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Today: Lab Exercise

Visual-inertial fusion
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Next week after exercise: 
visit of the Robotics and Perception Group

• Address: Andreasstrasse 15, 2nd floor, next to Zurich Oerlikon train station

• Webpage: http://rpg.ifi.uzh.ch – Limited to registered people.
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Outline

• What is an IMU and why do we need it?

• IMU model

• Visual Inertial Odometry (VIO)
• Closed-form solution

• Non-linear optimization methods

• Filtering methods

• Camera-IMU extrinsic calibration and Synchronization
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What is an IMU?

• Inertial Measurement Unit
• Gyroscope: Angular velocity

• Accelerometer: Linear Accelerations
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Mechanical Gyroscope

Mechanical Accelerometer



What is an IMU?

• Different categories
• Mechanical ($100,000-1M)

• Optical ($20,000-100k)

• MEMS (from 1$ (phones) to 1,000$ 
(higher cost because they have a microchip 
running a Kalman filter)

• For small mobile robots & drones: 
MEMS IMU are mostly used
• Cheap

• Power efficient 

• Light weight and solid state
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MEMS Accelerometer

A spring-like structure connects the device to a seismic mass vibrating in a capacitive divider. A capacitive 
divider converts the displacement of the seismic mass into an electric signal. Damping is created by the gas 
sealed in the device.
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MEMS Gyroscopes

• MEMS gyroscopes measure the Coriolis forces 
acting on MEMS vibrating structures (tuning forks, 
vibrating wheels, or resonant solids)

• Their working principle is similar to the haltere of a 
fly

• Haltere are small structures of some two-winged 
insects, such as flies. They are flapped rapidly and 
function as gyroscopes, informing the insect about 
rotation of the body during flight.
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Why do we need an IMU?

• Monocular vision is scale ambiguous (Lecture 8, slide 7)

• Pure vision is not robust enough
• Underexposure or overexposure (caused by low Dynamic Range)

• Motion blur

• Low texture

• Not enough overlap between consecutive frames 

Robustness is a critical issue: Tesla accident, 2016:
“The autopilot sensors on the Model S failed 
to distinguish a white tractor-trailer crossing 
the highway against a bright sky. ” [The Guardian]
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Overexposure

Motion blur

https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk


Why is an IMU alone not enough?

• Pure IMU integration will lead to large drift (especially in cheap IMUs)

• Example: 1D scenario. Double integration of acceleration returns the position: 

• If there is a constant bias in the acceleration, the error of position will be proportional to 𝒕𝟐

• Similarly for the orientation: if there is a bias in angular velocity, the error is proportional to the time 𝒕
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Table from Vectornav, one of the best IMU companies. Errors were computed assuming the device at rest: 
https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-inserrorbudget 

Automotive,
smartphones,
and drones accelerometers

𝑥(𝑡) = 𝑥0 + 𝑣0(𝑡 − 𝑡0) + 𝑡0׭

𝑡
𝑎(𝜏)𝑑𝜏2 

https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-inserrorbudget


• IMU and vision are complementary

• What cameras and IMU have in common: both can be used to estimate the pose incrementally; this is 
known as dead-reckoning but suffers from drift over time. Solution: fuse them together to reduce drift 
(see later)

• IMUs can help reduce the drift of VO by up to a factor of 10.

Cameras IMU

• Exteroceptive sensor: measures light energy from the 
environment

× Sensitive to motion blur, HDR, texture
✓ Drift is bounded when motion is bounded
✓ Precise in slow motion
× Limited output rate (~100 Hz)
× Scale ambiguity in monocular setup

• Proprioceptive sensor: measures values internal to the 
system

✓ Insensitive to motion blur, HDR, texture
× Drift grows unbounded regardless of the environment
× Less precise in slow motion (low signal-to-noise ratio)
✓ High output rate (1,000-10,000 Hz)
✓ No scale ambiguity: measurements are in absolute scale
✓ Can be used as a prior to predict next feature positions

Why visual inertial fusion?
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IMU Measurement Model

