

Vision Algorithms for Mobile Robotics

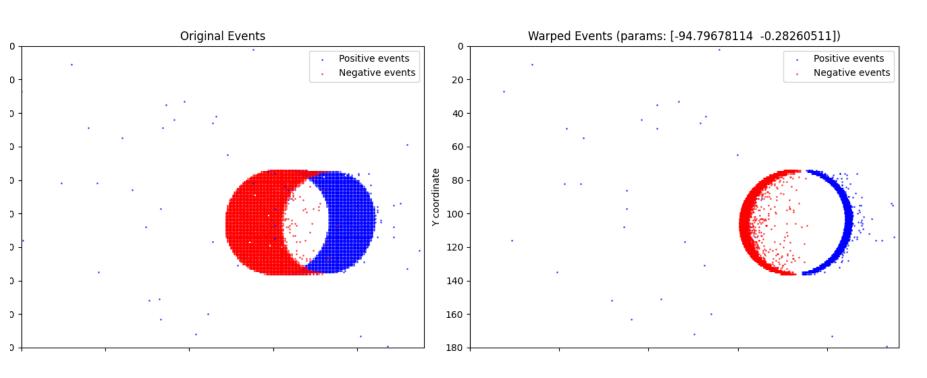
Lecture 14
Event-based Vision

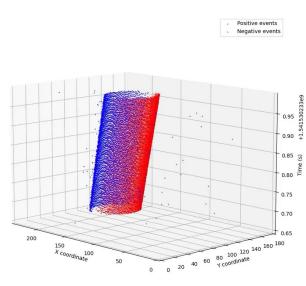
Davide Scaramuzza

https://rpg.ifi.uzh.ch

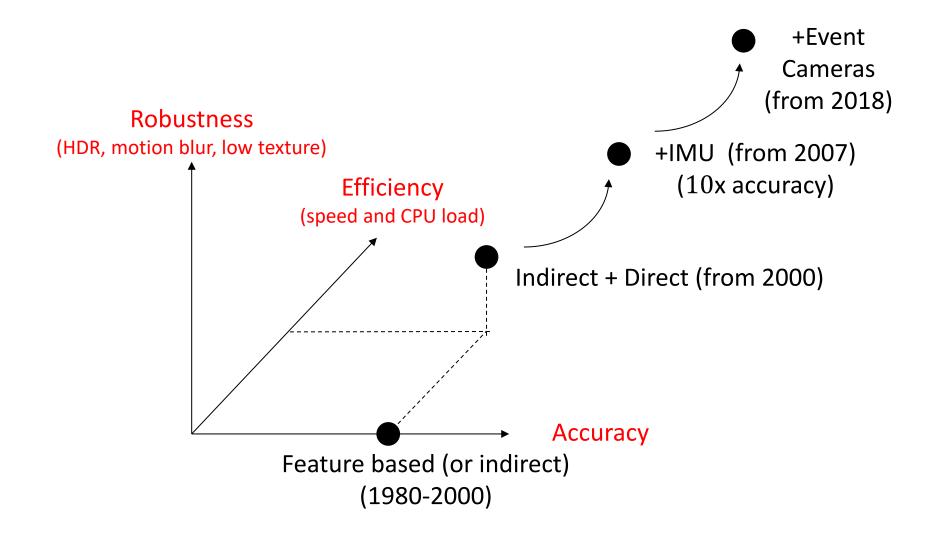
Lab Exercise 11 – Event-based Vision

Followed by departure to visit our lab





A Taxonomy of the Last 44 Years of VIO



Open Challenges in Computer Vision

The past 60 years of research have been devoted to frame-based cameras but they are not good enough

Motion blur

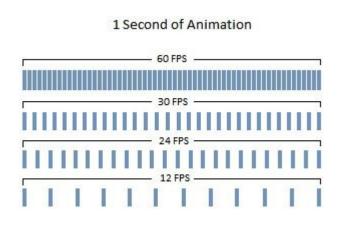
Dynamic Range

Bandwidth-Latency tradeoff

Open Challenges in Computer Vision

Standard cameras suffer from the **bandwidth-latency tradeoff**:

- A high framerate reduces perceptual latency but introduces significant bandwidth overhead for downstream tasks
- A **low framerate reduces the bandwidth** but at the cost of increasing the latency, thus missing important scene dynamics for safety-critical tasks.



Example grayscale VGA camera:

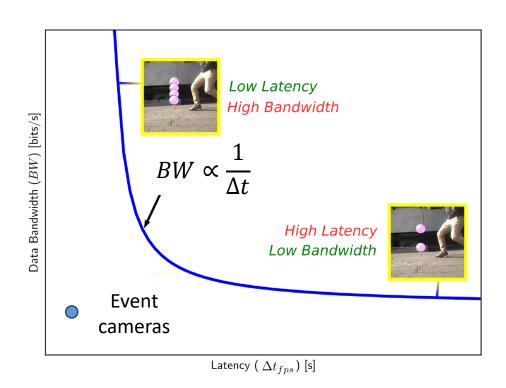
- 30 fps:
 - Latency: 33 ms
 - Bandwidth: 70 Megabits/s
- 1,000 fps:
 - Latency: 1 ms
 - Bandwidth: 3,000 Megabits/s
- VGA event camera:
 - Latency: **0.2 ms**
 - Bandwidth: <10 Megabits/s

Bandwidth-Latency tradeoff

Open Challenges in Computer Vision

Standard cameras suffer from the **bandwidth-latency tradeoff**:

- A high framerate reduces perceptual latency but introduces significant bandwidth overhead for downstream tasks
- A **low framerate reduces the bandwidth** but at the cost of increasing the latency, thus missing important scene dynamics for safety-critical tasks.



Bandwidth-Latency tradeoff

What is an Event Camera

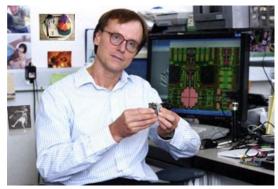
First commercialized by Prof. T. Delbruck in 2008 at the Institute of Neuroinformatics of UZH & ETH under the name of Dynamic Vision Sensor (DVS)

Advantages

- Sub millisecond latency with micro-second resolution
- **High updated rate** (1 MHz)
- Negligible motion blur
- High-dynamic range (HDR) (140 dB instead 60 dB)
- Low power (1mW instead 1W)

Challenges

- Paradigm shift: Requires new vision algorithms because:
 - Asynchronous pixels
 - **No intensity information** (only binary intensity changes)



Prof. Tobi Delbruck, UZH & ETH Zurich

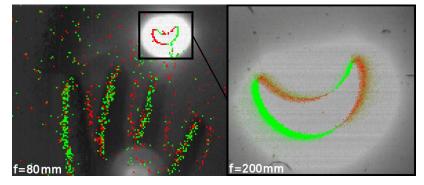
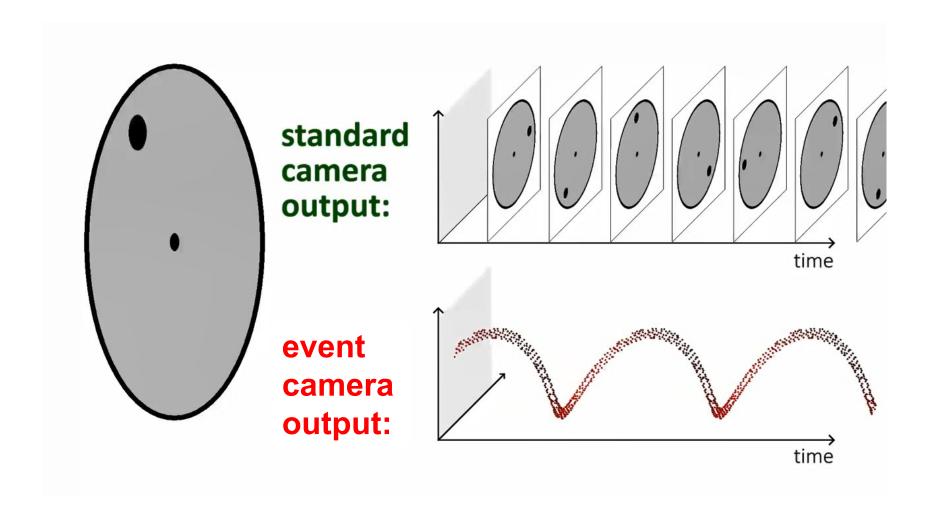
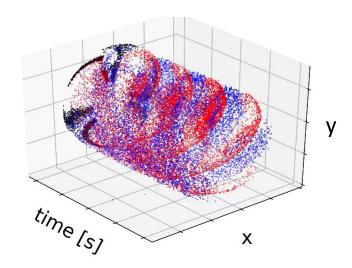


Image of solar eclipse captured by an event camera without black filter

Animation of an Event Camera Output

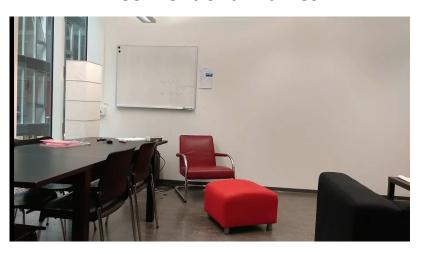


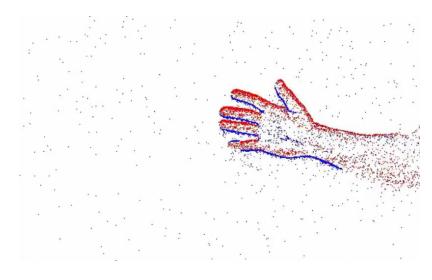
Conventional frames



Events in the **space-time** domain (x, y, t)

