
Two-view Geometry

Contents
1 Linear Triangulation 1

1.1 Linear system of equations . 1
1.2 Solving the system . 1
1.3 Writing linearTriangulation . 2

2 Eight-point algorithm 2
2.1 Derivation of the eight-point algorithm . 3
2.2 Implementation . 3

2.2.1 Implementation of the eight-point algorithm . 3
2.2.2 Normalized eight-point algorithm . 4

2.3 Extracting E from F . 5

3 Putting things together: Structure from Motion 5
3.1 Decomposing the essential matrix E into (R, T) . 6
3.2 Visualization . 6

4 Numerical Exercises 8

The goal of this laboratory session is to get you familiarized with dense epipolar matching and
3D reconstruction.

The goal of this laboratory session is to practice with several techniques used in two-view geometry
such as: linear triangulation of 3-D points from their projections, estimation of the fundamental
matrix via the 8-point algorithm, and extraction of relative camera motion from the essential matrix.

In the first two sections, we will write functions to perform linear triangulation and fundamental
matrix estimation, and verify they work correctly using synthetic data. In the last section, we will
use these functions to build a minimal structure from motion pipeline that will estimate two cameras’
relative poses, as well as a sparse point cloud of a scene, given two images and a set of noise-free
correspondences between these images. The expected output of the pipeline is shown in Fig. 5.

1 Linear Triangulation

1.1 Linear system of equations
We will first derive a way to triangulate the position of a 3D point P i = (Xi, Y i, Zi, 1)T in the scene,
given its projections pi1 = (ui1, v

i
1, 1)T and pi2 on two images (expressed in homogeneous coordinates),

and the projection matrices M1 and M2 (see Fig. 1).
As seen in the lecture slides, P i can be estimated by solving the following linear system of

equations: [
[pi1]×M1

[pi2]×M2

]
· P i = 0 (1)

⇐⇒ A · P i = 0 (2)

1

Robotics and Perception Group,
University of Zurich. 1 LINEAR TRIANGULATION

where [x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

.
1.2 Solving the system
(1) has the general form AX = 0, which we already encountered in a previous exercise. As a reminder,
we look for a non-trivial solution X that minimizes ||A · X||2 subject to the constraint ||X||2 = 1
(to avoid the trivial solution X = 0). This can be done using the Singular Value Decomposition
(SVD) of A: A = USV T where U ,V are unitary matrices and S is diagonal. The solution of the
problem AX = 0 is the eigenvector corresponding to the smallest eigenvalue of ATA, which simply
corresponds to the last column of V (remember that both Matlab or Pyhthon’s numpy.linalg.svd
sorts the singular values by decreasing order).

1.3 Writing linearTriangulation

Fill in the code of the function linearTriangulation that takes as inputs a set of correspondences
{pi1 ↔ pi2}i=1..N , the projection matrices M1 and M2, and returns P =

[
P 1 · · · PN

]
, a 4 × N

matrix containing the triangulated points (in homogeneous coordinates). To achieve this, iterate
over all the points using a for loop and incrementally build P. Do not forget to dehomogeneize the
triangulated points Pi at the end of the function, i.e. divide each row of P by the last row. Then run
the script run_test_triangulation.m in Matlab or run_test_triangulation.py to check if your
function works correctly. The errors for each 3D point should be very close to zero, as illustrated in
Fig. 2.

Figure 1: The goal of triangulation is to estimate P given p1,p2 and the projection matrices M1,
M2.

Figure 2: Result of running the script run_test_triangulation.m

2

Robotics and Perception Group,
University of Zurich. 2 EIGHT-POINT ALGORITHM

2 Eight-point algorithm
During the course, the essential matrix E, which encapsulates the geometry of two views in a
calibrated framework (i.e. when both cameras are calibrated), was presented. Specifically, given two
calibrated (sometimes also called normalized) point correspondences p1 ↔ p2, where pj = K−1j pj ,
j = 1, 2:

pT2 Ep1 = 0 (3)
where E = [T]×R encodes the relative pose between the two cameras. Replacing the normalized
coordinates with pixel coordinates:

(K−12 p2)TE(K−11 p1) = 0

⇐⇒ pT2 (K−T2 EK−11)p1 = 0

⇐⇒ pT2 Fp1 = 0

where F = K−T2 EK
−1

1 is the fundamental matrix. It is more general than the essential matrix
because the equation pT2 Fp1 = 0 holds also in the uncalibrated case, i.e. when the calibration
matrix of the cameras is unknown. The fundamental matrix F can be estimated exactly like the
essential matrix E, using the 8-point algorithm as shown in the lecture slides. However, we will now
derive the same equations in a different way, that will allow for an elegant implementation of the
eight-point algorithm.

