Visual Inertial Fusion

Contents

T Preliog x 1
1.1 _Outhine of the exercisel 1

2 Exercise 1: IMU Process Model Implementation| 2
... 2
2.2 Mathematical Formulationl. o oo 2

TS Vision M 3

[4 Tightly-Coupled Optimization Framework| 4

In this exercise, we will combine what we have learned in the previous exercises to implement a
visual inertial odometry pipeline. We will fuse the information from an Inertial Measurement Unit
(IMU) and a stereo camera system to estimate the motion of a moving drone.

1 Preliminaries

1.1 Outline of the exercise

This exercise showcases the development of a Visual-Inertial Odometry (VIO) system that combines
data a camera and IMU to estimate the real-time motion of a drone. The system is built using a
tightly-coupled optimization framework, which merges high-frequency inertial data with visual fea-
tures tracked across stereo image pairs to provide accurate and reliable motion estimation. Designed
with a multi-threaded architecture, it efficiently manages tasks like sensor data processing, feature
tracking, and state estimation simultaneously.

The implementation is tailored to work with the EuRoC MAV dataset and is organized into
modular components for image processing, inertial data handling, and filter update.

Implementation Framework

As usual, we provide you with a comprehensive Visual-Inertial Odometry framework, including
the complete optimization implementation (optimization_vio.py), to run the whole pipeline via
(vio.py). Your task focuses specifically on implementing the visual-inertial fusion components within
this framework.

The provided codebase contains a complete sliding window optimizer implementation for state
estimation, thread management, and data handling infrastructure, image processing utilities for
feature detection and tracking, visualization tools for debugging and result analysis, and an interface
to the EuRoC MAYV dataset.

Your implementation will center on three main components in the fusion pipeline. To download
the dataset, you will need to visit the [EuRoC dataset webpage. For this exercise, we will need the
Machine Hall 01 dataset, so please download the dataset separately using this download link and
put the MH_01_easy in the data folder.

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_01_easy/MH_01_easy.zip

Robotics and Perception Group,
University of Zurich. 2 EXERCISE 1: IMU PROCESS MODEL IMPLEMENTATION

Camera Trajectory

Camera View

Figure 1: Trajectory estimation using Visual-Inertial Odometry. Left: Estimated trajectory. Right:
Image from the EuRoC dataset.

We provide function stubs with detailed documentation about input and output formats in each
file. While exact numerical reproduction of reference outputs is not required (due to the nature
of sensor fusion and numerical optimization), we encourage you to use the provided random seed
functionality (np.random.seed()) to ensure reproducible results during development and debugging.

You may utilize code from previous exercises related to computer vision and estimation theory.
While reference implementations are available, you're welcome to use your own implementations if
you prefer. The framework is designed to be modular, allowing you to focus on the fusion aspects
while leveraging the provided visual-inertial fusion and system infrastructure

Remark: In this exercise, we use FAST corner as the feature points, but since we do not
implement it from scratch, we will not allow the usage of the FAST corner in the Mini project.

2 Exercise 1: IMU Process Model Implementation

2.1 Objective

The first exercise focuses on implementing the fundamental IMU process model that propagates the
state estimate between visual measurements. This process model forms the backbone of any visual-
inertial system by providing high-frequency state updates using inertial measurements from the IMU.
The implementation requires careful handling of several critical components to ensure accurate state
propagation.

The process model must properly account for sensor biases by applying corrections to both the
gyroscope and accelerometer measurements. These biases are time-varying and must be estimated
as part of the state. Additionally, the model needs to compensate for the effect of gravity in the
acceleration measurements, as the accelerometer measures specific force rather than true acceleration.

A key challenge is maintaining proper quaternion normalization throughout the integration pro-
cess. Quaternions representing rotation must always maintain the unit norm, but numerical integra-
tion can introduce errors that violate this constraint. The implementation must include mechanisms
to periodically normalize the quaternion state to prevent these errors from accumulating.