Conventional frames





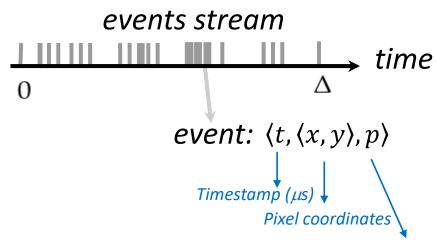
Events in the **image domain** (x, y)Integration time can be arbitrary: from 1 microsecond to infinity

Standard Camera vs. Event Camera

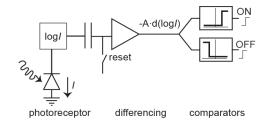
• A traditional camera outputs frames at fixed time intervals:



 By contrast, an event camera outputs asynchronous events at microsecond resolution. An event is generated each time a single pixel detects a change of intensity



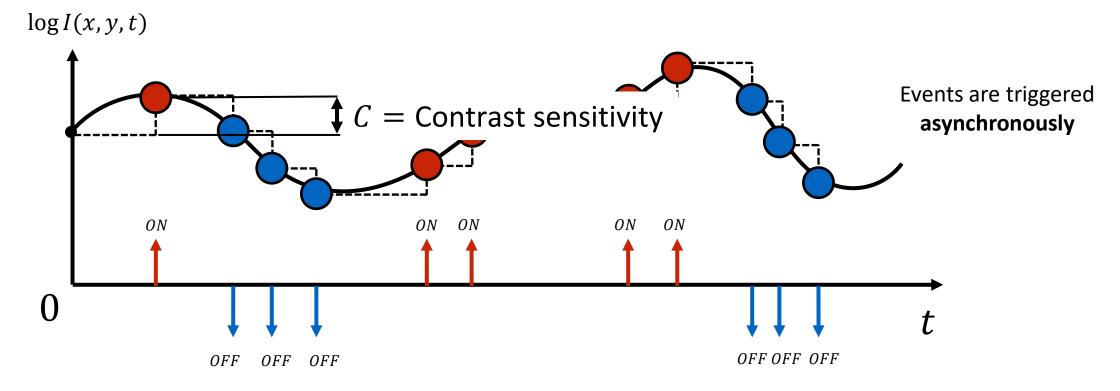
Generative Event Model



11

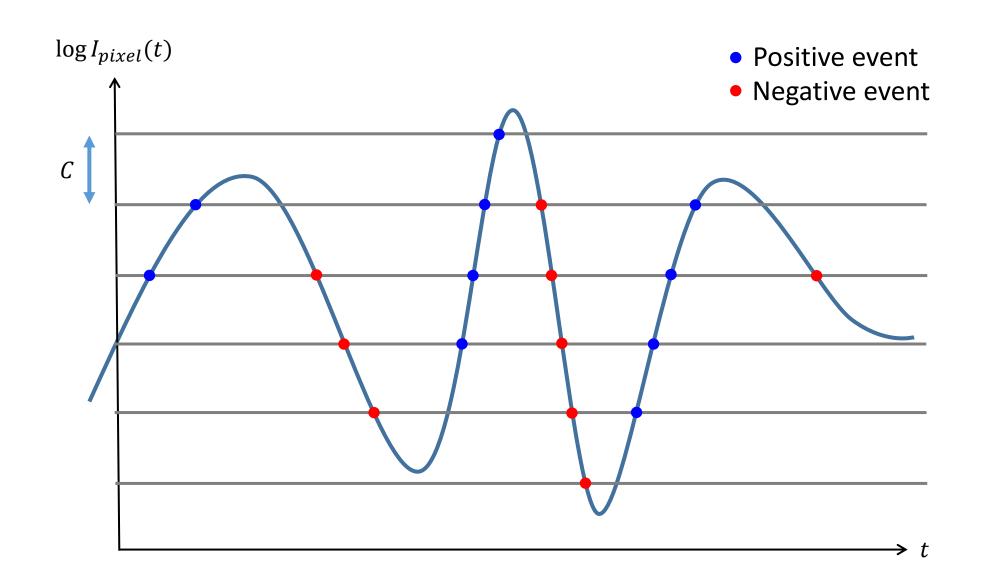
• Consider the intensity at a **single pixel** (x, y). An event is generated when the following condition is satisfied:

$$\log I(x, y, t + \Delta t) - \log I(x, y, t) = \pm C$$

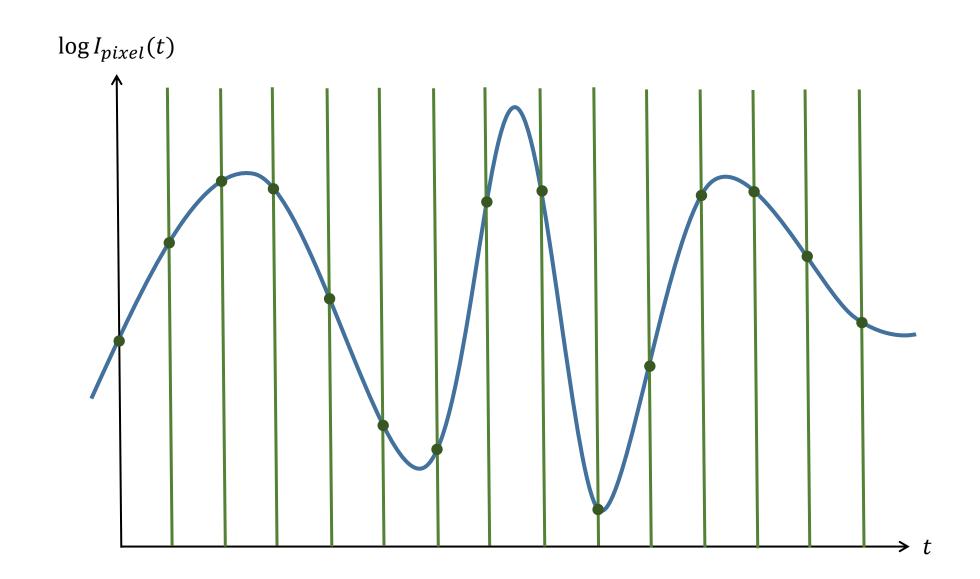


Can we reconstruct the pixel intensity? $\log(I(x, y, t)) = \log(x, y, 0) + \sum_{k=1}^{N_t} p_k C$

Event cameras sample the signal when the signal deviates from the last sampled value by a threshold (level-crossing sampling)



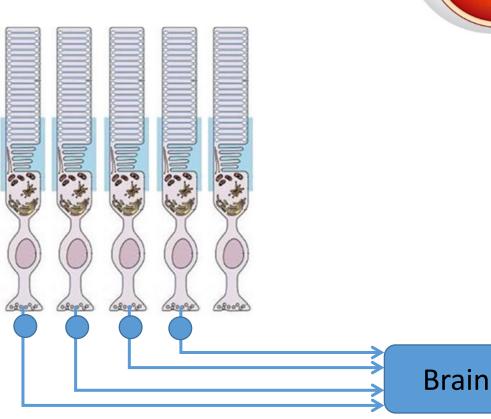
By contrast, standard cameras sample the signal at uniform time intervals (uniform time sampling)

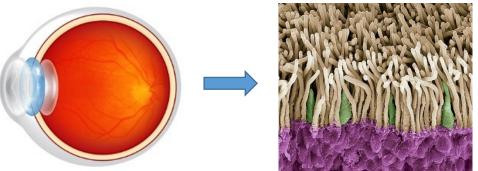


Event cameras are inspired by the Human Eye

Human retina:

- 130 million **photoreceptors**
- But only 2 million axons!





Who sells event cameras and how much are they?

- Prophesee & SONY:
 - Resolution: 1M pixels
- <u>Inivation</u> & Samsung
 - Resolution: VGA (640x480 pixels)
- <u>CelePixel Technology</u> & Omnivision:
 - Resolution: 1M pixels

SAMSUNG

Who sells event cameras and how much are they?