2.1 Derivation of the eight-point algorithm
As shown during the course, the epipolar constraints (Fig. 3) can be written:

pi>2 Fpi1 = 0 (4)

where {pi1 ↔ pi2}i=1..N are a set of point correspondences in both images. Using a useful property
of the Kronecker product, (4) can be rewritten as:

(pi1 ⊗ pi2)T vec(F) = 0

where vec(F) denotes the vectorization of the matrix F formed by stacking its columns into a single
column vector, and ⊗ the Kronecker product. We can now stack the N constraints into a single
N × 9 matrix Q:

Q =

 (p1
1 ⊗ p1

2)T

...
(pN1 ⊗ pN2)T


and then solve for vec(F) which satisfies:

Q · vec(F) = 0 (5)

We solve (5) in the least-squares sense (i.e. we seek F that minimizes the epipolar constraints (4) in
a least-squares sense). The fundamental matrix F has rank 2 (like the essential matrix E), therefore
a valid fundamental matrix must satisfy det(F) = 0.

Figure 3: Two-view geometry: writing that p1,p2 and T are coplanar vectors yields the essential
matrix equation (3)

3

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Vectorization_%28mathematics%29

Robotics and Perception Group,
University of Zurich. 2 EIGHT-POINT ALGORITHM

2.2 Implementation
In this section, you will implement the eight-point algorithm to estimate F . You will then extract
the essential matrix E from F , using the calibration matrices K1 and K2.

2.2.1 Implementation of the eight-point algorithm

Complete the function fundamentalEightPoint, which receives a set of point correspondences {pi1 ↔
pi2} (in homogeneous coordinates) and returns the 3× 3 fundamental matrix F that minimizes the
epipolar constraints piT2 Fpi1 = 0 in a least-squares sense.

A few tips

• Matlab’s kron or Python’s numpy.kron function (which implements the Kronecker product)
will be useful to build the matrix Q.

• The problem Q · vec(F) = 0 has again the form QX = 0. To solve it you can therefore proceed
exactly like in section 1.2. You will first compute the SVD: Q = UΣV T . Then the solution
vec(F) will be given by the last column of V .

• Once you have estimated vec(F), you can use the reshape function to convert vec(F) back to
F .

• You will need to correct the estimated matrix F to enforce that det(F) = 0. This can be done
by first computing the SVD of F :

F = U

σ1 0 0
0 σ2 0
0 0 σ3

V T
and then forcing the smallest singular value to be 0 by updating F as follows:

F = U

σ1 0 0
0 σ2 0
0 0 0

V T
. This constraint is required for all the epipolar lines in an image to intersect at a single point,
the epipole.

Error measures The quality of the estimated fundamental matrix F can be measured using
different cost functions. For example, we provide code to compute the algebraic error given by the

sum of squared epipolar constraints
√

1
N

∑N
i=1

(
piT2 Fpi1

)2
. A better quality criterion is given by the

function distPoint2EpipolarLine provided, since it measures a geometric quantity in the image
plane: the Euclidean distance from points to their epipolar lines given by the estimated fundamental
matrix F . Specifically, this function computes the Root-Mean-Square error

(1

N

N∑
i=1

(
d2⊥(pi1, `

i
1) + d2⊥(pi2, `

i
2)
)) 1

2

,

where `i1 = FTpi2 and `i2 = Fpi1 are the epipolar lines in images 1 and 2, respectively, and d⊥(p, `)
measures the point-to-line distance in the image planes.

Testing Run the first section of the MATLAB script run_test_8point.m or the Python script
run_test_8point.py to test your function fundamentalEightPoint. The script generates a number
of exact (i.e., noise-free) point correspondences, and computes the two errors described in the previous
section. With such a data set you should get exact results (up to machine precision), i.e. a value
< 10−10 for both the algebraic and geometric errors.

