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1. Hardware Improvements

2. Big Data Available

3. Algorithmic Progress

What changed?




Image Classification

Task of assigning an input image a label from a fixed set of categories.
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[1] Slide adapted from CNNs for Visual Recognition (Stanford) Website


https://cs231n.github.io/

The semantic gap

What computers see compared to what we see
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Classification Challenges

Directly specifying how a category looks like is impossible.

Viewpoint variation

Scale variation Deformation Occlusion

;/\\f.-~ '

Intra-class variation

e 5

We need use a Data Driven Approach



Supervised Learning

Find function f(x, #) that imitates a ground truth signal

N numbers representing

f(x,0) >
$ class scores
Predicted Ground truth, y;
0.1 1.0
0.7 0.0
Function parameters 0.0 0.0

S

Update Loss(f(x;,0),v;) ;



Machine Learning Keywords

1. Loss: Quantify how good 6 are
2. Optimization: The process of finding 6 that minimize the loss
3. Function: Problem modelling — Deep networks are highly non-linear f (x, )



Classifiers: K-Nearest neighbor

Features are represented in the descriptor space

m N ®
R
\ o
raining
Training <> Test »
oo . example fexamlplesz
from class 1 ‘ rom elass
L]
o O
o O

f(x,0) =label of the K training examples nearest to x

How fast is training? How fast is testing?
* 0(1), O(n)
What is a good distance metric ? What K should be used? ®
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Classifiers: Linear

Find a linear function to separate the classes:

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

f(x,0) = sgn(6 -x + b)
What is 6? What is the dimensionality of images?

13



Whatis f(x,0)?

Classifiers: non-linear

Good classifier Bad classifier (over fitting)

14



Biological Inspiration

f(x,0) = F(0x), Fis a non-linear activation function (Step, ReLU, Sigmoid)

x1
w1

X2
w2

x3 w3
Z @ —0

wn

xXn

[1] Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 1958. PDF


https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf

Multi Layer Perceptron

put layer

input layer
hidden layer 1 hidden layer 2

S 7

Non-linear Activation functions (RelLU, sigmoid, etc.)

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF
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https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf

Forward Propagation

Forward Pass

Loss(f (x;,0), y:)

input layer
hidden layer 1 hidden layer 2

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF 17


https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf

Optimization: Back-propagation

Compute gradients with respect to all parameters and perform gradient descent

Onew = Uo1a — uVgLoss

Loss(f (x;,0), y:)

\

input layer

hidden layer 1 hidden layer 2

e

Backward Pass

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF
[2] Dreyfus, Artificial Neural Networks, Back Propagation and the Kelley-Bryson Gradient Procedure, Journal of Guidance, 1989. PDF

18


https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://www.gwern.net/docs/ai/1990-dreyfus.pdf

Problems of fully connected network

Too many parameters — possible overfitting.

put layer

input layer
hidden layer 1 hidden layer 2

However, we are not using the fact that inputs are images!

19



Convolutional Neural Networks
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BUSINESS INSIDER:

[1] LeCun, Bottou, Bengio, Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998. PDF
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http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

Going Deep

Convolutional _ Fully-
lay 1 Convolutional connected
layer 2 Convolutional Locally- layer 2

laver 3 connected
layer -
[ SRS VSt a6 _::::355’“ﬁ --jz : '

: Poolin Poolin -
_/ Poolin layer layer Fully

Output layer
Input layer layer ccig;lgs t1e d
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Dog
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Why Deep?

Inspired by the human visual system
Learn multiple layers of transformations of input
Extract progressively more sophisticated representations

A

22
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Supervised Learning

* In supervised learning we assume have access to both input data or images
and ground truth labels.