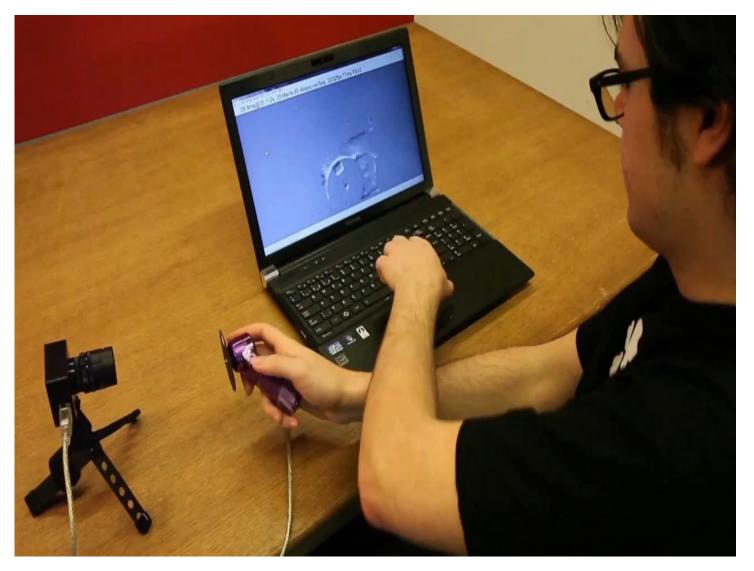
- Prophesee & SONY:
 - Resolution: 1M pixels
- <u>Inivation</u> & Samsung
 - Resolution: VGA (640x480 pixels)
- CelePixel Technology & Omnivision:
 - Resolution: 1M pixels

\$180

SAMSUNG

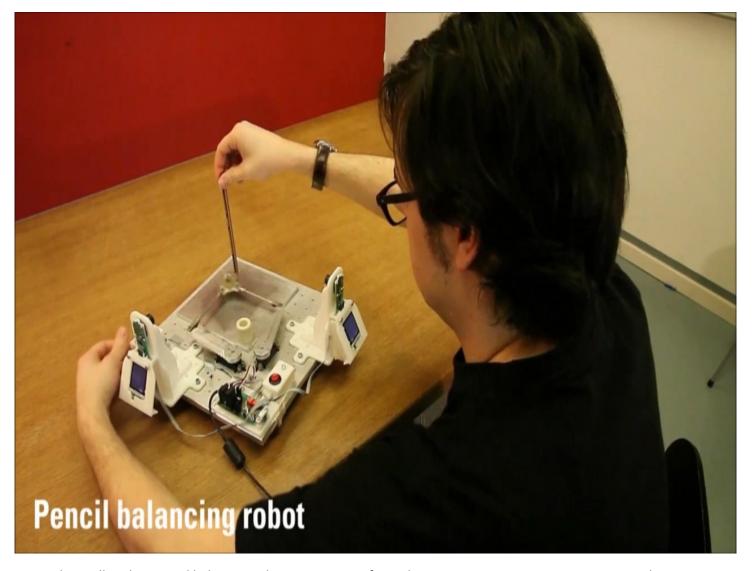
SmartThings Vision

Event Camera Demo



https://youtu.be/QxJ-RTbpNXw

Event Camera Demo



Low-light Sensitivity (night drive)

GoPro Hero 6

Aggregated event image

(pixel intensity equal to the sum of positive (+1) and negative (-1) events in a given time interval)

High-speed Camera vs. Event Camera

	High speed camera	Standard camera	Event Camera
Max fps or measurement rate	Up to 1MHz (watch the Slow Mo Guys on YouTube)	100-1,000 fps	1MHz
Resolution at max fps	640x64 pixels	>1Mpxl	>1Mpxl
Bits per pixels (event)	12 bits	8-10 per pixel	~40 bits/event {t,(x,y),p)}
Weight	6.2 Kg	30 g	30 g
Active cooling	yes	No cooling	No cooling
Data rate	1.5 GB/s	32MB/s	~1MB/s on average (depends on dynamics & contrast threshold)
Mean power consumption	150 W + external light	1 W	1 mW
Dynamic range	not specified	60-140 dB depending on the quality	140 dB

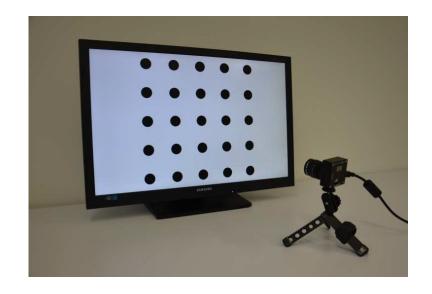
Current commercial applications

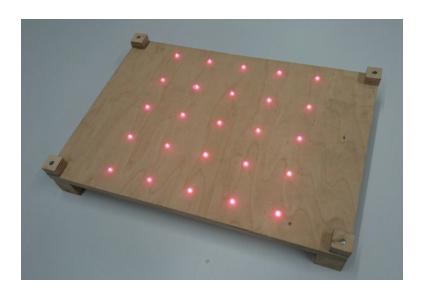
Monitoring and surveillance

- Action and gesture recognition in HDR scenes
- Industrial automation
 - Fast object counting
- Computational photography
 - Deblurring, super resolution, HDR, slow-motion video
- High-speed robotics and Automotive:
 - low-latency detection, object classification, low-power and low-memory storage

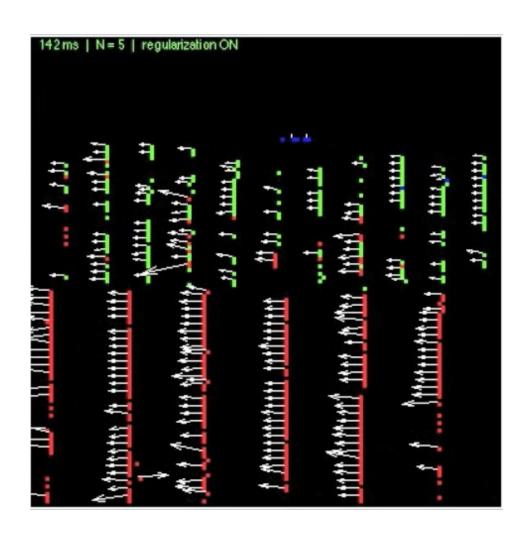
Calibration of an Event Camera

- Standard pinhole camera model still valid (same optics)
- Standard passive calibration patterns cannot be used
 - need to move the camera → inaccurate corner detection
- Blinking patterns (computer screen, LEDs)
- ROS DVS driver + intrinsic and extrinsic mono & stereo calibration: https://github.com/uzh-rpg/rpg_dvs_ros



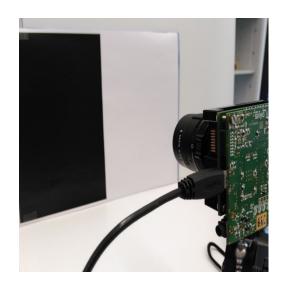


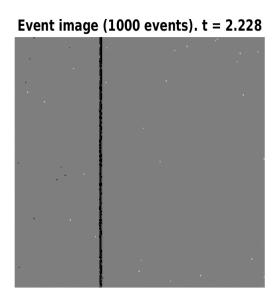
A Simple Optical Flow Algorithm

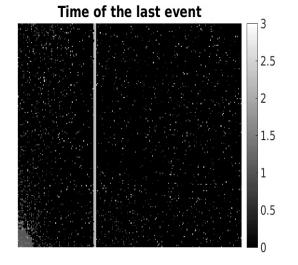


A Simple Optical Flow Algorithm

- Let's assume pure horizontal left-to-right motion of binary pattern in front of the camera
- White pixels become black \rightarrow brightness decrease \rightarrow negative events (-1, i.e., in black color)







Negative events: -1 (black)
No events: 0 (gray)

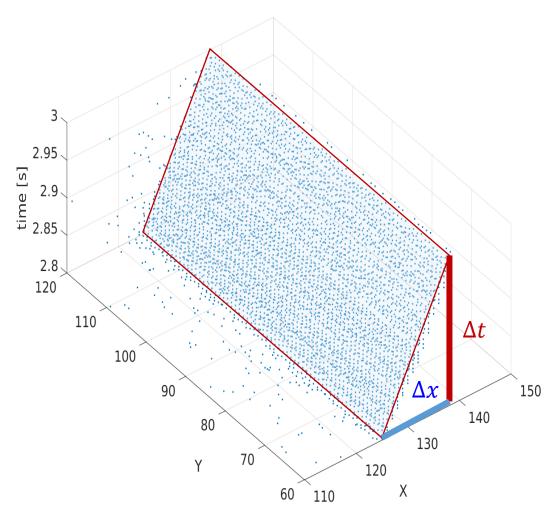
Positive events: +1 (white)

A Simple Optical Flow Algorithm

- The same edge, visualized in space-time
- Events are represented by dots

The edge is moving at a speed of:

$$v = \frac{\Delta x}{\Delta t}$$



How do we unlock the outstanding potential of event cameras?

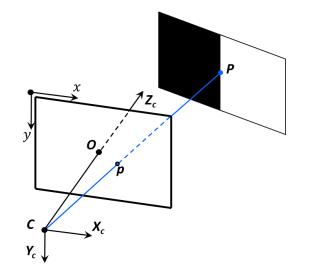
- Low latency
- High dynamic range
- No motion blur

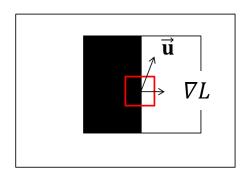
1st order approximation of the Generative Event Model

• An event is generated when the following condition is satisfied:

$$\log I(x, y, t + \Delta t) - \log I(x, y, t) = \pm C$$

- For many applications, it is convenient to derive a 1st order approximation
- Let us define L(x, y, t) = Log(I(x, y, t))
- Consider a given pixel p(x,y) with gradient $\nabla L(x,y)$ undergoing the motion $\boldsymbol{u}=(u,v)$ in pixels, induced by a moving 3D point \boldsymbol{P}



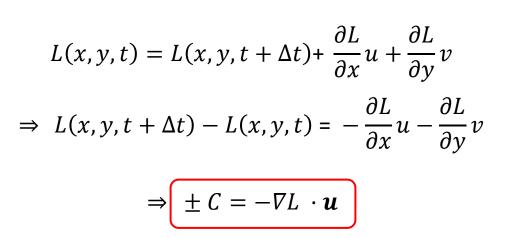


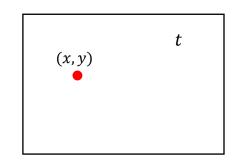
1st order approximation of the Generative Event Model

