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Lab Exercise 11 – Event-based Vision
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Followed by departure to visit our lab



A Taxonomy of the Last 44 Years of VIO

3

Feature based (or indirect) 
(1980-2000)

Accuracy

Efficiency 
(speed and CPU load)

Robustness
(HDR, motion blur, low texture)

Indirect + Direct (from 2000)

+IMU  (from 2007)
(10x accuracy)

+Event 
Cameras 

(from 2018)



Open Challenges in Computer Vision

The past 60 years of research have been devoted to frame-based cameras but 
they are not good enough
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Dynamic RangeMotion blur Bandwidth-Latency tradeoff



Open Challenges in Computer Vision
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Bandwidth-Latency tradeoffExample grayscale VGA camera:
• 30 fps:

• Latency: 33 ms
• Bandwidth: 70 Megabits/s

• 1,000 fps : 
• Latency: 1 ms
• Bandwidth: 3,000 Megabits/s

• VGA event camera:
• Latency: 0.2 ms
• Bandwidth: <10 Megabits/s

Standard cameras suffer from the bandwidth-latency tradeoff: 
• A high framerate reduces perceptual latency but introduces significant bandwidth overhead for downstream tasks 
• A low framerate reduces the bandwidth but at the cost of increasing the latency, thus missing important scene 

dynamics for safety-critical tasks.



Open Challenges in Computer Vision
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Bandwidth-Latency tradeoff

Standard cameras suffer from the bandwidth-latency tradeoff: 
• A high framerate reduces perceptual latency but introduces significant bandwidth overhead for downstream tasks 
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Event 
cameras



What is an Event Camera

First commercialized by Prof. T. Delbruck in 2008 at the Institute of Neuroinformatics of UZH & ETH under the 
name of Dynamic Vision Sensor (DVS)

Advantages

• Sub millisecond latency with micro-second resolution

• High updated rate (1 MHz) 

• Negligible motion blur

• High-dynamic range (HDR) (140 dB instead 60 dB)

• Low power (1mW instead 1W) 

Challenges

• Paradigm shift: Requires new vision algorithms because:

• Asynchronous pixels 

• No intensity information (only binary intensity changes)

7

Image of solar eclipse captured by an event camera 
without black filter

Prof. Tobi Delbruck, UZH & ETH Zurich

Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008. PDF

https://sensors.ini.ch/
https://pdfs.semanticscholar.org/9def/c75da5ea17ff8af18dc5c6e49467db9de0ad.pdf


Animation of an Event Camera Output

8Video from here: https://youtu.be/LauQ6LWTkxM?t=30 

event

camera

output:

https://youtu.be/LauQ6LWTkxM?t=30
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Events in the image domain (𝑥, 𝑦)
Integration time can be arbitrary: from 1 microsecond to infinity

Events in the space-time domain (𝑥, 𝑦, 𝑡)

Conventional frames Conventional frames

y



Standard Camera vs. Event Camera

• A traditional camera outputs frames at fixed time intervals:

• By contrast, an event camera outputs asynchronous events at microsecond resolution. An event is 
generated each time a single pixel detects a change of intensity

10

time
frame next frame

time
events stream

event: 𝑡, 𝑥, 𝑦 , 𝑝

Event polarity (or sign) (+1 or -1): positive or negative change

Timestamp (s)

Pixel coordinates



Generative Event Model

• Consider the intensity at a single pixel (𝑥, 𝑦). An event is generated when the following condition is 
satisfied:
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Events are triggered 
asynchronously

log 𝐼(𝑥, 𝑦, 𝑡)

𝑂𝑁

𝑂𝐹𝐹 𝑂𝐹𝐹 𝑂𝐹𝐹

𝑂𝑁 𝑂𝑁

𝑂𝐹𝐹𝑂𝐹𝐹 𝑂𝐹𝐹

𝑂𝑁 𝑂𝑁

𝐶 = Contrast sensitivity

0 𝑡

log 𝐼 𝑥, 𝑦, 𝑡 + Δ𝑡 − log 𝐼 𝑥, 𝑦, 𝑡 = ±𝐶

Can we reconstruct the pixel intensity? log(𝐼 𝑥, 𝑦, 𝑡) = log(𝑥, 𝑦, 0) + Σ𝑘=1
𝑁𝑡 𝑝𝑘𝐶



Event cameras sample the signal when the signal deviates from 
the last sampled value by a threshold (level-crossing sampling)

12𝑡

𝐶

Positive event
Negative event

log 𝐼𝑝𝑖𝑥𝑒𝑙(𝑡)



By contrast, standard cameras sample the signal at uniform time 
intervals (uniform time sampling)

13𝑡

log 𝐼𝑝𝑖𝑥𝑒𝑙(𝑡)



Event cameras are inspired by the Human Eye

Human retina:

• 130 million photoreceptors 

• But only 2 million axons!