The model measures the angular velocity ෥ω𝐵 𝑡  and acceleration ෤𝑎𝐵(𝑡) vectors in the body frame 𝐵:

Notation:

• The superscript ()𝐺  stands for gyroscope and ()𝐴 for accelerometer

• 𝑅𝐵𝑊 is the rotation of the World frame 𝑊 with respect to Body frame 𝐵

• The gravity vector 𝑔 is expressed in the World frame

• Biases and noise are expressed in the body frame
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IMU biases + noise in body frame

Raw IMU measurements
(i.e., what you read from the sensor) true 𝝎 (in body frame) and true 𝐚 (in world frame) to estimate

෤𝑎𝐵 𝑡  =  𝑅𝐵𝑊 𝑡 𝑎𝑊 𝑡 − 𝑔 + 𝑏𝐴 𝑡 + 𝑛𝐴(𝑡)

෥ω𝐵 𝑡 =  ω𝐵 𝑡 + 𝑏𝐺 𝑡 + 𝑛𝐺(𝑡)

What does an IMU measure during:
• free fall?
• in static conditions?



IMU Noise and Bias Model

• Additive, zero-mean Gaussian white noise:  𝑛𝐺(𝑡), 𝑛𝐴(𝑡)

•   Biases:  𝑏𝐺 𝑡 , 𝑏𝐴 𝑡
• The gyroscope and accelerometer biases are considered slowly varying “constants”. Their temporal fluctuation is 

modeled assuming that the derivative of the bias is a zero-mean Gaussian noise with standard deviation 𝜎𝑏

• Some facts about IMU biases:
• They change with temperature and mechanical and atmospheric pressure
• Thus, they may also be different every time the IMU is turned on
• Good news: they can be estimated! (see later)
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ሶ𝐛(𝑡) = 𝜎𝑏𝐰 𝑡 𝐰 t ~𝐍(0,1)

Trawny, Roumeliotis, Indirect Kalman filter for 3D attitude estimation. Technical Report, University of Minnesota, 2005. PDF.
More info on the noise model: https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model


IMU Integration Model

• The IMU Integration Model computes the position, orientation, and velocity of the IMU in the world frame. To do this, we must first 

compute the acceleration 𝑎 𝑡  in the world frame from the measured one ෤𝑎(𝑡) in the body frame (see Slide 13):

• The position 𝑝𝑘 at time 𝑡𝑘  can then be predicted from the position 𝑝𝑘−1 at time 𝑡𝑘−1 by integrating all the inertial measurements 
{ ෤𝑎𝑗 , ෥ω𝑗} within that time interval:

NB:
• The rotation 𝑅𝑊𝐵  is computed from the gyroscope
• 𝑝𝑘  depends on initial position and velocity. How do we measure them?

A similar expression can be obtained to predict the velocity 𝑣𝑘  and orientation 𝑅𝑊𝐵  of the IMU in the world frame as functions of both ෤𝑎𝑗  
and ෥ω𝑗  
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Trawny, Roumeliotis, Indirect Kalman filter for 3D attitude estimation. Technical Report, University of Minnesota, 2005. PDF.

More info on the noise model: https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

𝑝𝑘 = 𝑝𝑘−1 + 𝑣𝑘−1 𝑡𝑘 − 𝑡𝑘−1 + ඵ
𝑡𝑘−1

𝑡𝑘

𝑅𝑊𝐵(𝑡) ෤𝑎 𝑡 − 𝑏 𝑡 + 𝑔 𝑑𝑡2

𝑎(𝑡) = 𝑅𝑊𝐵(𝑡) ෤𝑎 𝑡 − 𝑏 𝑡 + 𝑔

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model


IMU Integration Model

For convenience, the IMU Integration Model is normally written as

                                                                            

where:

• 𝑥 =
𝑝
𝑞
𝑣

 represents the IMU state, i.e., position, orientation, and velocity

• 𝑞 is the IMU orientation 𝑹𝑾𝑩 (usually represented using quaternions)

• 𝑢 = { ෤𝑎𝑗 , ෥ω𝑗} are the accelerometer and gyroscope measurements in the time interval 𝑡𝑘−1, 𝑡𝑘
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Trawny, Roumeliotis, Indirect Kalman filter for 3D attitude estimation. Technical Report, University of Minnesota, 2005. PDF.

