linearize
the quadratic cost at the current estimate, form the normal equa-
tions, and solve them for the optimal perturbations

JTzflJ [5¢T (SpT]T

~J's"!r(R, p) (19)

where we introduced the variable J, which stacks all Jacobian
matrices from the linearization. The solution is subsequently
used to update our estimate in (R, p) according to (16). This
procedure is repeated until the norm of the update vectors is
sufficiently small, which indicates convergence.

In the following, we show how to linearize the residuals to
obtain the Jacobians. Therefore, we substitute the perturbations
in the residuals and expand

r(R exp(6¢”))
= log(R'R exp(69™))Y ~
rp(p +Rop)
= (p +Rdp) —
ree(R exp(69 ))

=1 (W(TCB(R exp(69”)p; + p))) - I, (W(TCB P7))

(20)

ra(R) + 3" (log(8R))5¢b

=rp(p) +RIp 21

S
=

12

I$ 1(7r (Tep exp (™)~ ))

(’R’ TCB I—5d)) ))

I} (7(Tce (Rp; +P))) —

o

1

I (7(Tce(Rp; + p))) —

al
I} (7(Tce(Rp; + P))) —

@ i1 (7(Tesp; + Tesp)d9))

(e) 013, (u) 8w(p)

~rc(R) — ——= Reppl'd
I[( ) 811 u=r(.p;) ap ’p:(,p, CBP; ¢

(22)
ric(p +RJp)

= I} (r(Tce (Rp; + P + ROP))) — Ity (7(Tcs p;))

()

~ I¢ (7(Te (Rp; +p))) — I5_y (7(Tce(p; — 6p)))

(e) 915 | (u) o (p)

~rc(R)+ ——= Regop. (23
ric(R) u luer(p) Op ’p:ﬁpi cBop- (23)

In step (a), we have used a first-order expansion of the matrix
logarithm

log (exp(¢") exp(69"))” = ¢ + 3. (¢)3¢)

which holds for small values of §¢. The term J, ! is the inverse
of the right Jacobian of SO(3) [70], [71]

iy o Loan 1 1+COS(II¢|)) "2
570 = 1+ 39"+ (o + i) @
In step (b), we invert the perturbation and apply it to the ref-
erence frame. This trick stems from the inverse compositional
[48] formulation, which allows us to keep the term contain-
ing the perturbation constant such that the Jacobian of the in-
tensity residual remains unchanged over all iterations, greatly
improving the computational efficiency. In (c), we first used
thatexp(d¢") ™! = exp(—J¢") and subsequently used the first-
order approximation of the exponential map

exp(dgp) ~ I+ 5.
For step (d), we used a property of skew symmetric matrices
5¢"p = —p"ig. (26)

Finally, in step (e), we perform a Taylor expansion around the
I i (w)
T ou

(24)

(25)

perturbation. The term 2

at pixel u and ag—(”) is the derivative of the camera projection

function, which for standard pinhole projection with focal length
(fx, fy) and camera center (c,, ¢, ) takes the form

denotes the image derivative

o (p) f? 0 oz
P _ with p = [z,, 2]T. (27)
p 0 fv Y
2 Th
To summarize, the Jacobians of the residuals are
Ory -1 AT
—— =J " (Log(R'R
55 = 77 (Loa(™R)
ory
——P _R
oop
Orc 01¢  (u or
© 015 (w) LI
85¢ Ou u=m(cp;) ap P=cPi
Or 1€ 0
IrC — k—1 (u) 7T(F’) ‘ RCB- (28)
85p ou u=m(cp;) ap P=cPj
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