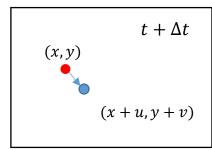
• Let's apply the **brightness constancy assumption**, which says that the intensity value of p before and after the motion must remain unchanged:

$$L(x, y, t) = L(x + u, y + v, t + \Delta t)$$

• By replacing the right-hand term with its 1st order approximation at $t + \Delta t$, we get:



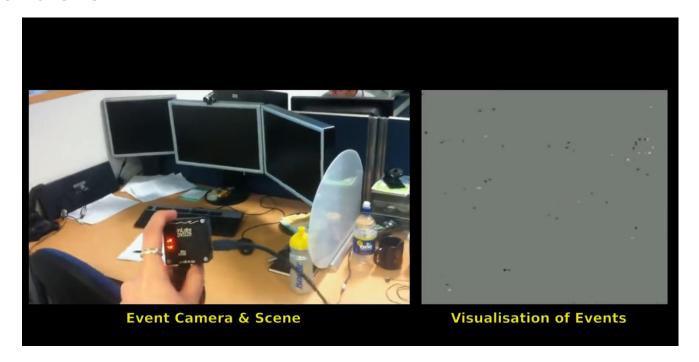




• This formula shows that maximum generation of events (i.e., higher event rate) occurs when the relative motion of the camera is perpendicular to the edge and is minimum when parallel to the edge.

Application 1: Image Reconstruction from events

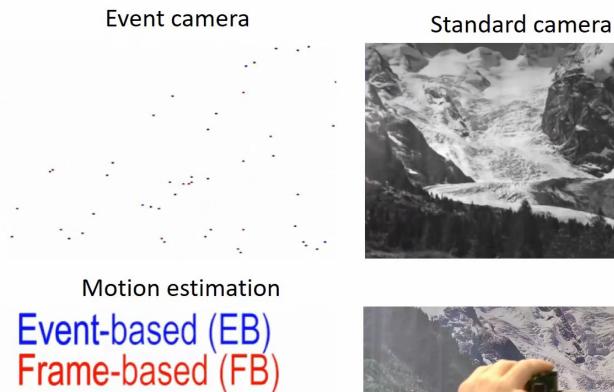
- Probabilistic simultaneous gradient reconstruction and rotation estimation from $\pm C = -\nabla L \cdot u$
- Obtain image intensity from gradient via Poisson reconstruction
- The reconstructed image has super-resolution and High Dynamic Range (HDR)
- Can run in real time on a GPU



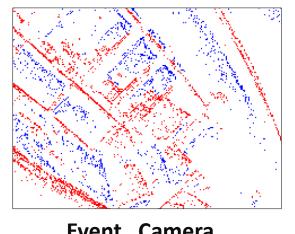
Application 2: 6DoF Tracking from Photometric Map

- Probabilistic **6DoF motion estimation** from $\pm C = -\nabla L \cdot u$
- Assumes **photometric map** (x, y, z, grayscale Intensity) is **given**
- Useful for VR/AR applications (low-latency, HDR, no motion blur)
- Can run in real time on a GPU

Application 2: 6DoF Tracking from Photometric Map



Combining Standard Cameras with Event Cameras



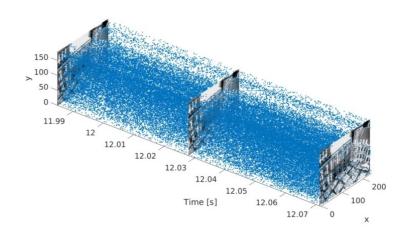
Event Camera

Standard Camera

Update rate	High (asynchronous): 1 MHz	Low (synchronous)
Dynamic Range	High (140 dB)	Low (60 dB)
Motion Blur	No	Yes
Static motion	No (event camera is a high pass filter)	Yes
Absolute intensity	No (but reconstructable up to a constant)	Yes
Maturity	< 10 years of research	> 60 years of research!

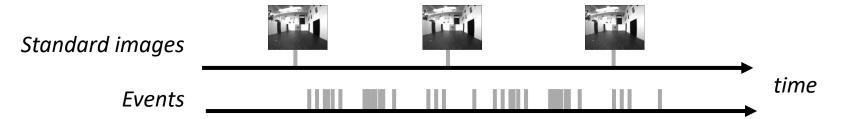
DAVIS sensor: Events + Images + IMU

- Combines an event and a standard camera in the same pixel array (→ the same pixel can both trigger events and integrate light intensity).
- It also has an IMU



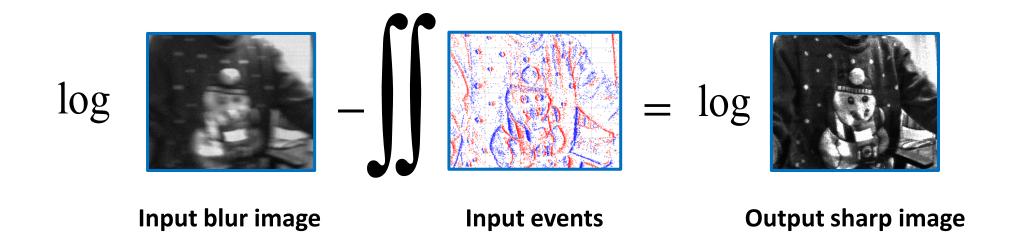
Spatio-temporal visualization of the output of a DAVIS sensor

Temporal aggregation of events overlaid on a DAVIS frame



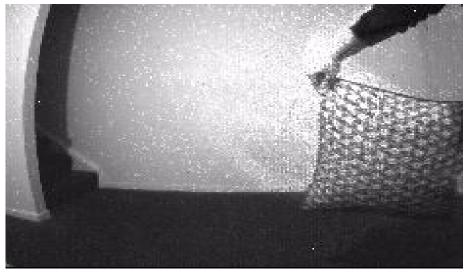
Application 1: Deblurring a blurry video

- Idea: A blurry image can be regarded as the integral of a sequence of latent images during the exposure time, while the events indicate the changes between the latent images
- **Solution**: sharp image obtained by subtracting the double integral of event from input image



Application 1: Deblurring a blurry video

- Idea: A blurry image can be regarded as the integral of a sequence of latent images during the exposure time, while the events indicate the changes between the latent images
- **Solution**: sharp image obtained by subtracting the double integral of event from input image

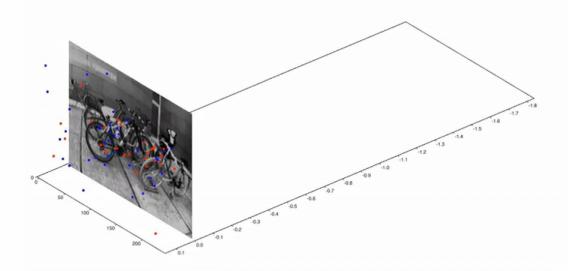


Input blur image

Output sharp video

Application 3: Event-based KLT Tracking

- Goal: Extract features from standard frames and track them using only events in the blind time between two frames
- Uses the 1st order approximation of event generation model via joint estimation of patch warping and optic flow



Recap

All the approaches seen so far use the generative event model

$$\log I(x, y, t + \Delta t) - \log I(x, y, t) = \pm C$$

• or its 1st order approximation

$$\pm C = -\nabla L \cdot \mathbf{u}$$

which requires knowledge of the contrast sensitivity $\mathcal C$

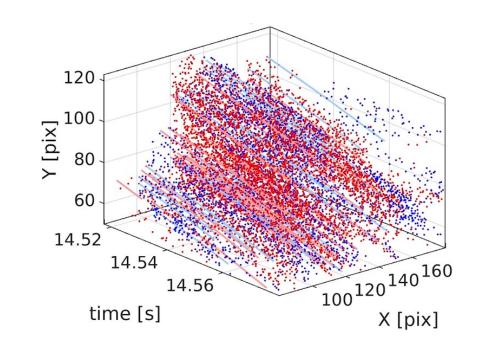
- Unfortunately, C is scene dependent and might differ from pixel to pixel
- Alternative approach: Contrast maximization framework

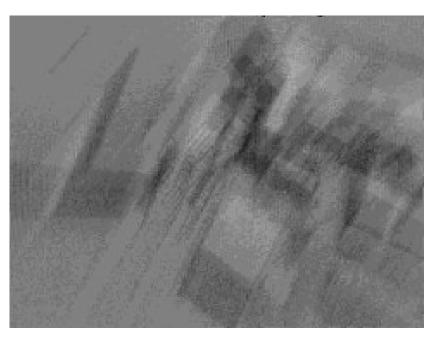
Contrast Maximization Framework

- Motion estimation
- 3D reconstruction
- SLAM
- Optical flow estimation
- Feature tracking
- Motion segmentation
- Unsupervised learning

Contrast Maximization Framework

Idea: Warp spatio-temporal volume of events to maximize contrast (e.g., sharpness) of the resulting image

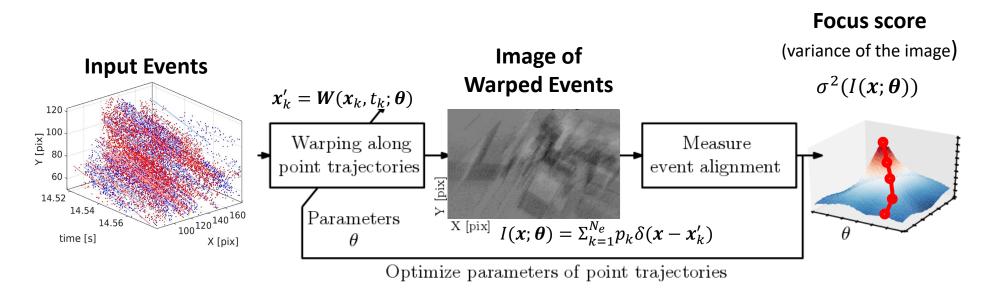




Aggregated image withindurn orbito in accordance within the control of the contro

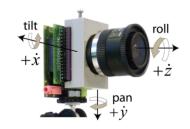
Gallego, Rebecq, Scaramuzza, A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, PDF, Video Gallego, Gehrig, Scaramuzza, Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF.