More info on the noise model: https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝑢

𝑝𝑘

𝑞𝑘

𝑣𝑘

= 𝑓

𝑝𝑘−1

𝑞𝑘−1

𝑣𝑘−1

, 𝑢 or, more compactly: 

http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
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Visual Inertial Odometry

Different paradigms exist:

• Loosely coupled:
• Treats VO and IMU as two separate black boxes (not coupled) 

• Each black box estimates pose and velocity from visual (up to a scale) and inertial data (absolute scale)

• Easy to implement 

• Inaccurate. Should not be used if possible

• Tightly coupled:
• Makes use of the raw sensors’ measurements (2D features and IMU readings)

• More accurate

• More implementation effort

In this  lecture, we will only see tightly coupled approaches
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The Loosely Coupled Approach
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The Tightly Coupled Approach

20

Feature 
tracking

images

IMU 
measurements

Fusion
Refined 
Position

Orientation
Velocity

3D landmarks

2D features



Filtering: Visual Inertial Formulation

• System states:
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Tightly coupled:

Loosely coupled:

Corke, Lobo, Dias, An Introduction to Inertial and Visual Sensing, International Journal of Robotics Research (IJRR), 2007. PDF.

X = 𝑝 𝑡 ;  𝑞 𝑡 ;  𝑣 𝑡 ; b𝐴 𝑡 ; b𝐺 𝑡 ; 𝐿1 ;  𝐿2; … ; 𝐿𝑘

X = 𝑝 𝑡 ;  𝑞 𝑡 ;  𝑣 𝑡 ; b𝐴 𝑡 ; b𝐺 𝑡

https://www.researchgate.net/profile/Jorge_Dias4/publication/220122792_An_Introduction_to_Inertial_and_Visual_Sensing/links/0f31753779aa289f88000000/An-Introduction-to-Inertial-and-Visual-Sensing.pdf?_sg%5b0%5d=fM-48f0vf6QXiRIr5vDPo6KDCTwUMtz1BfYJloqcVRo-s4ma7o3ar1utU1loaewhmqp3USJcYXL1oClgMYcDkA.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_sg%5b1%5d=4mW333BXcLEks9_l9GyV49qIzPlAzBFNFuD5IFg9z-AIluzYXL4l4248Vwldu8Fb54ctSFNxdlX1RwUWAGCnfsrf6cYXto9Ao3mpNmV-0WC3.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_sg%5b2%5d=4g2Q_23ZekLblRQn730tHcylIWm9PHHMlrrY3dF45riCis1J4fgJHL9kyN_h5V622RybxfxdcXVfC-GifxXlLGwIGyG5.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_iepl=
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Closed-form Solution (1D case)

• From a single camera we only get the relative position ෤𝑥 up to an unknown 
scale factor 𝒔, thus the absolute position 𝑥 is:

𝑥 = 𝑠 ෤𝑥

• From the IMU

𝑥 = 𝑥0 + 𝑣0(𝑡1 − 𝑡0) + ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡2

• By equating them

𝑠 ෤𝑥 = 𝑥0 + 𝑣0 𝑡1 − 𝑡0 + ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡2

As shown in [Martinelli’14], if we assume to know 𝑥0 (usually we set it to 0), then, even for 6DOF motion, 
both 𝒔 and 𝒗𝟎 can be determined in closed form from a single feature observation and 3 views

23
Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision (IJCV), 2014. PDF.

𝑡0 𝑡1

𝐿1

𝑡2

https://hal.archives-ouvertes.fr/hal-00905881/document
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Non-linear Optimization Methods

VIO is solved as a non-linear Least Square optimization problem over:

NB: it also optimizes the biases

Which initial guess do we use for the state and the biases?
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[1] Jung, Taylor, Camera Trajectory Estimation using Inertial Sensor Measurements and Structure from Motion Results, International Conference on Computer Vision and 
Pattern Recognition (CVPR), 2001. PDF.
[2] Sterlow, Singh, Motion estimation from image and inertial measurements, International Journal of Robotics Research (IJRR), 2004. PDF.