* Networks trained with supervision usually perform best
 However, getting ground truth is hard, since it often must be hand-labelled

ground truth label

> L(f(? 9),y)

prediction

24



Supervised Learning

* Image Segmentation

fihees) BEES AT V. - mEmn
& :mm; e R R oy e R s G

[1] Long, Shelhamer, Fully Convolutional Networks for Semantic Segmentation, Conference of Computer Vision and Pattern Recognition
(CVPR), 2015. PDF

25


https://arxiv.org/pdf/1411.4038.pdf

Supervised Learning

* Image Captioning

“little girl is eating piece of cake.” ‘baseball player is throwing ball "woman is holding bunch of "black cat is sitting on top of
in game.” bananas.’ suitcase.”

"a young boy is holding a "a cat is sitting on a couch witha ~ "a woman holding a teddy bearin  "a horse is standing in the middle
baseball bat." remote control.” front of a mirror” of aroad”

[1] Karpathy, Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions, Conference of Computer Vision and Pattern
Recognition (CVPR), 2015. PDF

26


https://arxiv.org/pdf/1412.2306.pdf

Supervised Learning

* Image Localization

Photo CC-BY-NC by steveke

[1] Weyland, Kostrikov, Philbin, PlaNet - Photo Geolocation with Convolutional Neural Networks, European Conference on Computer Vision
(ECCV), 2016. PDF

27


https://arxiv.org/pdf/1602.05314.pdf

* Introduction
* Supervised Learning

[° Unsupervised Learning ]

* Applications to Computer Vision
* Conclusions
* Machine Learning for Drones

Outline
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Unsupervised Learning

* In unsupervised learning we only have access to input data or images.

* Usually, these methods are more popular because they can use much
larger datasets that do not need to be manually labelled.

> L(f(x,0).%)
1

prediction

29



Unsupervised Learning

* Monocular Depth Estimation

||
I”r I”l
a4

= Il I'I‘ -

[1] Godard, Mac Aodha, Brostow, Unsupervised Monocular Depth Estimation with Left-Right Consistency , Conference of Computer Vision and
Pattern Recognition (CVPR), 2017. PDF


https://arxiv.org/pdf/1609.03677.pdf

Unsupervised Learning

e Structure from Motion

(a) Training: unlabeled video clips.

Targetl view Depth CNN
@ - I
Pose CNN
IRt /\
2 \/
“J

Z 2
g :
S,
z

L«

[1] Zhou, Brown, Snavely, Lowe, Unsupervised Learning of Depth and Ego-Motion from Video, Conference of Computer Vision and Pattern
Recognition (CVPR), 2017. PDF


https://arxiv.org/pdf/1609.03677.pdf

Unsupervised Learning

* Dense Optical Flow

Characteristic of the learned flow:

* Robustness against light changes (Census Transform)
* Occlusion handling (Bi-directional Flow)

 Smooth flow

> Backward warp

¥ } | Lix+wh)

- '-
r ’,
Forward-backward
m h T “ m

\ ILi(x +w?)

Smoothness loss Eg Consistency loss E¢ Data loss Ep

[1] Meister, Hur, Roth, Unsupervised Learning of Optical Flow with a Bidirectional Census Loss, Association for the Advancement of Artificial
Intelligence (AAAI), 2018. PDF
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https://arxiv.org/pdf/1711.07837.pdf

Unsupervised vs. Supervised learning

Supervised

Unsupervised

Performance

Usually better for the same dataset size.

Usually worse, but can outperform supervised
methods due to larger data availability.

Data availability

Low, due to manual labelling.

High, no labelling required.

Training

Simple, ground truth gives a strong
supervision signal.

Sometimes difficult, loss functions have to be
engineered to get good results.

Generalizability

Good, although sometimes the network
learns to blindly copy the labels provided,
leading to poor generalizability.