Contrast Maximization Framework

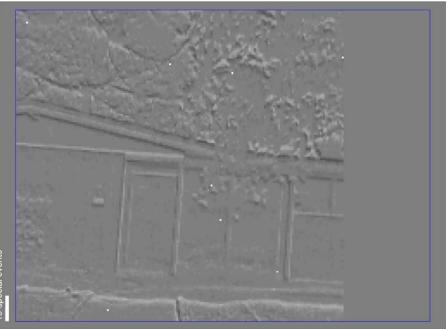


- $x'_k = W(x_k, t_k; \theta)$: This warps the (x, y) pixels coordinates of each event, not their time. Possible warps: roto-translation, affine, homography.
- $I(x; \theta) = \sum_{k=1}^{N_e} p_k \delta(x x_k')$: This builds a grayscale image, where the intensity of each pixel at the warped location (x', y') is equal to the summation of the polarity p (i.e., positive and negative events (+1, -1))
- $\sigma^2(I(x; \theta))$: The assumption here is that if an image contains **high variance** then there is a wide **spread of responses, both edge-like and non-edge like**, representative of a normal, in-focus image. But if there is **very low variance**, then there is a tiny spread of responses, indicating there are very little edges in the image. As we know, the more an image is blurred, the less edges there are.

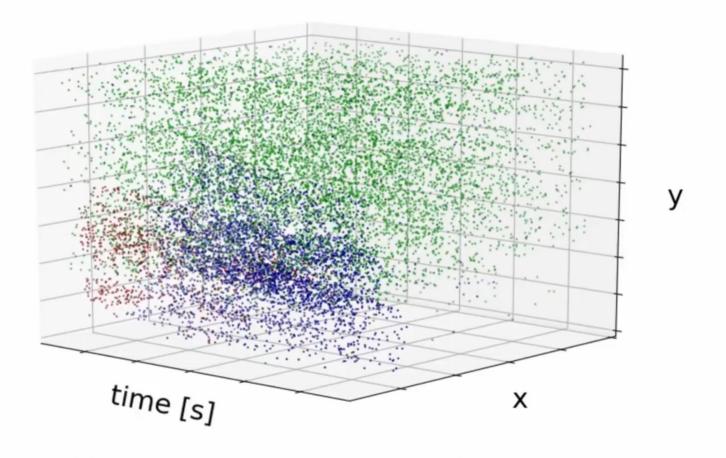
Application 1: Image Stabilization



- Goal: Estimate rotational motion (3DoF) of an event camera
- Can process millions of events per second in real time on a smartphone PC (e.g., OdroidXU4)
- Works up to over ~1,000 deg/s

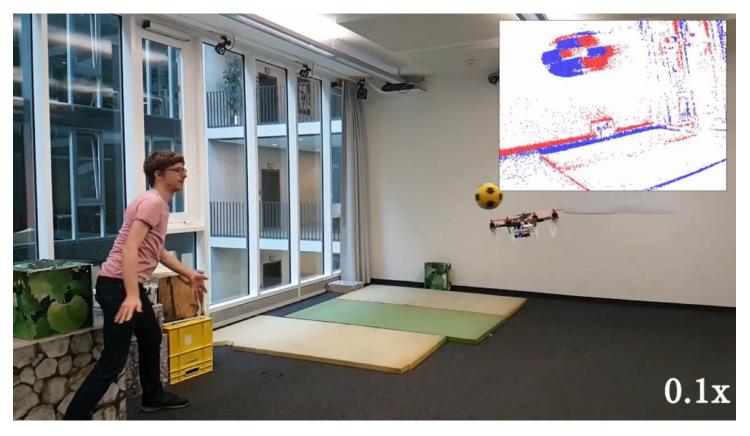


Application 2: Motion Segmentation



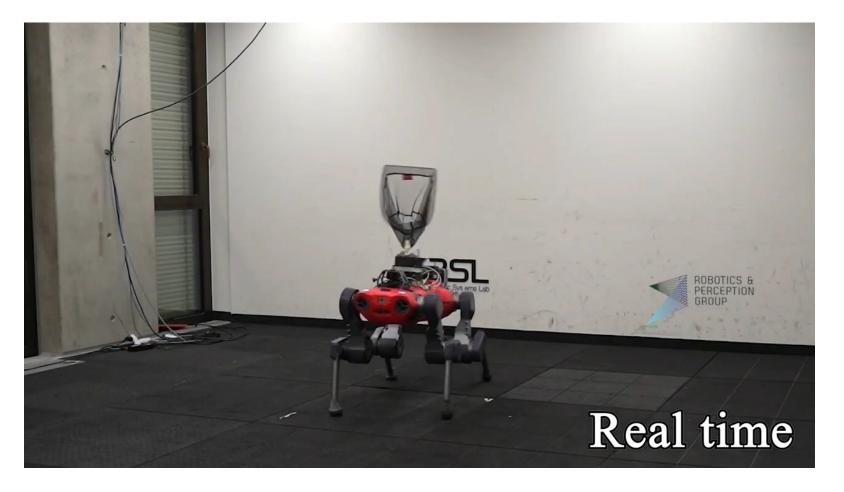
Application 3: Dynamic Obstacle Avoidance

- Works with relative speeds of up to 10 m/s
- Perception latency: 3.5 ms



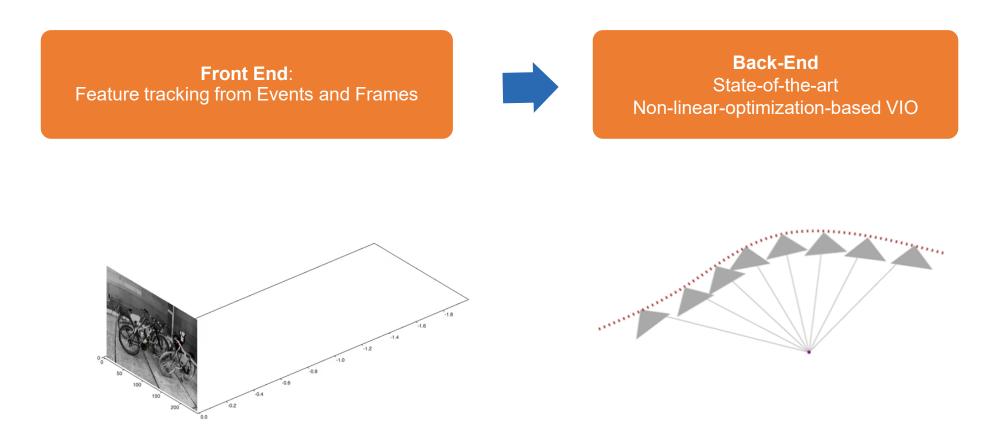
Catching Dynamic Objects

- Perception latency: 3.5 ms
- Works with relative speeds of up to 15 m/s



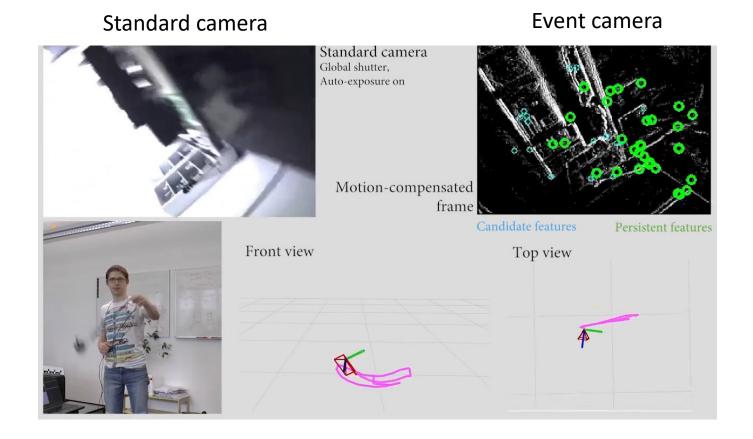
Application 4: "Ultimate SLAM"

Goal: combining events, images, and IMU for robust visual SLAM in HDR and high speed scenarios