{X, L, 𝑏𝐴, 𝑏𝐺} = 𝑎𝑟𝑔𝑚𝑖𝑛{X, L, 𝑏𝐴, 𝑏𝐺} ෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘

2 + ෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝐿𝑖) − 𝑧𝑘
𝑖

𝛴𝑘
𝑖

2

IMU residuals Reprojection residuals
(Bundle Adjustment term)

https://acandc.com/articles/CVPR-SFMInertial.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.435&rep=rep1&type=pdf


Non-linear Optimization Methods

VIO is solved as a non-linear Least Square optimization problem over:

where

• 𝑋 =  {𝑥1, … 𝑥𝑁}: set of state estimates 𝑥𝑘 (position, velocity, orientation) at frame times 𝑘

• 𝐿 =  {𝐿1, … , 𝐿𝑀}: 3D landmarks

• 𝑓 𝑥𝑘−1, 𝑢 : state prediction obtained by integrating IMU measurements 𝑢 = { ෤𝑎𝑗, ෥ω𝑗}

• 𝜋(𝑥𝑘 , 𝑙𝑖): expected measurement at state estimates 𝑥𝑘 from projection of landmark 𝐿𝑖  onto camera frame 𝐼𝑘

• 𝑧𝑖𝑘
: observed features

• 𝛬𝑘: inverse of the state covariance from the IMU integration 𝑓 𝑥𝑘−1, 𝑢

• 𝛴𝑖𝑘
: inverse of the covariance of the 2D feature position
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[1] Jung, Taylor, Camera Trajectory Estimation using Inertial Sensor Measurements and Structure from Motion Results, International Conference on Computer Vision and 
Pattern Recognition (CVPR), 2001. PDF.
[2] Sterlow, Singh, Motion estimation from image and inertial measurements, International Journal of Robotics Research (IJRR), 2004. PDF.

{X, L, 𝑏𝐴, 𝑏𝐺} = 𝑎𝑟𝑔𝑚𝑖𝑛{X, L, 𝑏𝐴, 𝑏𝐺} ෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘

2 + ෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝐿𝑖) − 𝑧𝑘
𝑖

𝛴𝑘
𝑖

2

IMU residuals Reprojection residuals
(Bundle Adjustment term)

https://acandc.com/articles/CVPR-SFMInertial.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.435&rep=rep1&type=pdf


Case Study 1: OKVIS

Because the complexity of the optimization is cubic with respect to the number of cameras poses and 
features (see Lecture 10, slide 32 and exercise 08), real-time operation becomes infeasible as the trajectory 
and the map grow over time, OKVIS proposed to only optimize the current pose and a window of past 
keyframes

27
Leutenegger, Lynen, Bosse, Siegwart, Furgale, Keyframe-based visual–inertial odometry using nonlinear optimization, International Journal 

of Robotics Research (IJRR), 2015. PDF. Video. Code.

https://spiral.imperial.ac.uk/bitstream/10044/1/23413/2/ijrr2014_revision_1.pdf
https://youtu.be/TbKEPA2_-m4
https://github.com/ethz-asl/okvis


Case Study 2: SVO+GTSAM

It solves the same optimization problem as OKVIS but:

• It optimizes ALL keyframes (from the start to the end of the trajectory)

• To make the optimization efficient

• Marginalizes 3D landmarks (minimizes Epipolar Line Distance (Lecture 08)
instead of the reprojection error)

• pre-integrates the IMU data between keyframes (see later)

• Optimization solved using Factor Graphs via GTSAM

• Very fast because it only optimizes the poses 
that are affected by a new observation

28
Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, 

IEEE Transactions on Robotics 2017. PDF. Video. Code. Best Paper Award.

https://opensam.org/get_started/
http://rpg.ifi.uzh.ch/docs/TRO16_forster.pdf
https://youtu.be/CsJkci5lfco
http://rpg.ifi.uzh.ch/svo_pro.html


SVO+GTSAM

29
Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, 

IEEE Transactions on Robotics 2017. PDF. Video. Code. Best Paper Award.

http://rpg.ifi.uzh.ch/docs/TRO16_forster.pdf
https://youtu.be/CsJkci5lfco
http://rpg.ifi.uzh.ch/svo_pro.html


SVO+GTSAM

30
Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, 

IEEE Transactions on Robotics 2017. PDF. Video. Code. Best Paper Award.