Better, since unsupervised losses often encode
the task in a more fundamental way.
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Place Recognition — NetVLAD

* Design an “image representation”
extractor f(1,0)

Geotagged image
database

¥ )

fw)

Image representation space

35



NetVLAD — Method

* Mimic the classical pipeline with deep learning

IWxHXD map interpreted as

normalization

T / o
2
\ 0
| %’”‘ \\ 0
—p “q r ‘\ —)p 1
| 0
\/\ 1
=
Image | Extract local features (SIFT) Aggregate (BoW, VLAD, FV) F(1)
Image __Convolutional Neural Network | NetVLAD layer ________
] o , | (KxD)x1
| ' ______soft-assignment ______ | VLAD
|
: [ conv (wb) | s “ ! L2 | vector
| : :: 1x1xDxK soft-max || normalization |,
| e ——— e —— e ————]
| 1 i@ _ :
L X .| VLAD core (c) Y Intra- :
|
|

I NxD local descriptors x
|

Trainable pooling layer

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition,

Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

36


https://arxiv.org/pdf/1511.07247.pdf

NetVLAD — Loss

* Triplet loss formulation

; FQ (wﬁ) ‘ ‘2 —> Matching samples

FQ (m) ‘ ‘ 2 —> Non matching samples

margin

t
L@ = max(Dp(g) +m — Dn(@)r 0)

samples

Disclaimer: The actual NetVlad loss is a slightly more complicated version of the one above

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition, 37
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF


https://arxiv.org/pdf/1511.07247.pdf

NetVLAD — Results

* Code, dataset and trained network online: give it a try here!

Top result

Green: Correct Red: Incorrect

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition,
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

38


https://arxiv.org/pdf/1511.07247.pdf
http://www.di.ens.fr/willow/research/netvlad/

Simultaneous Localization and Mapping — DROID-SLAM

* End-to-end trained method that computes camera pose and depth from images directly
e Depth and pose refinement through recurrent connection
* Uses learned, dense bundle adjustment as a key building block

4 )

DROID-SLAM

00O *

VY * A * -
Monocular, Stereo or RGB-D Video Apose depth

[1] Teed, Deng, DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras,
Conference on Neural Information Processing Systems (NeurlPS) 2021 PDF

39


https://arxiv.org/pdf/2108.10869.pdf

Occupancy Networks — 3D Shape as Decision Boundary

Dense 3D Reconstruction as Classification

N times |
I\
(-
45 j
Lo < < © ‘
mark voxels subdivide voxels evaluate network
\ |
v
W
3‘ el
f >
-} Pra— . <+—
(a) Voxel (b) Point (c) Mesh (d) Ours
refine using gradients simplify mesh marching cubes

[1] Mescheder, Oechsle, Niemeyer, Nowozin, Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019, PDF

44


https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf

Novel View Synthesis — Neural Radiance Fields (NeRF)

Render new views from a set of images with corresponding poses.

reconstructed neural synthesized novel

images with poses radiance field viewpoints

&4‘ g & Y
R gt E R R
fﬁ' GMIEFS LR -
SR A a L T & O 3 &
DG o O SRS -«;f—&o,_} & : :
kit R Bk g
I ED |
S OGRS

X ETSEE T

B EY R N

2

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European
Conference of Computer Vision (ECCV), 2020. PDF

[2] An overview and a reference for many follow-up works can be found here 45


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Method

Images are rendered by integrating transmittance and color along a ray
both of which are modelled with a multilayer perceptron

/
\,»}‘\
B

/ |
u

t
Position alongray: r(t) = o+ td Transmittance: T(t) = exp (—j a(r(s))ds>
t

g

‘ Ray 2

Ray Distance

tf n
Ray direction: d Color: C(r) = j T(t)g(r(t))c(r(t), d)dt
tn
[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European
Conference of Computer Vision (ECCV), 2020. PDF

[2] An overview and a reference for many follow-up works can be found here 46


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Training

We train this multilayer perceptron by minimizing the rendering loss on the

input images, thereby effectively overfitting.

NeRF is stored in the
weights of the MLP!

r(t),d —>|]|]|:|—> Cc,o \
Ray'1
}4 o ay:2

i i
or

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European

Conference of Computer Vision (ECCV), 2020. PDF
[2] An overview and a reference for many follow-up works can be found here

backpropagation

rendering loss

Ray 1 /\4

Rlay 2 /T

Ray Distance

Lt

47


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Results

Compared to previous approaches, NeRF generates highly photorealistic, and
consistent novel views.