14
Brain



Who sells event cameras and how much are they?

• Prophesee & SONY:
• Resolution: 1M pixels

• Inivation & Samsung
• Resolution: VGA (640x480 pixels)

• CelePixel Technology & Omnivision:
• Resolution: 1M pixels

15

https://www.prophesee.ai/
https://inivation.com/buy/
https://www.celepixel.com/
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$180

https://www.prophesee.ai/
https://inivation.com/buy/
https://www.celepixel.com/


Event Camera Demo

17https://youtu.be/QxJ-RTbpNXw 

https://youtu.be/QxJ-RTbpNXw


Event Camera Demo

18Conradt, Cook, Berner, Lichtsteiner, Douglas, Delbruck, A pencil balancing robot using a pair of AER dynamic vision sensors, IEEE International Symposium on Circuits and Systems, 2009. PDF.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.696&rep=rep1&type=pdf


Low-light Sensitivity (night drive)

19Video courtesy of Prophesee: https://www.prophesee.ai

GoPro Hero 6 Aggregated event image
(pixel intensity equal to the sum of positive (+1) and 

negative (-1) events in a given time interval)

https://www.prophesee.ai/


High-speed Camera vs. Event Camera

20

High speed camera Standard camera Event Camera

Max fps or measurement rate Up to 1MHz
(watch the Slow Mo Guys on 
YouTube)

100-1,000 fps 1MHz

Resolution at max fps 640x64 pixels >1Mpxl >1Mpxl

Bits per pixels (event) 12 bits 8-10 per pixel ~40 bits/event {t,(x,y),p)}

Weight 6.2 Kg 30 g 30 g

Active cooling yes No cooling No cooling

Data rate 1.5 GB/s 32MB/s ~1MB/s on average (depends on 
dynamics & contrast threshold)

Mean power consumption 150 W + external light 1 W 1 mW

Dynamic range not specified 60-140 dB depending on the 
quality

140 dB

https://youtu.be/VgjyPmFKxCU?si=ia9PcmlIciexIROy&t=793
https://youtu.be/VgjyPmFKxCU?si=ia9PcmlIciexIROy&t=793


Current commercial applications

• Monitoring and surveillance

• Action and gesture recognition in HDR scenes

• Industrial automation

• Fast object counting

• Computational photography

• Deblurring, super resolution, HDR, slow-motion video

• High-speed robotics and Automotive:

• low-latency detection, object classification, low-power and low-memory storage

21



Calibration of an Event Camera

• Standard pinhole camera model still valid (same optics)

• Standard passive calibration patterns cannot be used

• need to move the camera → inaccurate corner detection

• Blinking patterns (computer screen, LEDs)

• ROS DVS driver + intrinsic and extrinsic mono & stereo calibration: https://github.com/uzh-rpg/rpg_dvs_ros

22
Mueggler, Huber, Scaramuzza, Event-based 6-DOF Pose Tracking for High-Speed Maneuvers, 

IEEE/RSJ International Conference on Robotics and Intelligent Systems (IROS), 2014. PDF.

https://github.com/uzh-rpg/rpg_dvs_ros
http://rpg.ifi.uzh.ch/docs/IROS14_Mueggler.pdf


A Simple Optical Flow Algorithm

23



A Simple Optical Flow Algorithm

• Let’s assume pure horizontal left-to-right motion of binary pattern in front of the camera

• White pixels become black → brightness decrease → negative events (-1, i.e., in black color)

24

Negative events: -1 (black)
No events: 0 (gray)

Positive events: +1 (white)



A Simple Optical Flow Algorithm

• The same edge, visualized in space-time

• Events are represented by dots

25

The edge is moving at 
a speed of:

𝑣 =
∆𝑥

∆𝑡

∆𝑥

∆𝑡



How do we unlock the outstanding potential of event cameras?