SVO+GTSAM MSCKF OKVIS

http://rpg.ifi.uzh.ch/docs/TRO16_forster.pdf
https://youtu.be/CsJkci5lfco
http://rpg.ifi.uzh.ch/svo_pro.html


Problem with IMU integration 

• The integration of IMU measurements, 𝑓 𝑥𝑘−1, 𝑢 , from 𝑘 − 1 to 𝑘 is related to the state estimation at 
time 𝑘 − 1

• During optimization, every time the linearization point at 𝑘 − 1 changes, the integration between 𝑘 − 1 
and 𝑘 must be re-evaluated, thus slowing down the optimization

• Idea: Preintegration

• defines relative motion increments, expressed in body frame, which are independent on the global 
position, orientation, and velocity at 𝑘 [1]

• [2] uses this theory by leveraging the manifold structure of the rotation group SO(3)

31

[1] Lupton, Sukkarieh. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions, 
IEEE Transactions on Robotics (T-RO), 2012. PDF.
[2] Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics 2017. PDF. Video. Code.

{X, L, 𝑏𝐴, 𝑏𝐺} = 𝑎𝑟𝑔𝑚𝑖𝑛{X, L, 𝑏𝐴, 𝑏𝐺} ෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘

2 + ෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝐿𝑖) − 𝑧𝑘
𝑖

𝛴𝑘
𝑖

2

IMU residuals Reprojection residuals
(Bundle Adjustment term)

https://ieeexplore.ieee.org/iel5/8860/6145195/06092505.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_forster.pdf
https://youtu.be/CsJkci5lfco
http://rpg.ifi.uzh.ch/svo_pro.html


IMU Pre-Integration

32

{ ෥𝜔, ෤𝑎} Δ ෨𝑅, Δ ෤𝑣, Δ ෤𝑝

𝑅𝑘 , 𝑝𝑘, v𝑘

Standard:
Evaluate error in global frame:

Preintegration:
Evaluate relative errors (i.e., in body frame):

Repeats integration when previous 
state changes!

Preintegration of IMU deltas possible 
with no initial condition required. 

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘
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Non-linear optimization vs. Filtering

34

Non-linear Optimization methods Filtering methods

Optimize a window of multiple states (or all the states) 
using non-linear Least-Squares optimization

Solve the same problem by running only one iteration of 
the optimization function (e.g., using Extended Kalman 
Filter (EKF))

✓Multiple iterations (it re-linearizes at each iteration)

✓Achieves the highest accuracy

✓Slower 

 One iteration only

 Sensitive to linearization point

✓Fastest



Filter-based VIOs - Case Study 1: ROVIO

• EKF state: X = 𝑝 𝑡 ;  𝑞 𝑡 ;  𝑣 𝑡 ;  b𝑎 𝑡 ;  b𝑔 𝑡 ; 𝐿1 ;  𝐿2; … ; 𝐿𝑘

• Basic idea:

1. Prediction step: predicts next position, velocity, orientation, and features using IMU integration model

2. Measurement update: refines state by leveraging visual constraint (ROVIO minimizes the photometric error 
between corresponding points (alternative would be the reprojection error))

35
Bloesch, Burri, Omari, Hutter, Siegwart, Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback, 

International Journal of Robotics Research (IJRR), 2017. PDF. Code.