48



3D Gaussian Splatting

Scenes represented as a collection of 3D Gaussian primitives, enabling efficient
reconstruction and visualization of complex environments with high fidelity.

[1] Kerbl, Kopanas, Leimkuhler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF
49


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf

3D Gaussian Splatting: Method

The approach begins with a sparse SfM point cloud to initialize 3D Gaussians,
optimizing their density using a differentiable tile-based rasterizer.

Camera —>

/ Projection \
‘et - . .
iy —» | Initialization | —» D'lfferentla'ble I Image
°%e \ Tile Rasterizer
[ ]

Adaptive

SfM Points 3D Gaussians

Density Control — Operation Flow Gradient Flow

[1] Kerbl, Kopanas, Leimkuhler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF
50


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf

3D Gaussian Splatting: Results

3D GS shows both better reconstruction quality and higher efficiency,
While NeRF suffers from slow rendering and training.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method|Metric | SSIMT PSNR' LPIPS! Train FPS Mem | SSIMT PSNR' LPIPS' Train FPS Mem | SSIM' PSNR' LPIPS! Train FPS Mem
Plenoxels 0.626 23.08 0.463 25m49s  6.79 2.1GB 0.719 21.08 0.379 25mb5s 13.0 2.3GB 0.795 23.06 0.510 27m49s 11.2 2.7GB
INGP-Base 0.671 25.30 0.371 5m37s 11.7 13MB 0.723 21.72 0.330 5m26s 17.1 13MB 0.797 23.62 0.423 6m31s 3.26 13MB
INGP-Big 0.699  25.59 0331  7m30s 9.43 48MB | 0745  21.92 0305  6m59s 144 48MB | 0817  24.96 0.390 8m 279 48MB
M-NeRF360 07927 27697  0.237" 48h 006 8.6MB | 0759  22.22 0.257 48h 0.4 86MB | 0901  29.40 0.245 48h 009 8.6MB
Ours-7K 0770  25.60 0279  6m25s 160 523MB | 0767  21.20 0280  6m55s 197 270MB | 0.875  27.78 0317  4m35s 172 386MB
Ours-30K 0815  27.21 0214 41m33s 134 734MB | 0.841  23.14 0.183  26m54s 154 411MB | 0903  29.41 0.243  36m2s 137 676MB

[1] Kerbl, Kopanas, Leimkuhler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF

51


https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf

Gaussian Splatting SLAM

3D Gaussians as the only 3D representation
VO pipeline instead of SLAM (no loop closure)

(Sec 3.3.1) (Sec 3.3.2) (Sec 3.3.3)

_____________________________________________________________________________________________________________________________________

Tracking Keyframing Mapping

Input video E E i E
(RGB or RGB-D) L . yes Gunssiar L
. P : Co-visibility Check — Insertion & Prune | | !

.........................................................

Window Optimisation

3D Gaussian Map
s SNy . gnetE

Camera Pose Estimation ¢«

| 1
| 1
1
) . k
— min E Epho T AisoEiso
| 1
1

2 k
(f Téw€E€SE(3),G, -
‘ : b VEeW = ReW
o ) y‘-. gy S T v"i ! :
SN e T A Do [
|
| 1

Keyframe Management

......................................................................................................................................

Monocular SLAM Results (x20
[1] Matsuki, Murai, Kelly, Davison. Gaussian Splatting SLAM, CVPR 2024, PDF ( )
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https://openaccess.thecvf.com/content/CVPR2024/papers/Matsuki_Gaussian_Splatting_SLAM_CVPR_2024_paper.pdf

Gaussian Splatting SLAM

* Better tracking performance than DROID SLAM - GS provides better view
synthesis
 Underperform when comparing with full SLAM pipeline like ORB SLAM

o Method fri/desk fr2/xyz fr3/office Avg.
closure

DSO [4] 22.4 1.10 9.50 11.0

E o DROID-VO [36] 5.20 10.7 7.30 7.73

§ DepthCov-VO [3] 5.60 1.20 68.8 25.2

g Ours 3.78 4.60 3.50 3.96

= 7 DROID-SLAM [36]  1.80 0.50 2.80 1.70

ORB-SLAM2 [20] 1.90 0.60 2.40 1.60

[1] Matsuki, Murai, Kelly, Davison. Gaussian Splatting SLAM, CVPR 2024, PDF
53


https://openaccess.thecvf.com/content/CVPR2024/papers/Matsuki_Gaussian_Splatting_SLAM_CVPR_2024_paper.pdf
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Conclusions