• Low latency

• High dynamic range

• No motion blur

26



1st order approximation of the Generative Event Model

• An event is generated when the following condition is satisfied:

• For many applications, it is convenient to derive a 1st order approximation

• Let us define 𝐿(𝑥, 𝑦, 𝑡) = 𝐿𝑜𝑔(𝐼(𝑥, 𝑦, 𝑡))

• Consider a given pixel 𝑝(𝑥, 𝑦) with gradient 𝛻𝐿(𝑥, 𝑦) undergoing the motion 𝒖 = (𝑢, 𝑣) in pixels, induced 
by a moving 3D point 𝑷

27

log 𝐼 𝑥, 𝑦, 𝑡 + Δ𝑡 − log 𝐼 𝑥, 𝑦, 𝑡 = ±𝐶

𝛻𝐿



1st order approximation of the Generative Event Model

• Let’s apply the brightness constancy assumption, which says that the intensity value of 𝑝 before and after 
the motion must remain unchanged:

• By replacing the right-hand term with its 1st order approximation at 𝑡 + ∆𝑡, we get: 

• This formula shows that maximum generation of events (i.e., higher event rate) occurs when the relative 
motion of the camera is perpendicular to the edge and is minimum when parallel to the edge.

28

𝐿 𝑥, 𝑦, 𝑡 = 𝐿 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + ∆𝑡

𝐿 𝑥, 𝑦, 𝑡 = 𝐿 𝑥, 𝑦, 𝑡 + ∆𝑡 +
𝜕𝐿

𝜕𝑥
𝑢 +

𝜕𝐿

𝜕𝑦
𝑣

֜  𝐿 𝑥, 𝑦, 𝑡 + ∆𝑡 − 𝐿 𝑥, 𝑦, 𝑡  = −
𝜕𝐿

𝜕𝑥
𝑢 −

𝜕𝐿

𝜕𝑦
𝑣

֜  ± 𝐶 = −𝛻𝐿 · 𝒖

𝑡

𝑡 + ∆𝑡

(𝑥, 𝑦) 

(𝑥, 𝑦) 

(𝑥 + 𝑢, 𝑦 + 𝑣) 



Application 1: Image Reconstruction from events

• Probabilistic simultaneous gradient reconstruction and rotation estimation from ±𝐶 = −𝛻𝐿 · 𝒖

• Obtain image intensity from gradient via Poisson reconstruction

• The reconstructed image has super-resolution and High Dynamic Range (HDR)

• Can run in real time on a GPU

29
Kim, Handa, Benosman, Ieng, Davison, Simultaneous Mosaicing and Tracking with an Event Camera, British Machine Vision Conference (BMVC), 2014. PDF.

http://www.bmva.org/bmvc/2014/files/paper066.pdf


Application 2: 6DoF Tracking from Photometric Map

• Probabilistic 6DoF motion estimation from  ±𝐶 = −𝛻𝐿 · 𝒖

• Assumes photometric map (𝑥, 𝑦, 𝑧, grayscale Intensity) is given

• Useful for VR/AR applications (low-latency, HDR, no motion blur)

• Can run in real time on a GPU

30
Gallego, Lund, Mueggler, Rebecq, Delbruck, Scaramuzza, Event-based 6-DOF Camera Tracking from Photometric Depth Maps, 

IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2018. PDF. Video.

http://rpg.ifi.uzh.ch/docs/PAMI17_Gallego.pdf
https://www.youtube.com/watch?v=iZZ77F-hwzs


Application 2: 6DoF Tracking from Photometric Map

31
Gallego, Lund, Mueggler, Rebecq, Delbruck, Scaramuzza, Event-based 6-DOF Camera Tracking from Photometric Depth Maps, 

IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2018. PDF. Video.

http://rpg.ifi.uzh.ch/docs/PAMI17_Gallego.pdf
https://www.youtube.com/watch?v=iZZ77F-hwzs


Combining Standard Cameras with Event Cameras

32

Event Camera Standard Camera

Update rate High (asynchronous): 1 MHz Low (synchronous)

Dynamic Range High (140 dB) Low (60 dB)

Motion Blur No Yes

Static motion No (event camera is a high pass filter) Yes

Absolute intensity No (but reconstructable up to a constant) Yes

Maturity < 10 years of research > 60 years of research!