4

Robotics and Perception Group,
University of Zurich. 2 EIGHT-POINT ALGORITHM

Now run the second section, which runs the function fundamentalEightPoint on a set of noisy
point correspondences (a small amount of Gaussian noise has been added compared to the first
section). You will see that both the resulting algebraic error and the geometric error are now quite
high, which means something is wrong with the function fundamentalEightPoint. Can you see
what?

2.2.2 Normalized eight-point algorithm

It turns out, that (as seen in class), if there is a significant difference between the orders of magnitude
of the individual 2D points {pi1 = (ui1, v

i
1)T }i=1..N and {pi2 = (ui2, v

i
2)T }i=1..N on each image plane, or

if there are significant offsets, the numerical conditioning of the system of equations in the eight-point
algorithm is poor, which makes the algorithm unstable, very sensitive to noise.

This can be fixed using a normalized eight-point algorithm, which estimates the fundamental
matrix on a set of normalized correspondences (with better numerical properties) and then unnor-
malizes the result to obtain the fundamental matrix for the given (unnormalized) correspondences.

A classical way to do this is by building two normalized sets of 2D points {p̃i1} and {p̃i2} by scaling
and applying an offset to (respectively) {pi1} and {pi2} in such a way that the centroid of each set is
0 and the average distance of a point on each set to the centroid is equal to

√
2. This can be done

for every point as follows:

p̃ij =

√
2

σj
(pij − µj) (6)

where µj = 1
N

∑
i p
i
j is the centroid of set {pij} and σ2

j = 1
N

∑
i ||pij − µj ||2 is the mean squared

magnitude of the centered points (alternatively, one can use the mean distance 1
N

∑
i ||pij − µj || to

normalize the points instead of σj ; it does not matter much). Conveniently, (6) can be expressed
linearly (i.e., as a matrix product) by using the homogeneous coordinates pij = (uij , v

i
j , 1)T = (pij , 1)T

and p̃ij = (ũij , ṽ
i
j , 1)T = (p̃ij , 1)T :

p̃ij =

sj 0 −sjµxj
0 sj −sjµyj
0 0 1

pij

p̃ij , Tjp
i
j

where sj ,
√
2

σj
.

The normalized eight-point algorithm can therefore be summarized in three steps:

1. Normalize point correspondences: {pi1 ↔ pi2} −→ {p̃i1 ↔ p̃i2}, where p̃ij = Tjp
i
j for j = 1, 2

2. Estimate the fundamental matrix using the eight-point algorithm: {p̃i1 ↔ p̃i2} −→ F̃

3. Unnormalize the fundamental matrix: F̃ −→ F = TT2 F̃ T1.

Complete the function normalise2dpts(). Remember that normalization is carried out in Euclidean
coordinates, not in homogeneous coordinates (the last coordinate of pij may not be 1). Use it to
complete fundamentalEightPoint_Normalized which should implement the previous three steps.
Finally, run the last section of the script run_test_8point.m and check that, this time, the resulting
errors are much lower than when using the unnormalized eight-point algorithm. You should obtain
an algebraic error of 2.20 and a geometric error of 41.51 pixels.

2.3 Extracting E from F

We established above a relationship between E and F :

F = K−T2 EK
−1

1 (7)

Use (7) to write E in terms of F ,K1 andK2 and complete the code of the function estimateEssentialMatrix()
which should call fundamentalEightPoint_Normalized() and then convert the estimated funda-
mental matrix F to the essential matrix E, given the calibration matrices.

5

Robotics and Perception Group,
University of Zurich. 3 PUTTING THINGS TOGETHER: STRUCTURE FROM MOTION

3 Putting things together: Structure from Motion
In this section, we use the functions written in the first two sections to implement of simple Structure
from Motion pipeline, as seen during the course. We will assume that a set of noise-free point corre-
spondences is provided (in the next exercise you will learn how to filter out outlier correspondences).
A template code to complete is given in the script run_sfm.m in Matlab or run_sfm.py in Python.
In this section, we assume: K1 = K2 , K.

First, we will estimate the essential matrix E using the point correspondences and K. Second, we
will extract the relative camera positions R, T from E and use them to build the projection matrices
M1and M2. Finally, we will use linear triangulation to build a sparse point cloud of the scene.