Deep learning, when applied in the correct circumstances, can achieve remarkable
performance on a variety of tasks by learning patterns from data

It works especially well when
e Sufficient data is available
* All operations are differentiable

Make sure to avoid the following pitfalls:
* Make sure to optimize the correct metric
e Test your model to an inch of its life

e Always monitor generalization Parameters... .

55




Additional Readings

* Nielsen, Neural Networks and Deep Learning, 2018. PDF

* Bengio, Practical Recommendations for Gradient-Based Training of Deep
Architectures, 2012. PDF

* Goodfellow, Bengio, Courville, Deep Learning, 2016 Website



https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://arxiv.org/pdf/1206.5533.pdf
https://www.deeplearningbook.org/
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The drone market is valued $24 billions today

Inspection Agriculture - Transport Search and Rescue

Source: Swiss Drone Industry Report 2021, p. 22:
https://drive.google.com/file/d/1ljesolDoUul-IVX14ngJRCT-wpEQB22 /view

58


https://drive.google.com/file/d/1ljesolDoUu1-IVX14nqJRCT-wpEQB22_/view

How are current commercial drones controlled?

* By a human pilot

* requires line of sight or video link
* requires a lot of training

* By an autopilot: autonomous navigation
* GPS: doesn’t work in GPS denied or degraded environments

 Lidar (e.g., Exyn): expensive, heavy, power hungry
* Cameras (e.g., Parrot, DJI, Skydio): cheap, lightweight, passive (i.e., low power)

59



Last 10-years Progress on Autonomous Vision-based Flight

SLAM map

2010 2020
EU SFLY Project (2009-2012) * Skydio (2018-2020),
« DIJI (2018-2020),
[Bloesch, ICRA 2010]  NASA Mars Helicopter (2020)
1t onboard goal-oriented
vision-based flight 1st products in the market
(previous research focused or sent to another planet ©

. . . 60
on reactive navigation)


http://rpg.ifi.uzh.ch/docs/ICRA10_bloesch.pdf

Range [km]

12

Flying Fast to Fly Far

b |

Ah

5 10 15 20 25
Flight Speed [m/s]

Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, IEEE RAL, 2022. PDF


http://rpg.ifi.uzh.ch/docs/Arxiv21_Bauersfeld.pdf

Related Work: The Traditional Approach

= E) — \&(«*‘Ka k:{}d
= (%:%«
: .
Images \ “‘%\r
IMU Command
[ Perception } [ Planning } [ Control }
State Estimation Polynomial Trajectories PID Control
Mapping Trajectory Optimization Model Predictive Control

Reinforcement Learning
Iterative Learning Control

62



Related Work: The Problem

A
— [\ ~ ,
%«g&« +

@i@ s S I/P
Images “%ﬂ,

IMU Command
[ Perception } E Planning } [ Control }

Mature Algorithms, but brittle Require strong assumptions Needs significant tuning,
during high speed due to motion about the environment (e.g, especially at high speed.
blur. CAD of scene).

I This fine-grained modularity makes the robotic system fragile:

® The modules do not interact with each other.
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Related Work: End-to-End Learning

LV
0 ar. &
L Y ‘%?“"f&
~ ¥
= (W= q&f««

Images 4
IMU Command
Neural Network
\
High-Level commands (forward, left, right) Low-Level commands (collective thrust, bodyrates)
I Don’t exploit the agile Too sample inefficient to be used on a

H dynamics of the drone ° physical drone. Only shown in Sim.
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Our Research

H
v
\ Augment the traditional robotic cycle
& with learning-based methods.
/I'\\
Hypothesis:

Neural Networks can distill the knowledge of mature robotics algorithms
into computationally efficient and robust sensorimotor policies.
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Projects

* Learning High-Speed Flight in the Wild

* NeuroBEM: Hybrid Aerodynamic Quadrotor Model

* Autonomous Drone Racing

66



Learning High-Speed Flight in the Wild

What does it take to achieve similar spatial awareness to a human with comparable sensing (and
computing) in the context of high-speed flight?