DAVIS sensor: Events + Images + IMU

• Combines an event and a standard camera in the same pixel array (→ the same pixel can both trigger events and 
integrate light intensity). 

• It also has an IMU

33Brandli, Berner, Yang, Liu, Delbruck, A 240x180 130dB 3us latency global shutter spatiotemporal vision sensor. IEEE Journal on Solid State Circuits, 2014. PDF.

Events
time

Standard images

Spatio-temporal visualization 
of the output of a DAVIS sensor

Temporal aggregation of events 
overlaid on a DAVIS frame

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6889103


Application 1: Deblurring a blurry video

• Idea: A blurry image can be regarded as the integral of a sequence of latent images during the exposure 
time, while the events indicate the changes between the latent images

• Solution: sharp image obtained by subtracting the double integral of event from input image

34

− =

Input blur image Input events Output sharp image

Pan, Scheerlinck, Hartley, Liu, Dai, Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, 
International Conference on Computer Vision and Pattern Recognition, (CVPR), 2019. PDF.

log log

https://arxiv.org/abs/1811.10180
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35

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, 
International Conference on Computer Vision and Pattern Recognition, (CVPR), 2019. PDF.

Input blur image Output sharp video

https://arxiv.org/abs/1811.10180


Application 3: Event-based KLT Tracking

• Goal: Extract features from standard frames and track them using only events in the blind time between 
two frames 

• Uses the 1st order approximation of event generation model via joint estimation of patch warping and 
optic flow

36

Source code: https://github.com/uzh-rpg/rpg_eklt 

Gehrig, Rebecq, Gallego, Scaramuzza, EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, 
International Journal of Computer Vision (IJCV), 2019. PDF. Video. Code

https://github.com/uzh-rpg/rpg_eklt
http://rpg.ifi.uzh.ch/docs/IJCV19_Gehrig.pdf
https://youtu.be/ZyD1YPW1h4U
https://github.com/uzh-rpg/rpg_eklt


Recap

• All the approaches seen so far use the generative event model

                   

• or its 1st order approximation 

   which requires knowledge of the contrast sensitivity 𝐶

• Unfortunately, 𝑪 is scene dependent and might differ from pixel to pixel

• Alternative approach: Contrast maximization framework

37

log 𝐼 𝑥, 𝑦, 𝑡 + Δ𝑡 − log 𝐼 𝑥, 𝑦, 𝑡 = ±𝐶

±𝐶 = −𝛻𝐿 · 𝐮



Contrast Maximization Framework

• Motion estimation
• 3D reconstruction
• SLAM
• Optical flow estimation
• Feature tracking
• Motion segmentation
• Unsupervised learning

38



Contrast Maximization Framework

Idea: Warp spatio-temporal volume of events to maximize contrast (e.g., sharpness) of the resulting image

39

Aggregated image 
without motion correction

Aggregated image 
with motion correction

Gallego, Rebecq, Scaramuzza, A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, PDF, Video
Gallego, Gehrig, Scaramuzza, Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF. 

http://rpg.ifi.uzh.ch/docs/CVPR18_Gallego.pdf
https://youtu.be/KFMZFhi-9Aw
http://rpg.ifi.uzh.ch/docs/CVPR19_Gallego.pdf


Contrast Maximization Framework

• 𝒙𝑘
′ = 𝑾(𝒙𝑘 , 𝑡𝑘; 𝜽) :  This warps the (𝑥, 𝑦) pixels coordinates of each event, not their time. Possible warps: roto-translation, affine, 

homography.

• 𝐼(𝒙; 𝜽) = Σ𝑘=1
𝑁𝑒 𝑝𝑘𝛿(𝒙 − 𝒙𝑘

′ ) : This builds a grayscale image, where the intensity of each pixel at the warped location (𝑥’, 𝑦’) is equal 
to the summation of the polarity 𝑝 (i.e., positive and negative events (+1, −1))

• 𝜎2(𝐼(𝒙; 𝜽)): The assumption here is that if an image contains high variance then there is a wide spread of responses, both edge-like 
and non-edge like, representative of a normal, in-focus image. But if there is very low variance, then there is a tiny spread of 
responses, indicating there are very little edges in the image. As we know, the more an image is blurred, the less edges there are.

