
The Wayback Machine - https://web.archive.org/web/20221206023913/https://paulfurgale.info/news/2014/6/9/representing-rob…

PA U L F U R G A L EHOME NEWS PUBLICATIONS CONTACT

Representing Robot Pose: The
good, the bad, and the ugly.

June 9, 2014

I was at ICRA last week and I had the pleasure to talk at the

workshop entitled "What Sucks in Robotics and How to Fix It:

Lessons Learned from Building Complex Systems" organized by

Gian Diego Tipaldi and Cyrill Stachniss. This was a truly exceptional

event where people showed up to talk honestly and challenge each

other about robotics as a science and an engineering discipline.

My presentation was called "Representing Robot Pose: The good,

the bad, and the ugly", where I tried to give some basic

recommendations on how to talk about, write about, and code with

representations of robot attitude and pose. I have seen many hours

of productive time lost within my lab when students were trying to

interface an open source package or process a dataset where the

notion of robot pose was not clear enough to implement it correctly

without trial and error (and pain and misery and suffering).

Here are the slides from the talk. To make everything easily

accessible, I've written a brief overview below. Please let me know if

anything is unclear of if you find typos!

Overview

A large part of the practice of robotics is fundamentally about

developing machines that can perceive and interact with the real

physical world. And for that, we need to talk about, write about,

write computer programs that represent robot poses. For the most

part, we are extremely bad at this. There are hundreds of ways of

turning a handful of scalars into a transformation matrix and, unless

we are extremely clear about how to do this and how the result can

be applied, we are condemning each other to wasted time and

effort experimenting with the different possibilities until we find the

Search



one that fits. Rather than get in to religious discussions about which

representation is correct, I propose a minimum amount of

documentation to avoid ambiguity.

My goal in writing this is to convince you to go back to your

documentation, papers, datasets, and open-source software to

update the text so that the interpretation of the frame

transformations is completely unambiguous to the user. Said

another way, I would like you to help me reduce the amount of
suffering in the world. There are many, many interesting

problems that we still need to solve in robotics, and it pains me to

see students and engineers losing days struggling with basics that

can be avoided with some simple clear documentation.

I will use the notation that we have proposed for our software

library "Kindr". We traced this notation back to the book "Elastic

Multibody Dynamics -- A Direct Ritz Approach" by H. Bremer. I'll try

to find time to make another post about notation that covers the

major styles used in robotics.

1. Always provide a frame diagram

Any documentation about frame transformations is reliant on a

good frame diagram that shows how the frames are placed on the

robot. I follow the convention that the frames are colored with

x=red, y=green, and z=blue. If you don't provide a frame diagram, it

will be completely unclear to anyone how those frames are situated

on the robot. Look at this wikipedia page for a selection of the

widely varying conventions for terrestrial and aerospace vehicles.

2. When discussing vectors, be clear
about what vectors you are providing

Al Kelly's tech report on wheeled kinematics is a good introduction

to why you need three elements of decoration to clearly specify the

coordinates of a vector quantity. Here's a pictorial cheat sheet:

I find that many people are not convinced that we always need

three pieces of decoration. I think angular velocity is a good

motivator:

These kinds of terms actually come up when computing the

equations for wheeled or manipulator kinematics and it ends up

extremely useful to have notation expressive enough to be able to

write them down succinctly.

3. When discussing orientation, be very
clear about what orientation you are

providing

There are two big points to consider here. First, make sure you

specify how to go from whatever scalars you provide to a full

rotation matrix. Second, clearly specify which rotation matrix this is

(world-to-body, or body-to-world, for example). This will be most

clear if you provide some text like this:

It is also good to include some suggested phrases in your

documentation and use these phrases throughout your work. Here

is a pictorial cheat sheet with some suggested phrases. Note that

there is no agreement on these phrases across robotics so please

don't expect that other people use them the way that I do!

4. When discussing pose, be very clear
about what pose you are providing

This advice will be almost exactly the same as what I gave for

rotation matrices above. Again, there are two big points to consider.

First, make sure you specify how to go from whatever scalars you

provide to a full transformation matrix. Second, clearly specify

which transformation matrix this is. Here is my suggested text:

I've again included some suggested phrases in the pictorial

example.

I have a few more notes for this example.

1. Once again, there is no agreement on these phrases so

please don't assume that people use them the same way.

2. I've introduced simplified notation for points with only one

left subscript. If your paper or dataset is just dealing with

points and poses, this can simplify the notation greatly.

3. Since my PhD thesis, I have used homogeneous coordinates

to represent points. To disambiguate between

homogeneous coordinates (4x1) and Euclidean coordinates

(3x1), I use a different font; homogeneous are bold italics

and Euclidean are bold upright.

5. If it is not 100% clear, have fear. Use
a 3D plotting tool to check your guess

Most times it will not be totally clear how to go from the scalars

provided to a transformation matrix. If you are not 100% sure of the

answer, the least painful thing to do is to fire up your favorite 3D

plotting tool and plot the answers until things look right. Then write

the author and explain to them what documentation you would

have needed to get it right without guesswork.

Suggestions for coding style

26 Likes

NEWS OLDERNEWER

Comments (4)

At the autonomous systems lab, we try to transfer the notation you

see above directly into code so that it is clear when multiple people

work on the same function.

The important points are:

1. Defining a standard notation in code for transformation

matrices, points, and vectors.

2. Commenting each function or class with the list of

coordinate frames used.

3. adopting some notation for time indices. Here I have used

"kp1" for k+1 and "km1" for k-1.

Great! Please leave me any comments or questions below.

Share

Newest First

It is a while ago since you wrote this now. But the situation

in many software packages e.g. OpenCV is still the same,

unfortunately. Your solution is exactly what it takes in my

opinion. I wonder how engineers seem to master rotations

and translations without a clear notation.

I completely agree. I don't think anyone tries to

understand the details of transformations which

ultimately results in "buggy" code. And then life

eventually becomes miserable.

Thank you for the wonderful article. What is your favorite

3D plotting tool to use for visualization when in doubt?

Good post, but I think notation defined here is different

from some other papers/books. I wonder if you have tried

to write a post about notation that covers the major styles

used in robotics? Thanks a lot.

Preview Post Comment…

Martin Weisenhorn

2 years ago · 0 Likes

Aditya 2 years ago · 0 Likes

quaternion 4 years ago · 0 Likes

Lin 7 years ago · 0 Likes