Human pilots fly under similar
assumptions!

Assumptions:

e No external sensing or computing.
e Test environment not seen in advance.

e Possibly dynamic environment.
Available Information:

e Visual Feedback (multiple cameras).

e Inertial Feedback.

e Anintention (e.g. fly straight).

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code

67



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,

Science Robotics, 2021. PDF, Video, Code


http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
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Multiple-Hypothesis Action Prediction

We predict collision-free receding-horizon trajectories using a neural network with access to visual
and inertial observations, as well as a reference velocity.

Stereo Depth

Velocity and Attitude -
<D Gon

Desired Direction

A

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,

Pretrained
MobileNet-V3

State Encoder

M x 32

M x 32

Shared Weights
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Training Procedure

We follow the privileged learning paradigm to train the network purely in simulation*.

1. Design an expert planner with access to full knowledge of the environment.
This expert uses a fine-grained point-cloud of the scene to find collision-free trajectories with
sampling.

2. Distill the knowledge of the expert into a deep neural network.
Basically do imitation learning from a set of expert demonstrations.

This simple idea hides quite some challenges!

* Impossible to collect a dataset of real-world demonstrations since it is not possible (or very expensive) to
have a perfect map of the environment.
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Controlled Experiments

Evaluate on the task of reaching a goal with no prior knowledge about
the scene.

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code
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Drone Racing — A Proxy Task

* pass a sequence of
gates in the correct
order

* fly a given number of
laps in minimum time

* be quicker than the
opponent
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Our “Swift” Drone

* Jetson TX2

 Realsense
T265

* Images
e IMU/VIO

* Weight: 870g
* Thrust: 39N
* TWR: 4.5
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Localization

VIO Performance

* VIO drift accumulates over time IMU
* no robust feature tracking

* IMU forward integration

200 Hz

Perception System

VIO

100 Hz

—>
VIO state
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Localization

Gate Detections Perception System

* CNN-Unet detecting gates MU 200H:  ylo 100t
* PnP for localization

e Kalman filter to fuse VIO+Gates

» O VIO state
n ¥ :v\“ \
7 ; ’

100 Hz

Kalman —
Gate Det. 30 Hz Filter obs.

state
gate
detections
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RL Policy Training

Real-World Operation

Perception System

IMU

VIO 100 Hz

VIO state

100 Hz

Kalman
Gate Det. 30 Hz Filter

gate
£< detections
C
r ©

previous action

Policy

obs.
state

drone

state
%

100 Hz
MLP: 2 x 128

Real-World
Deployment

Reward

ground-truth
state

Y

RL Training Loop

Simulation Environment

Physics
b~
t
~
b= Ozi(q?(fu + Frero + . ))+g
i=q L’H I (T
Policy action
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RL Policy Training

Reward

* progress reward
prog __ Gate Gate
i = Ay (d¢Z° —dg™™®)

e perception reward
perc

_ 4
£ = A, exp(4A3 Ocam
e command reward

zrtcmd = A4las’| + Asla; —
Ap—q]

* crash penalty

crash _ —5.0, if crash
‘ 0, otherwise

Training Details

* training with PPO
* 100M environment interactions
* 50 min wall-time
e 23 days sim-time

* value and policy network share
architecture

* network:
* 2 layer MLP
e 128 nodes per layer
* activation: LeakyRelLU
e optimizer: Adam






Real-World Operation

Perception System

IMU

VIO 100 Hz

Gate Det. 30Hz

s it good enough?