40

Input Events

𝒙𝑘
′ = 𝑾(𝒙𝑘, 𝑡𝑘; 𝜽)

Focus score
(variance of the image)

𝜎2(𝐼(𝒙; 𝜽))          

Image of
Warped Events

𝐼(𝒙; 𝜽) = Σ𝑘=1
𝑁𝑒 𝑝𝑘𝛿(𝒙 − 𝒙𝑘

′ )



Application 1: Image Stabilization

• Goal: Estimate rotational motion (3DoF) of an event camera

• Can process millions of events per second in real time on a smartphone PC (e.g., OdroidXU4)

• Works up to over ~1,000 deg/s

41Gallego, Scaramuzza, Accurate Angular Velocity Estimation with an Event Camera, IEEE Robotics and Automation Letters (RA-L), 2016. PDF. Video.

http://rpg.ifi.uzh.ch/docs/RAL16_Gallego.pdf
https://youtu.be/v1sXWoOAs_0


Application 2: Motion Segmentation

42
Stoffregen, Gallego, Drummond, Kleeman, Scaramuzza, Motion Segmentation by Motion Compensation, 

International Conference on Computer Vision (ICCV), 2019. PDF. Video.

https://arxiv.org/pdf/1904.01293
https://youtu.be/0q6ap_OSBAk


Application 3: Dynamic Obstacle Avoidance

• Works with relative speeds of up to 10 m/s

• Perception latency: 3.5 ms

43Falanga, Kleber, Scaramuzza, Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video

http://robotics.sciencemag.org/cgi/content/full/5/40/eaaz9712?ijkey=1Hv6p.mM6b6CI&keytype=ref&siteid=robotics
https://youtu.be/BzykucxFddI


44

Catching Dynamic Objects

Forrai, Miki, Gehrig, Hutter, Scaramuzza, Event-based Agile Object Catching with a Quadrupedal Robot, ICRA’23. PDF. Video

• Perception latency: 3.5 ms
• Works with relative speeds of up to 15 m/s

https://rpg.ifi.uzh.ch/docs/ICRA23_Forrai.pdf
https://youtu.be/FpsVB8EO54M


Application 4: “Ultimate SLAM”

Goal: combining events, images, and IMU for robust visual SLAM in HDR and high speed scenarios

45

Back-End

State-of-the-art 

Non-linear-optimization-based VIO

Rosinol-Vidal, Rebecq, Horstschaefer, Scaramuzza, Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed 
Scenarios, IEEE Robotics and Automation Letters (RAL), 2018 – PDF. Video. Best Paper Award Honorable Mention

Front End:
Feature tracking from Events and Frames

http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/jIvJuWdmemE


Application 4: “Ultimate SLAM”

• 85% accuracy gain over standard VIO in HDR and high speed scenarios

46
Rosinol-Vidal, Rebecq, Horstschaefer, Scaramuzza, Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed 

Scenarios, IEEE Robotics and Automation Letters (RAL), 2018 – PDF. Video. Best Paper Award Honorable Mention

Standard camera Event camera

http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/jIvJuWdmemE


Application 5: Autonomous Navigation in Low Light

• UltimateSLAM running on board (CPU: Odroid XU4)

47
Rosinol-Vidal, Rebecq, Horstschaefer, Scaramuzza, Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed 

Scenarios, IEEE Robotics and Automation Letters (RAL), 2018 – PDF. Video. Best Paper Award Honorable Mention

http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/jIvJuWdmemE


Learning with Event Cameras

• Approaches using synchronous, Artificial Neural Networks (ANNs) designed for standard images

• Asynchronous, Sparse ANNs

• Approaches using asynchronous, Spiking neural networks (SNNs)

48



Input representation

How do we pass sparse events into a convolutional neural network designed for standard images?