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/263423/ROVIO.pdf?sequence=1&isAllowed=y
https://github.com/ethz-asl/rovio


ROVIO: Problems

• Complexity of the EKF grows quadratically in the number of estimated landmarks
• Thus, max 20 landmarks are tracked to allow real-time operation

• Only updates the most recent state
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Filter-based VIOs - Case Study 2: MSCKF

https://github.com/rpng/open_vins

• MSCKF (Multi-State Constraint Kalman Filter) updates multiple past poses {𝑝C1
, 𝑞C1

, … , 𝑝C𝑁
, 𝑞CN

} in 
addition to the current state {𝑝 𝑡 , 𝑞 𝑡 , 𝑣 𝑡 }. State vector:

• Prediction step: same as ROVIO

• Measurement update:
• Differently from ROVIO, 

• landmark positions are not added to the state vector, thus can run very fast independently of the number of features
• Visual constraint is obtained from the Epipolar Line Distance (Lecture 08)

• Used in spacecraft landing (NASA/JPL Moon and Mars landing), DJI drones, Google ARCore, Apple ARKit

• Released open source within the OpenVins project: https://github.com/rpng/open_vins 

37

[1] Mourikis, Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, International Conference on Robotics and Automation (ICRA), 2007. PDF.

[2] Li, Mourikis, High-precision, consistent EKF-based visual–inertial odometry, International Journal of Robotics Research (IJRR), 2013. PDF.

X = 𝑝 𝑡 ;  𝑞 𝑡 ;  𝑣 𝑡 ; b𝐴 𝑡 ; b𝐺 𝑡 ; 𝑝C1
;  𝑞C1

;  … ; 𝑝C𝑁
;  𝑞CN

https://github.com/rpng/open_vins
https://www-users.cs.umn.edu/~stergios/papers/ICRA07-MSCKF.pdf
https://pdfs.semanticscholar.org/0be0/c13803cd08e81b7adaada537e91222eb1491.pdf


MSCKF running in Google ARCore (former Google Tango)
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[1] Mourikis, Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, International Conference on Robotics and Automation (ICRA), 2007. PDF.

[2] Li, Mourikis, High-precision, consistent EKF-based visual–inertial odometry, International Journal of Robotics Research (IJRR), 2013. PDF.

Video

https://www-users.cs.umn.edu/~stergios/papers/ICRA07-MSCKF.pdf
https://pdfs.semanticscholar.org/0be0/c13803cd08e81b7adaada537e91222eb1491.pdf
https://youtu.be/Qe10ExwzCqk?si=-qtnz53lbXjOtVn5


Outline

• What is an IMU and why do we need it?

• IMU model

• Visual Inertial Odometry (VIO)
• Closed-form solution

• Non-linear optimization methods

• Filtering methods

• Camera-IMU extrinsic calibration and Synchronization

39



Camera-IMU Calibration

• Goal: estimate the rigid-body transformation 𝑻𝑩𝑪 and time offset 𝒕𝒅 between the camera and the IMU 
caused by communication delays and the internal sensor delays (introduced by filters and logic). 

• Assumptions: Camera and IMU rigidly attached. Camera intrinsically calibrated.

• Data:

• Image points from calibration pattern (checkerboard or QR board)

• IMU measurements: accelerometer {𝑎𝑘} and gyroscope {𝜔𝑘}
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Kalibr Toolbox
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Furgale, Rehder, Siegwart, Unified Temporal and Spatial Calibration for Multi-Sensor Systems, 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013. PDF. Code.

• Code: https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration 

https://furgalep.github.io/bib/furgale_iros13.pdf
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration


Kalibr Toolbox

42
Furgale, Rehder, Siegwart, Unified Temporal and Spatial Calibration for Multi-Sensor Systems, 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013. PDF. Code.