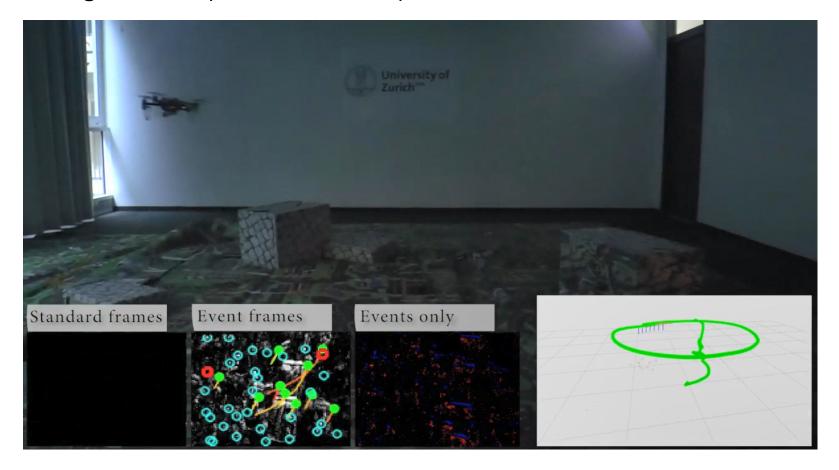
Application 4: "Ultimate SLAM"

• 85% accuracy gain over standard VIO in HDR and high speed scenarios



Application 5: Autonomous Navigation in Low Light

UltimateSLAM running on board (CPU: Odroid XU4)

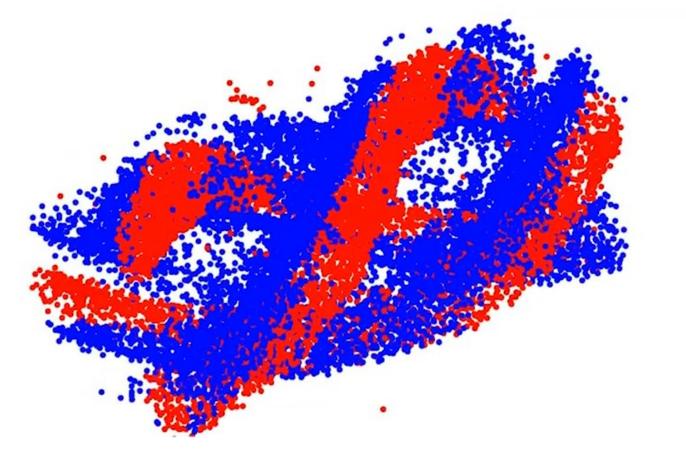


Learning with Event Cameras

- Approaches using synchronous, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Approaches using asynchronous, Spiking neural networks (SNNs)

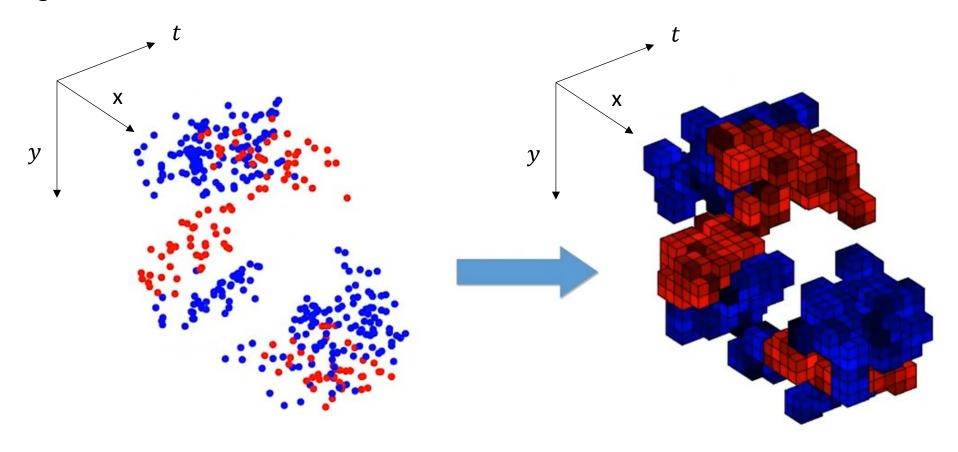
Input representation

How do we pass sparse events into a convolutional neural network designed for standard images?



Input representation

Represent events in space-time into a 3D voxel grid (x, y, t): each voxel contains sum of positive and negative events falling within the voxel



Application 1: Image Reconstruction from Events

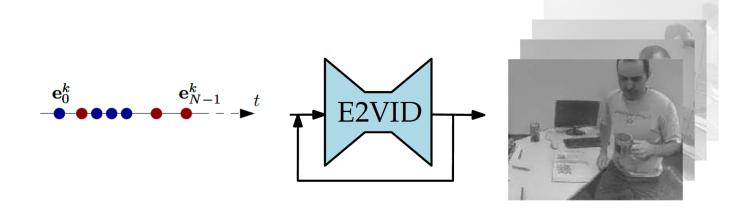
Events

Reconstructed image from events

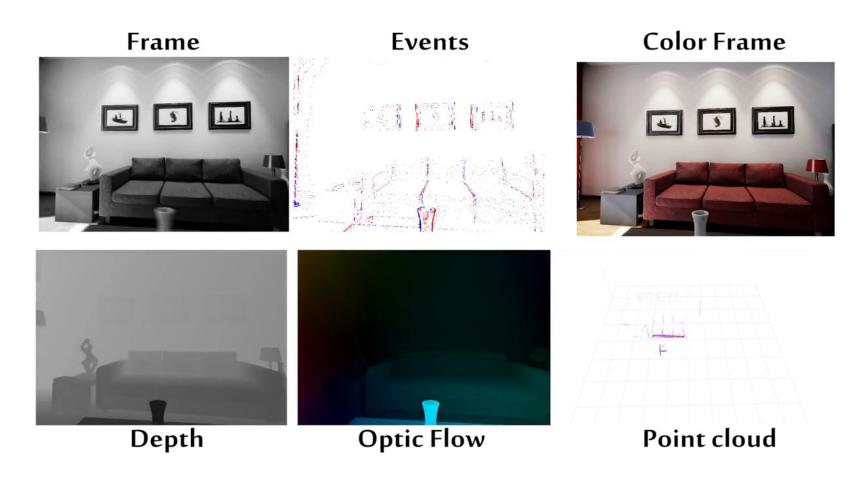
Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Overview

- Recurrent neural network (main module: Unet)
- Input: sequences of event tensors (3D spatio-temporal volumes of events[3])
- Trained in simulation only, without seeing a single real image
- To improve robustness we randomize the contrast sensitivity during simulation.
- Event camera simulator (ESIM): http://rpg.ifi.uzh.ch/esim.html



ESIM: Event Camera Simulator

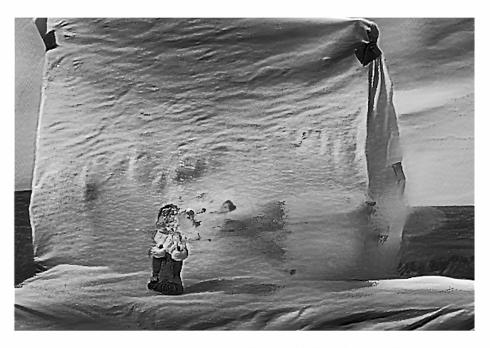


Open Source: http://rpg.ifi.uzh.ch/esim.html

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)



Our reconstruction (5400 FPS)

100 x slow motion

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

HDR Video: Driving out of a tunnel

Recall: trained in simulation only!



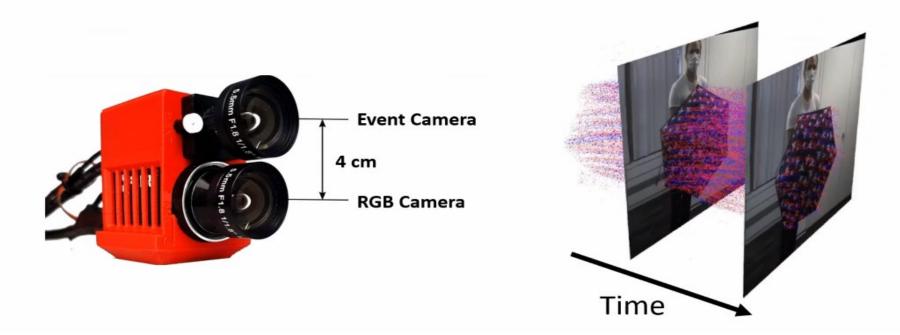
Events

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Phone camera

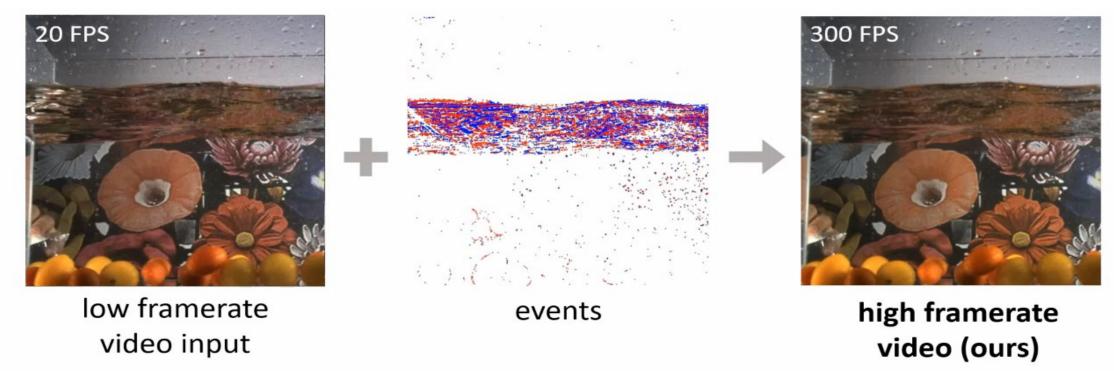
Application 2: Slow Motion Video

- We can combine an event camera with an HD RGB camera
- We use events to upsample low-framerate video by over 50 times with only 1/40th of the memory footprint!