49Video from here

https://www.youtube.com/watch?v=cdcg-CdV7TU


Input representation

Represent events in space-time into a 3D voxel grid (𝑥, 𝑦, 𝑡): each voxel contains sum of positive and negative 
events falling within the voxel

50Video from here

𝑦

𝑡

x

𝑦

𝑡

x

https://www.youtube.com/watch?v=cdcg-CdV7TU


Application 1: Image Reconstruction from Events

51Rebecq, Ranftl, Koltun, Scaramuzza, High Speed and High Dynamic Range Video with an Event Camera, T-PAMI, 2019. PDF Video Code

Events Reconstructed image from events

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid 

http://rpg.ifi.uzh.ch/docs/arXiv19_Rebecq.pdf
https://youtu.be/eomALySSGVU
https://github.com/uzh-rpg/rpg_e2vid
https://github.com/uzh-rpg/rpg_e2vid


Overview

• Recurrent neural network (main module: Unet)

• Input: sequences of event tensors (3D spatio-temporal volumes of events[3])

• Trained in simulation only, without seeing a single real image

• To improve robustness we randomize the contrast sensitivity during simulation. 

• Event camera simulator (ESIM): http://rpg.ifi.uzh.ch/esim.html

52Rebecq, Ranftl, Koltun, Scaramuzza, High Speed and High Dynamic Range Video with an Event Camera, T-PAMI, 2019. PDF Video Code

http://rpg.ifi.uzh.ch/esim.html
http://rpg.ifi.uzh.ch/docs/arXiv19_Rebecq.pdf
https://youtu.be/eomALySSGVU
https://github.com/uzh-rpg/rpg_e2vid


ESIM: Event Camera Simulator

53

Open Source: http://rpg.ifi.uzh.ch/esim.html

Rebecq, Gehrig, Scaramuzza, ESIM: an Open Event Camera Simulator, Conference on Robot Learning (CORL), 2018. PDF. Video. Code.

http://rpg.ifi.uzh.ch/esim.html
http://rpg.ifi.uzh.ch/docs/CORL18_Rebecq.pdf
https://youtu.be/ytKOIX_2clo
http://rpg.ifi.uzh.ch/esim/index.html


Bullet shot by a gun (1,300 km/h)

54Rebecq, Ranftl, Koltun, Scaramuzza, High Speed and High Dynamic Range Video with an Event Camera, T-PAMI, 2019. PDF Video Code

Recall: trained in simulation only!

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid 

http://rpg.ifi.uzh.ch/docs/arXiv19_Rebecq.pdf
https://youtu.be/eomALySSGVU
https://github.com/uzh-rpg/rpg_e2vid
https://github.com/uzh-rpg/rpg_e2vid


HDR Video: Driving out of a tunnel

55Rebecq, Ranftl, Koltun, Scaramuzza, High Speed and High Dynamic Range Video with an Event Camera, T-PAMI, 2019. PDF Video Code

Recall: trained in simulation only!

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid 

http://rpg.ifi.uzh.ch/docs/arXiv19_Rebecq.pdf
https://youtu.be/eomALySSGVU
https://github.com/uzh-rpg/rpg_e2vid
https://github.com/uzh-rpg/rpg_e2vid


Application 2: Slow Motion Video

• We can combine an event camera with an HD RGB camera

• We use events to upsample low-framerate video by over 50 times with only 1/40th of 
the memory footprint!

56Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code.

Code & Datasets: http://rpg.ifi.uzh.ch/timelens 

http://rpg.ifi.uzh.ch/docs/CVPR21_Gehrig.pdf
https://youtu.be/dVLyia-ezvo
https://github.com/uzh-rpg/rpg_timelens
http://rpg.ifi.uzh.ch/timelens


Application 2: Slow Motion Video

• We can combine an event camera with an HD RG camera

• We use events to upsample low-framerate video by over 50 times with only 1/40th of 
the memory footprint!

57Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code.