VIO state

100 Hz

Kalman
Filter

gate
detections

previous action

Policy
100 Hz

MLP: 2 x 128

obs. Real-World
gae Deployment

drone
state

RL Training Loop

Simulation Environment

Reward

ground-truth
state

Y

Physics
b~
?
~
P \7:%(q 9 (Frop + Fooro + ) + 8
i=q L’H I (T
Policy action

81




Residual Models

Unmodelled Effects

* Aerodynamic effects
* turbulence & downwash
* ground effect

e Mechanical effects

* soft dampers to shield IMU from motor
vibrations

e camera moves w.r.t. drone body

* Perception effects
* illumination & background changes

need policy-specific models
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The Swift System

Real-World Operation

Perception System

IMU

VIO 100 Hz

VIO state

100 Hz

Kalman
Gate Det. 30Hz Filter

gate ‘
L. detections
v
v ©

previous action

Policy

drone

state
%

100 Hz
MLP: 2 x 128

action

Real-World
Deployment

RL Training Loop
Simulation Environment
Reward Physics
AN /T 1
—
b 6= (@0 (e + Faro +12) 8
a0 (2] S )
ground-truth residual
""""""" | state wrench

Perception % Dynamics
«— —>

Residual

A

N

Residual

action

real-world
experience
______________ ,|observed
state
Policy

[
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Head-to-Head Race Results

Number of Races Best time-to-finish Wins Losses Win ratio
A. Vanover vs. Swift 9 17.956 4 5 0.44
T. Bitmatta vs. Swift 7 18.746 3 4 0.43
M. Schapper vs. Swift 9 21.160 3 6 0.33
Swift vs. human pilots 25 17.465 15 10 0.60
A. Vanover M. Schapper

T. Bitmatta
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Conclusions and Takeaways

Autonomous vision-based agile flight as a new research topic (at least 10 years to solve it)

Pushes the limit of existing algorithms in extreme situations

Raises fundamental problems for robotics research




Come over for projects in DL!

* Visit our webpage for projects! http://rpg.ifi.uzh.ch/student projects.php

Improving Event-Based Vision with Energy-Efficient Neural Networks -
Available Event Keypoint Extraction for Real-Time Pose Estimation - Available

Description: Event-based cameras, also known as neuromorphic vision sensors,

capture visual information through asynchronous pixel-level brightness changes, Description: Neuromorphic cameras, known for their high dynamic range (HDR)

offering high temporal resolution, low latency, and a wide dynamic range. These . . . .
characteristics make them ideal for applications requiring rapid response times and capabllltles, hlgh-temporal resolutlon, and low power consumptlon, have Opened up

efficient data processing. However, deploying deep learning models on resource- new possibilities in camera pose estimation, especially in fast-moving and

constrained devices remains challenging due to computational overhead and . . . . . . .
i - ) challenging environments. This project aims to enhance camera pose estimation by
energy consumption. This project explores novel approaches to developing energy-

efficient neural networks tailored for event-based vision tasks. By designing models developing a data-driven approach for keypoint extraction from event data, building

= )
- / that significantly reduce computational demands and memory footprint while

s =l
B~ | dmi maintaining high performance, we can make real-time processing on embedded . . . . . .
hardware feasible. The focus will be on balancing training efficiency and model |ntegrate a Visual Odometry (VO) plpelme to enable real-time feedback and traCng-

accuracy, minimizing energy consumption without sacrificing the quality of results.

on recent advancements in frame-based keypoint extraction. The project will also

Hybrid Spiking-Deep Neural Network System for Efficient Event-Based

Vision Processing - Available Learned Event Generation from Images - Available

Description: Event cameras are innovative sensors that capture changes in a Description: Event cameras offer a unique approach to capturing scenes,

scene dynamically, unlike standard cameras that capture images at fixed intervals. detecting changes in light intensity rather than using fixed time intervals like
They detect pixel-level brightness changes, providing high temporal resolution and traditional cameras. This project focuses on overcoming the scarcity of event-
low latency. This results in efficient data processing and reduced power