Application 2: Slow Motion Video

- We can combine an event camera with an HD RG camera
- We use events to upsample low-framerate video by over 50 times with only 1/40th of the memory footprint!



Code & Datasets: http://rpg.ifi.uzh.ch/timelens

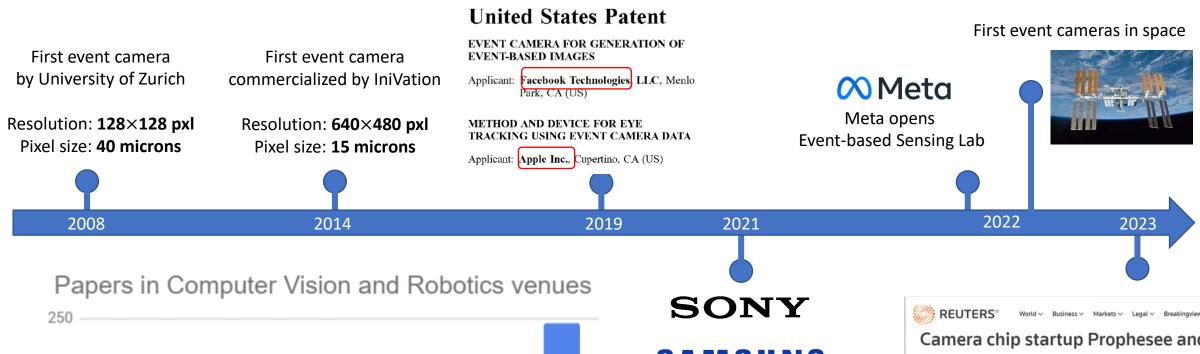
Application 2: Slow Motion Video

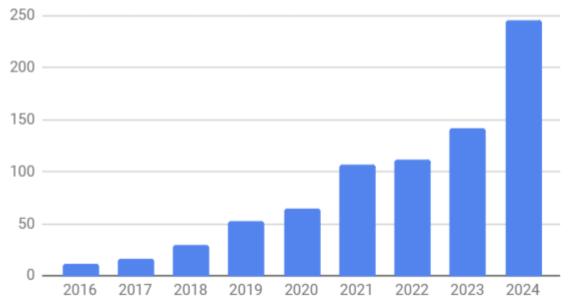
- We can combine an event camera with an HD RG camera
- We use events to upsample low-framerate video by over 50 times with only 1/40th of the memory footprint!

low framerate video input

Time Lens (this work)

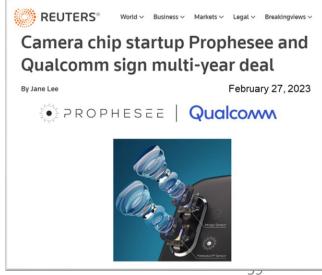
The Evolution of Event Cameras





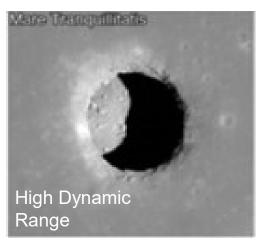
First Full-HD event sensors:

Resolution: 1280×720 pxl
Pixel size: 5 microns



Collaboration with NASA for future space missions

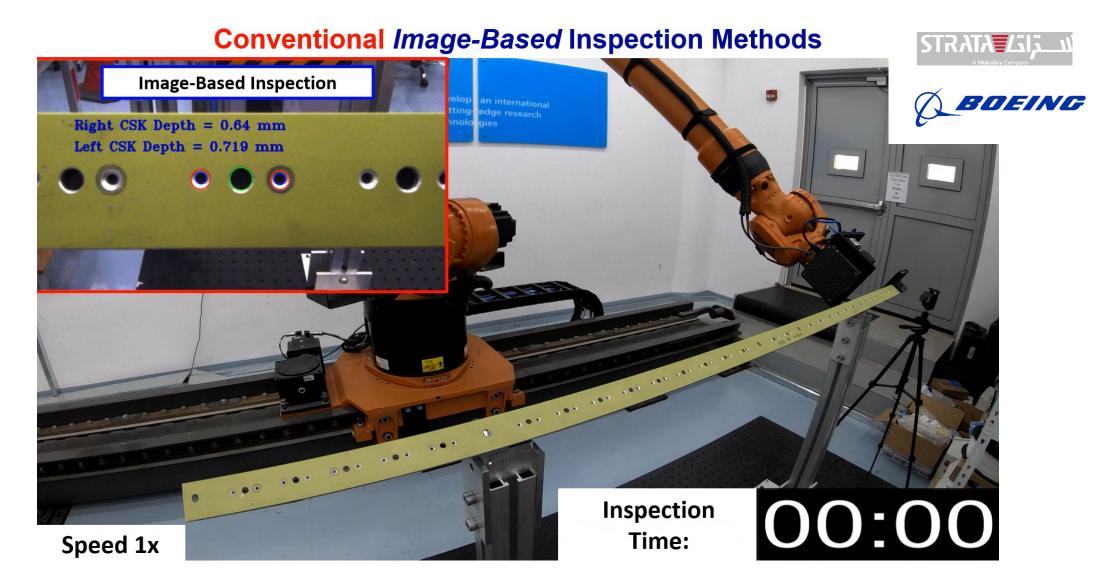
- ➤ Future planetary astrobiology missions aim at using drones for the exploration of lava tunnels as a priority objective for investigations
- > Lava tunnels host ice, which potentially hosts life
- > Lava tunnels can be used as shelters for future Mars missions
- ➤ More info <u>here</u>



Joint paper with **NASA JPL**:

Mahlknecht, Gehrig, Nash, Rockenbauer, Morrell, Delaune, Scaramuzza Exploring Event Camera-based Odometry for Planetary Robots, RAL'22. PDF. Data & Code

Application 5: High-Speed Inspection of Countersinks



Other Applications

Tulyakov, Gehrig, et al., TimeLens: Event-based Video Frame Interpolation, CVPR'21

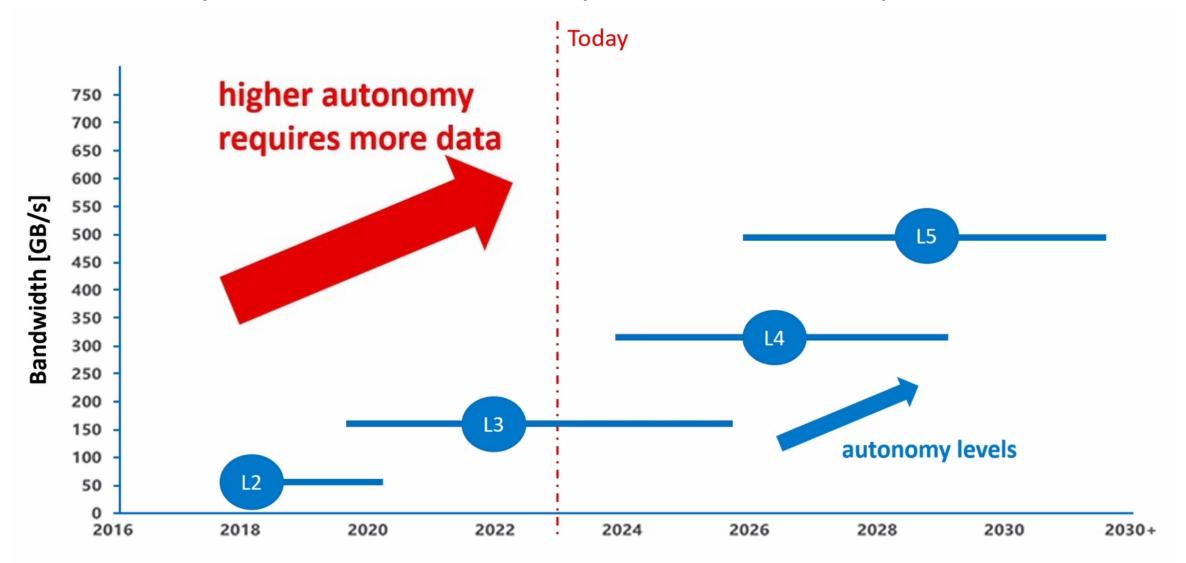
Application 2: Deblurring a Blurry Video

Credit: Prophesee

Advanced Driver Assistance Systems (ADAS)

Tesla Vision System

Memory Bandwidth Requirements by ADAS level

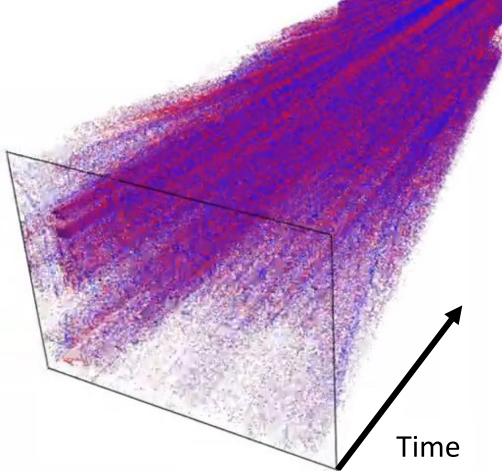


https://www.electronicspecifier.com/industries/automotive/pushing-the-envelope-for-adas-with-advanced-memory-technologies

Can we transfer this to Automotive?