Code & Datasets: http://rpg.ifi.uzh.ch/timelens 

http://rpg.ifi.uzh.ch/docs/CVPR21_Gehrig.pdf
https://youtu.be/dVLyia-ezvo
https://github.com/uzh-rpg/rpg_timelens
http://rpg.ifi.uzh.ch/timelens


Application 2: Slow Motion Video
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• We use events to upsample low-framerate video by over 50 times with only 1/40th of 
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58Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code.
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The Evolution of Event Cameras
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First event camera
by University of Zurich

Resolution: 128×128 pxl
Pixel size: 40 microns

2008

First event camera
commercialized by IniVation

Resolution: 640×480 pxl
Pixel size: 15 microns

2014

First Full-HD event sensors:

Resolution: 1280×720 pxl
Pixel size: 5 microns

20212019 20232022

Meta opens 
Event-based Sensing Lab

First event cameras in space



Collaboration with NASA for future space missions

Joint paper with NASA JPL:
Mahlknecht, Gehrig, Nash, Rockenbauer, Morrell, Delaune, Scaramuzza

Exploring Event Camera-based Odometry for Planetary Robots, RAL’22. PDF. Data & Code

➢Future planetary astrobiology missions aim at using drones for 
the exploration of lava tunnels as a priority objective for 
investigations

➢Lava tunnels host ice, which potentially hosts life

➢Lava tunnels can be used as shelters for future Mars missions

➢More info here

Low lightHigh Dynamic 

Range

https://rpg.ifi.uzh.ch/docs/arxiv22_Mahlknecht.pdf
https://uzh-rpg.github.io/eklt-vio/
https://www.swissinfo.ch/eng/business/droni-su-marte_-il-nostro-lavoro-ha-ispirato-il-volo-di-inguinuity-su-marte-/46560464
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Application 5: High-Speed Inspection of Countersinks

Salah et al, Zweiri, High speed neuromorphic vision-based inspection of countersinks in automated manufacturing processes, Journal of Intelligent Manufacturing



Other Applications

62



63Tulyakov, Gehrig, et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21

5,000 fps



Application 2: Deblurring a Blurry Video

64
Credit: Prophesee



Advanced Driver Assistance Systems (ADAS)
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Tesla Vision System
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Memory Bandwidth Requirements by ADAS level

67https://www.electronicspecifier.com/industries/automotive/pushing-the-envelope-for-adas-with-advanced-memory-technologies



Can we transfer this to Automotive?

Frames Events

Time

Standard camera Event camera



Low Latency Automotive Vision

69Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024



Magno and Parvo Pathways of the Primate Visual System
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Hybrid Asynchronous Object Detection

Event camera

commands

Standard Camera

Slow cognitive level

Fast cognitive level

Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024



72

Hybrid Asynchronous Object Detection

Use a CNN to provide image features to an asynchronous object detection network. These features are reused 

asynchronously, and thus enable object detection in the blind-time between frames

This enables early object detection, which cuts down perceptual latency!

CNN

Async. 
GNN

Object Detections

Events

Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024

Images



Low Latency Automotive Vision

73Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024



Low Latency Automotive Vision

74Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024



Low Latency Automotive Vision

75Gehrig, Scaramuzza, Low Latency Automotive Vision with Event Cameras, Nature, 2024

We show that using a 20 fps camera plus an event camera can achieve the same latency as a 
5,000 fps camera with the bandwidth of a 50 fps camera without compromising accuracy.



Readings

• Tutorial paper:
Gallego, Delbruck, Orchard, Bartolozzi, Taba, Censi, Leutenegger, Davison, Conradt, Daniilidis, Scaramuzza, 
Event-based Vision: A Survey, IEEE Transactions of Pattern Analysis and Machine Intelligence, 2020. PDF

• List of event camera papers, codes, datasets, companies: https://github.com/uzh-rpg/event-
based_vision_resources

• Event-camera simulator: http://rpg.ifi.uzh.ch/esim.html 

• More on event camera research: http://rpg.ifi.uzh.ch/research_dvs.html 
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http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf
https://github.com/uzh-rpg/event-based_vision_resources
https://github.com/uzh-rpg/event-based_vision_resources
http://rpg.ifi.uzh.ch/esim.html
http://rpg.ifi.uzh.ch/research_dvs.html


Understanding Check

Are you able to answer the following questions?

• What is an event camera and how does it work? 

• What are its pros and cons vs. standard cameras?

• Can we apply standard camera calibration techniques?

• How can we compute optical flow with a DVS?

• What is the generative model of an event camera (formula). Can you derive its 1st order approximation?

• Could you intuitively explain why we can reconstruct the intensity from a grayscale frame plus events and 
from events alone? What are the assumption? What are the failure modes?

• What is a DAVIS sensor?

• What is the focus maximization framework and how does it work? What is its advantage compared with the 
generative model?

77
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