2.2 Mathematical Formulation

The IMU provides raw measurements of angular velocity w,, and linear acceleration a,, in the
body frame. These measurements contain biases and noise that must be accounted for in the state

Robotics and Perception Group,
University of Zurich. 3 STEREO VISION MEASUREMENTS

propagation. The continuous-time system dynamics are described by a set of differential equations
for each component of the state vector.
The orientation quaternion gy g evolves according to:

. 1
qwB = iﬂ(w)QWB

bg = g

Ow = Rwp(qws)(am — ba) + gw @)
ba = 1ba

pw = vw

The quaternion kinematics matrix (w) plays a crucial role in the orientation propagation and is

defined as: o]
—lwx] w
o) = |3] @

Before using the raw measurements in these equations, bias correction must be applied. The cor-
rected angular velocity is computed as w = wy, —b, where b, represents the gyroscope bias. Similarly,
the corrected acceleration is given by a = a,, — b, where b, is the accelerometer bias. The gravity
vector gy must be properly accounted for in the world frame, typically as gy = [0,0, —9.81]7m/s2.
The terms ny, and 7, represent random walk processes that model the evolution of the biases.

The rotation matrix Ry p(gwp) transforms vectors from the body frame to the world frame and
is computed from the current quaternion estimate. Throughout the integration process, the quater-
nion must be periodically normalized to maintain its unit norm property, ensuring valid rotation
representations.

To implement the state integration, we must discretize these continuous-time equations. The
midpoint integration method provides a good balance between accuracy and computational efficiency.
For a time interval [ty, tx11], the integration proceeds as follows:

Ryy1 = Riexp(wimiaAt) (3)
Vi1l = Vi + (Amia —)AL (4)
1
Pi+1 = Pk + VAt + §(amid —g)At? (5)

where w,,;q and a,,;q are computed using bias-corrected measurements at the interval midpoint.

3 Stereo Vision Measurements

Geometric Framework

Stereo vision provides rich 3D information through the observation of features from two cameras
with known relative pose. The geometric relationship between a 3D point and its projections forms
the basis for our measurement model.

Consider a 3D point py in the world frame. This point is transformed into the camera frame
through:

cpP =Rew wp +c tew (6)
where Ry ¢ and ty o represent the camera pose. For a calibrated stereo camera system with
baseline b, the point projects onto the left and right image planes according to:

7.(cp) = chég Igj (7)
zo—b
Tr(cP) = {f?yig _:_C;w} (8)

The camera intrinsics (fy, fy, ¢z, ¢y) define the projection properties of each camera. The baseline
b introduces a horizontal disparity between the left and right images, enabling depth perception.

Robotics and Perception Group,
University of Zurich. 4 TIGHTLY-COUPLED OPTIMIZATION FRAMEWORK

Stereo Reprojection Error

For a stereo observation z = [ur,, vy, ur,vr]?, the reprojection error is:

_ [me(ep) = [ur, vr]”
Tproj = W;(gp)f[u;,v;}T (9)

4 Tightly-Coupled Optimization Framework

The tightly-coupled optimization framework integrates information from both the IMU and vision
modalities into a unified estimation process. This approach ensures that all sensor measurements
contribute collaboratively to refine the estimated state.

State Vector Structure

At the core of the optimization lies the state vector, which encapsulates both the motion state and
the observed features within the environment. Specifically, the full state vector in the optimization
window is structured as:

X:[vavlanI7ba7bga Pfiy--Prfn] (10)

IMU state Feature positions

Combined Cost Function

The optimization minimizes a combined cost function:

J(x) = Jivu (%) + Jyision (X) (11)
—_—— —
IMU term Vision term

The IMU term comes from Part 1:

K
T () = 3 e 09 B (12)
k=1

where r7pyp 1 represents the error between predicted and measured IMU states.
The vision term from Sec. Bl is:

N
Teision(¥) = 3 > tprojii (XI5, (13)

i=1j€O;

Optimization Problem
The complete optimization problem becomes:
x* = argmin J(x) (14)
This is solved using iterative methods like Levenberg-Marquardt:
1. Linearize residuals around current estimate:
r(x + 0x) = r(x) + Jox (15)
2. Solve the normal equations:
(JTWI + AI)éx = —J"Wr (16)

3. Update state: x «+ x + 0x

For implementation, you can utilize SciPy’s least_squares| solver which provides an efficient
implementation of the Levenberg-Marquardt algorithm:

The residual_function should return the concatenated IMU and vision residuals, properly
weighted by their respective covariances. The solver will automatically handle the iterative opti-
mization process and return the optimal state estimate.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

	Preliminaries
	Outline of the exercise

	Exercise 1: IMU Process Model Implementation
	Objective
	Mathematical Formulation

	Stereo Vision Measurements
	Tightly-Coupled Optimization Framework