• Solves a non-linear Least Square optimization problem similar to that seen before but also optimizes over 
𝑇𝐵𝐶 , 𝑡𝑑:

• Continuous-time modelling using splines for 𝑋

• Numerical solver: Levenberg-Marquardt

{𝑋, 𝐿, 𝑇𝐵𝐶 , 𝑡𝑑 , 𝑏𝑎, 𝑏𝑔} = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑋,𝐿,𝑇𝐵𝐶,𝑡𝑑, 𝑏𝑎, 𝑏𝑔} ෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘

2 + ෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝐿𝑖) − 𝑧𝑘
𝑖

𝛴𝑘
𝑖

2

IMU residuals Reprojection residuals
(Bundle Adjustment term)

https://furgalep.github.io/bib/furgale_iros13.pdf
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration


Latest and Greatest ☺
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TLIO: Learned Inertial Odometry for Pedestrians

• IMU-only odometry for pedestrians combining deep learning with an extended Kalman filter (EKF)
• A neural network regresses position displacement and its uncertainty from a window of the most recent IMU 

measurements
• The position displacement is then fused into an EKF to estimate the pose, velocity, and bias of the IMU.
• Enables robust state estimation in challenging environments for visual frontends, e.g. high dynamic scenes, low light, 

etc.

[1] Liu, Caruso, Ilg, Dong, Mourikis, Daniilidis, Kumar, Engel, TLIO: Tight Learned Inertial Odometry, Robotics and Automation Letters (RA-L), 2020.



Learned Inertial Odometry

• We propose a learning-based odometry algorithm that uses an IMU as the only sensor modality for 
autonomous drone racing 

• The core idea is to couple a model-based filter, driven by the IMU measurements, with a learning-based 
drone dynamics model 

Cioffi, Bauersfeld, Kaufmann, Scaramuzza, Learned Inertial Odometry for Autonomous Drone Racing, RA-L, 2023



Learned Inertial Odometry

Cioffi, Bauersfeld, Kaufmann, Scaramuzza, Learned Inertial Odometry for Autonomous Drone Racing, RA-L, 2023



Readings

• Scaramuzza, Zhang, Visual-Inertial Odometry of Aerial Robots, Encyclopedia of Robotics, 
Springer, 2019, PDF.

• Huang, Visual-inertial navigation: A concise review, International Conference on Robotics 
and Automation (ICRA), 2019. PDF.

• Corke, Lobo, Dias, An Introduction to Inertial and Visual Sensing, International Journal of 
Robotics Research (IJRR), 2007. PDF.
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http://rpg.ifi.uzh.ch/docs/Encyclopedia19VIO_Scaramuzza.pdf
https://arxiv.org/pdf/1906.02650
https://www.researchgate.net/profile/Jorge_Dias4/publication/220122792_An_Introduction_to_Inertial_and_Visual_Sensing/links/0f31753779aa289f88000000/An-Introduction-to-Inertial-and-Visual-Sensing.pdf?_sg%5b0%5d=fM-48f0vf6QXiRIr5vDPo6KDCTwUMtz1BfYJloqcVRo-s4ma7o3ar1utU1loaewhmqp3USJcYXL1oClgMYcDkA.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_sg%5b1%5d=4mW333BXcLEks9_l9GyV49qIzPlAzBFNFuD5IFg9z-AIluzYXL4l4248Vwldu8Fb54ctSFNxdlX1RwUWAGCnfsrf6cYXto9Ao3mpNmV-0WC3.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_sg%5b2%5d=4g2Q_23ZekLblRQn730tHcylIWm9PHHMlrrY3dF45riCis1J4fgJHL9kyN_h5V622RybxfxdcXVfC-GifxXlLGwIGyG5.GQKH9htXovFUmRzoTSNXbngZ_A7AVgmDS9GhwZ2Au2EhFcZgNbhiHRC0k3UgsD_ffvlWxYkCg6Um6wfz5eQ68Q&_iepl=


Understanding Check

Are you able to answer the following questions?

• Why is it recommended to use an IMU for Visual Odometry?

• Why not just using an IMU and do inertial odometry (i.e., without a camera)?

• What is the basic idea behind MEMS IMUs?

• What is the drift of a consumer IMU?

• What is the IMU measurement model? (formula)

• What causes the bias in an IMU?

• How do we model the bias?

• How do we integrate the acceleration to get the position (formula)?

• What is the definition of loosely coupled and tightly coupled visual inertial fusion?

• How does non-linear optimization-based visual inertial odometry? Can you write down the cost function 
and illustrate its meaning?

• What does IMU-camera calibration do? Can you illustrate the unknowns and how to estimate them?
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