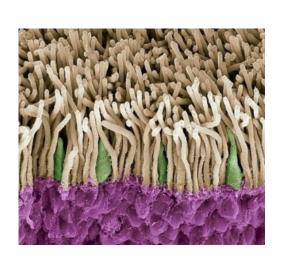
Standard camera

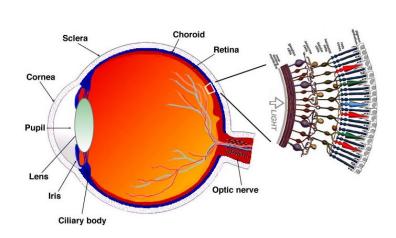
Event camera

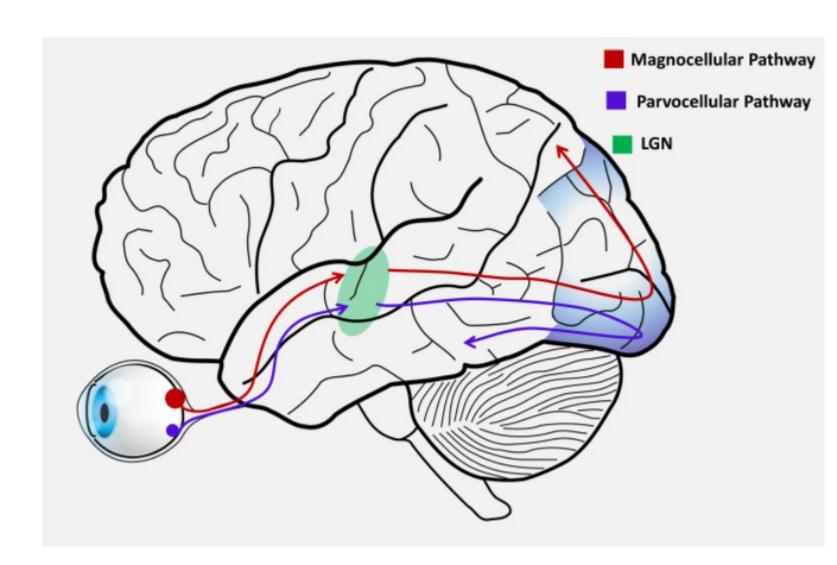




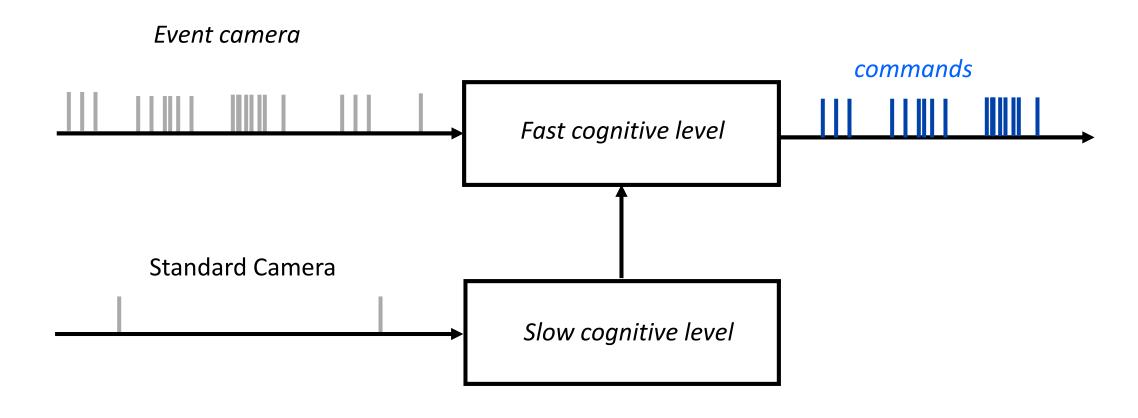
Magno and Parvo Pathways of the Primate Visual System





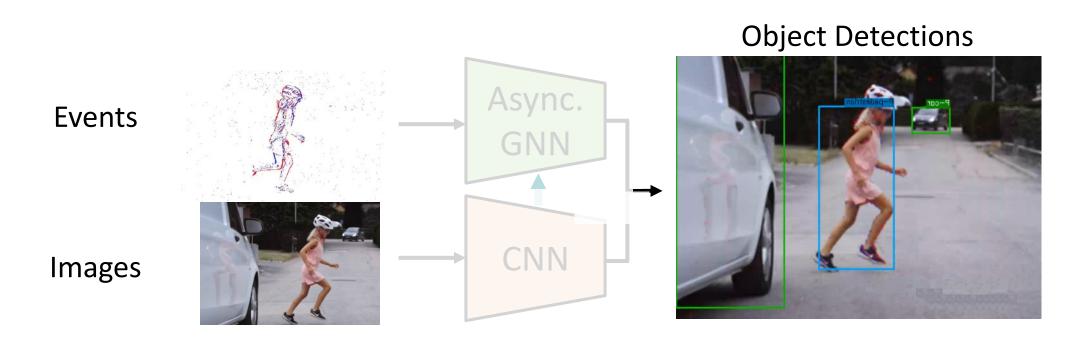


Hybrid Asynchronous Object Detection

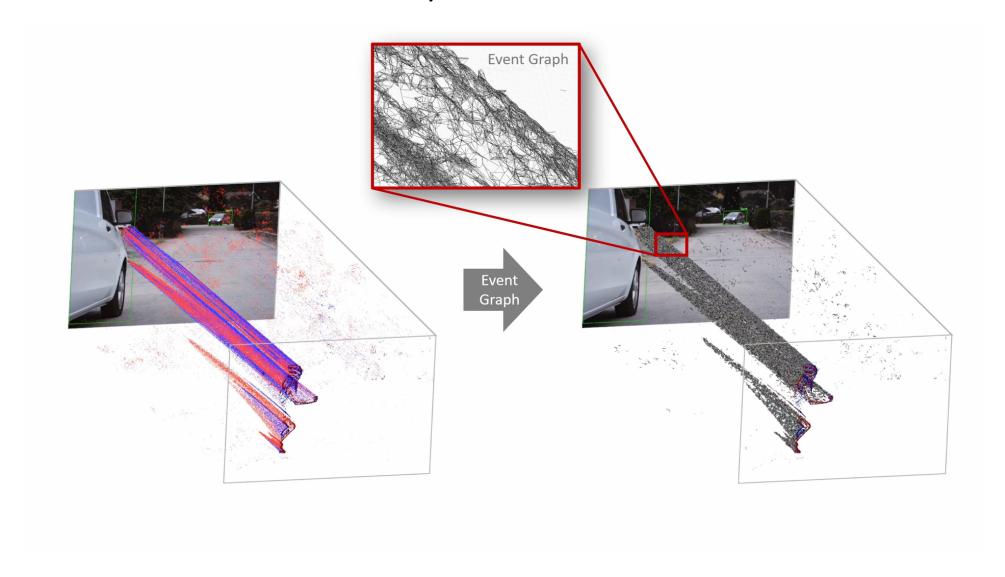


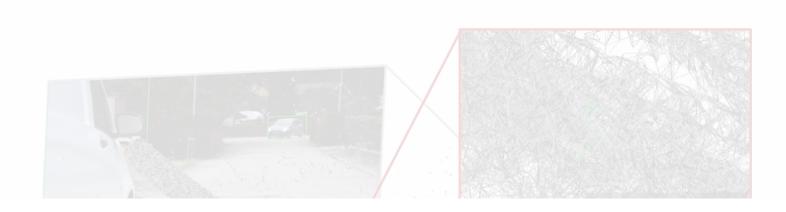
Hybrid Asynchronous Object Detection

Use a CNN to provide image features to an asynchronous object detection network. These features are reused asynchronously, and thus enable object detection in the blind-time between frames



This enables early object detection, which cuts down perceptual latency!





We show that using a 20 fps camera plus an event camera can achieve the same latency as a 5,000 fps camera with the bandwidth of a 50 fps camera without compromising accuracy.

Readings

- Tutorial paper:
 - Gallego, Delbruck, Orchard, Bartolozzi, Taba, Censi, Leutenegger, Davison, Conradt, Daniilidis, Scaramuzza, **Event-based Vision: A Survey**, IEEE Transactions of Pattern Analysis and Machine Intelligence, 2020. <u>PDF</u>
- List of event camera papers, codes, datasets, companies: https://github.com/uzh-rpg/event-based vision resources
- Event-camera simulator: http://rpg.ifi.uzh.ch/esim.html
- More on event camera research: http://rpg.ifi.uzh.ch/research dvs.html

Understanding Check

Are you able to answer the following questions?

- What is an event camera and how does it work?
- What are its pros and cons vs. standard cameras?
- Can we apply standard camera calibration techniques?
- How can we compute optical flow with a DVS?
- What is the generative model of an event camera (formula). Can you derive its 1st order approximation?
- Could you intuitively explain why we can reconstruct the intensity from a grayscale frame plus events and from events alone? What are the assumption? What are the failure modes?
- What is a DAVIS sensor?
- What is the focus maximization framework and how does it work? What is its advantage compared with the generative model?