3.1 Decomposing the essential matrix E into (R, T)

In the rest of the exercise, we choose camera 1 as the origin of the world coordinates, which means
we define the first projection matrix as M1 = K1[I|0].

We now turn to extracting the relative transformation between camera 1 and camera 2 from the
essential matrix E = [T]×R. As seen in the lecture, there are four possible solutions (Ri, Ti) that
are consistent with the essential matrix E, namely:

[R1|T1] = [UWV T |u3]

[R2|T2] = [UWTV T |u3]

[R3|T3] = [UWV T | − u3]

[R4|T4] = [UWTV T | − u3]

where W =

0 −1 0
1 0 0
0 0 1

 and u3 is the last column of U in the SVD: E = UΣV T . However, only

one of those solutions is physically feasible in the sense that the triangulated 3-D points using the
camera motion are in front of both cameras (see Fig. 4).

• Complete the function decomposeEssentialMatrix that returns the two possible rotations
UWV T , UWTV T and the translation u3 from E. Important note! You need to make sure
that the returned rotation matrices are valid (i.e. their determinant is 1, and not −1). If the
determinant of UWV T or UWTV T is −1, simply invert the sign of the matrix.

• Complete the function disambiguateRelativePose that selects the correct relative pose among
the four possible configurations. To do that, you can, for each configuration (Ri, Ti), compute
the projection matrices M1 = K1[I|0] and M2 = K2

[
Ri Ti

]
, then triangulate the points

using linearTriangulation. Among the possible configurations, keep the one that yields
the highest number of triangulated points lying in front of the image plane, i.e. with positive
depth.

6

Robotics and Perception Group,
University of Zurich. 3 PUTTING THINGS TOGETHER: STRUCTURE FROM MOTION

Figure 4: The four possible configurations that are consistent with a given essential matrix E

3.2 Visualization
Now that you have found the correct projection matrix M2 = K2[R|T], as well as a point cloud of
triangulated points P, run the provided code to visualize the reconstructed 3-D points and camera
poses. Your results should be similar to those in Figs. 5 and 6.

Figure 5: 3-D scene (sparse points and camera poses) and point correspondences.

7

Robotics and Perception Group,
University of Zurich. 3 PUTTING THINGS TOGETHER: STRUCTURE FROM MOTION

–

Figure 6: Top view of the reconstructed scene.

8

Robotics and Perception Group,
University of Zurich. 4 NUMERICAL EXERCISES

4 Numerical Exercises
1. Prove that for a matrix R ∈ SO(3) and a, b ∈ R3

R(a× b) = (Ra)× (Rb)

2. Suppose we know the camera always moves (rotation R and translation t) in a plane parallel
to the image plane. Show that

• The essential matrix E = [T×]R is of special form

E =

0 0 a
0 0 b
c d 0

 , a, b, c, d ∈ R

where the cross-product matrix [T×] associated with the vector T is defined as shown
below 1.1.

• Without using the SVD-based decomposition, find a solution to [R|T] in terms of (a, b, c, d).

3. For a line l in the image plane defined as {x ∈ P2|x>l = 0}, the squared distance of a point
y ∈ R2 to the line in the image plane is the following:

d2 =
(y>l)2

||[e3]×l||2

where e3 is the unit vector in z-direction.

4. Consider a given essential matrix E and two matched points x1 and x2. In the noise-free case
where the matched points x1 and x2 are perfect and the essential matrix is correct the point x2
lies exactly on the epipolar line computed from E and x1, so the distance of x2 to the epipolar
of x1 is zero. However as soon as the matched points x1 and x2 are not noise-free this distance
is non-zero.

In the programming exercise you have used the function distPoint2EpipolarLine. You will
now prove that the quantity d calculated by this function

d(x1, x2)2 =
(x>2 Ex1)2

||[e3]×Ex1||2

corresponds to the squared distance of a matched point to the epipolar line.

9

	Linear Triangulation
	Linear system of equations
	Solving the system
	Writing linearTriangulation

	Eight-point algorithm
	Derivation of the eight-point algorithm
	Implementation
	Implementation of the eight-point algorithm
	Normalized eight-point algorithm

	Extracting E from F

	Putting things together: Structure from Motion
	Decomposing the essential matrix E into (R,T)
	Visualization

	Numerical Exercises