! . . - based datasets by generating synthetic event data from standard frame-based
consumption, typically just 1 mW. Spiking Neural Networks (SNNs) process

information as discrete events or spikes, mimicking the brain's neural activity. They images. Using advanced deep learning techniques, the goal is to create high-

differ from standard Neural Networks (NNs) that process information continuously. quality synthetic events that closely resemble real-world data, helping to bridge the

SNNs are highly efficient in power consumption and well-suited for event-driven gap between simulated and actual event-based data.

data from event cameras. In collaboration with SynSense, this project aims to

integrate the rapid processing capabilities of SNNs with the advanced analytic Goal: In this project, you will apply cutting-edge deep learning models to generate artificial events from conventional

powers of deep neural networks. By distilling higher-level features from raw event image frames. You will gain a strong understanding of how event cameras work and how to produce realistic event data.
data, we aim to significantly reduce the volume of events needing further processing by traditional NNs, improving data Since the project involves exploring multiple state-of-the-art deep learning methods, a solid background in deep learning
quality and transmission efficiency. System will be tested on computer vision tasks like object detection and tracking, is essential. If you're interested, we would be happy to provide further details. ‘;7

gesture recognition, and high-speed motion estimation.



Check out our student projects!

* Visit our webpage: https://rpg.ifi.uzh.ch/student projects.php

Fine-tuning Policies in the Real World with Reinforcement Learning -
Available

Description: Training sub-optimal policies is relatively straightforward and provides
a solid foundation for reinforcement learning (RL) agents. However, these policies
cannot improve online in the real world, such as when racing drones with RL.
Current methods fall short in enabling drones to adapt and optimize their
performance during deployment. Imagine a drone equipped with an initial sub-
optimal policy that can navigate a race course but not with maximum efficiency. As
the drone races, it learns to optimize its maneuvers in real-time, becoming faster

and more agile with each lap.

Goal: This project aims to explore online fine-tuning in the real world of sub-optimal policies using RL, allowing racing
drones to improve continuously through real-world interactions.

Sim-to-real transfer of event-camera-based RL policies - Available

Description: This project aims to develop and evaluate drone navigation policies
using event-camera inputs, focusing on the challenges of transferring these policies
from simulated environments to the real world. Event cameras, known for their high
temporal resolution and dynamic range, offer unique advantages over traditional
frame-based cameras, particularly in high-speed and low-light conditions. However,
the sim-to-real gap—differences between simulated environments and the real
world—poses significant challenges for the direct application of learned policies. In
this project we will look try to understand the sim-to-real gap for event cameras and
how this gap influences downstream control tasks, such as flying in the dark,
dynamic obstacle avoidance and, object catching. This would include learning
representations for event data ( ideally while reducing the sim-real domain gap)

and training navigation policies using either reinforcement or imitation learning methods.

Vision-based End-to-End Flight with Obstacle Avoidance - Available

Description: Recent progress in drone racing enables end-to-end vision-based
drone racing, directly from images to control commands _without explicit state
estimation_. In this project, we address the challenge of unforeseen obstacles and
changes to the racing environment. The goal is to develop a control policy that can
race through a predefined track but is robust to minor track layout changes and
gate placement changes. Additionally, the policy should avoid obstacles that are
placed on the racetrack, mimicking real-world applications where unforeseen

obstacles can be present at any time. Requirements: - Machine learning experience (PyTorch) - Excellent programming

skills in C++ and Python

Learning Rapid UAV Exploration with Foundation Models - Available

Description: In this project, our objective is to efficiently explore unknown indoor
environments using UAVs. Recent research has demonstrated significant success
in integrating foundational models with robotic systems. Leveraging these
foundational models, the drone will employ learned semantic relationships from
large-world-scale data to actively explore and navigate through unknown
environments. While most prior research has focused on ground-based robots, this
project aims to investigate the potential of integrating foundational models with
aerial robots to introduce more agility and flexibility. Applicants should have a solid

understanding of mobile robot navigation, machine learning experience (PyTorch), and programming experience in C++

and Python.
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