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Some History
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What changed?

1. Hardware Improvements

2. Big Data Available

3. Algorithmic Progress
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Image Classification

Task of assigning an input image a label from a fixed set of categories.

[1] Slide adapted from CNNs for Visual Recognition (Stanford) Website

https://cs231n.github.io/
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The semantic gap

What computers see compared to what we see
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Classification Challenges

Directly specifying how a category looks like is impossible.

We need use a Data Driven Approach



Find function 𝑓 𝑥, 𝜃 that imitates a ground truth signal 

𝑓(𝑥, 𝜃)

Function parameters
or weights

N numbers representing
class scores

0.1
0.7…
0.0

1.0
0.0…
0.0

Predicted Ground truth, 𝑦!

𝐿𝑜𝑠𝑠(𝑓 𝑥! , 𝜃 , 𝑦!)Update 10

Supervised Learning



Machine Learning Keywords

1. Loss: Quantify how good 𝜃 are
2. Optimization: The process of finding 𝜃 that minimize the loss
3. Function: Problem modelling → Deep networks are highly non-linear 𝑓(𝑥, 𝜃)
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𝑓(𝒙, 𝜃)	= label of the K training examples nearest to 𝒙

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2
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Classifiers: K-Nearest neighbor

Features are represented in the descriptor space

How fast is training? How fast is testing?
• O(1), O(n)

What is a good distance metric ? What K should be used? L 
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Classifiers: Linear

Find a linear function to separate the classes:

	𝑓 𝒙, 𝜃 = 	𝑠𝑔𝑛 𝜃	×	𝒙	 + 	𝑏

What is 𝜃? What is the dimensionality of images?



Bad classifier (over fitting)Good classifier
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Classifiers: non-linear

What is 𝑓(𝑥, 𝜃)	?
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Biological Inspiration

𝑓 𝑥, 𝜃 = 𝐹(𝜃𝑥), F is a non-linear activation function (Step, ReLU, Sigmoid)

[1] Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 1958. PDF

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf


𝑓(𝑥, 𝜃)

Non-linear Activation functions (ReLU, sigmoid, etc.)  

16[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF  

Multi Layer Perceptron

https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf


Forward Pass

𝐿𝑜𝑠𝑠(𝑓 𝑥! , 𝜃 , 𝑦!)
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Forward Propagation

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF  

https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf


Backward Pass

𝜃"#$ = 𝜃%&' − 𝜇𝛻(𝐿𝑜𝑠𝑠

18[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF  
[2] Dreyfus, Artificial Neural Networks, Back Propagation and the Kelley-Bryson Gradient Procedure, Journal of Guidance, 1989. PDF 

𝐿𝑜𝑠𝑠(𝑓 𝑥! , 𝜃 , 𝑦!)

Compute gradients with respect to all parameters and perform gradient descent

Optimization: Back-propagation

https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://www.gwern.net/docs/ai/1990-dreyfus.pdf
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Problems of fully connected network

Too many parameters → possible overfitting. 

However, we are not using the fact that inputs are images!



20[1] LeCun, Bottou, Bengio, Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998. PDF

Convolutional Neural Networks

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
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Going Deep
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Why Deep?

1. Inspired by the human visual system
2. Learn multiple layers of transformations of input
3. Extract progressively more sophisticated representations

“car”
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𝐿 𝑓 𝑥, 𝜃 , 𝑦

Network

ground truth label

Image prediction
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Supervised Learning

• In supervised learning we assume have access to both input data or images 
and ground truth labels. 
• Networks trained with supervision usually perform best
• However, getting ground truth is hard, since it often must be hand-labelled
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Supervised Learning

• Image Segmentation

[1] Long, Shelhamer,  Fully Convolutional Networks for Semantic Segmentation, Conference of Computer Vision and Pattern Recognition 
(CVPR), 2015. PDF

https://arxiv.org/pdf/1411.4038.pdf
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Supervised Learning

• Image Captioning

[1] Karpathy, Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions, Conference of Computer Vision and Pattern 
Recognition (CVPR), 2015. PDF

https://arxiv.org/pdf/1412.2306.pdf
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Supervised Learning

• Image Localization

[1]  Weyland, Kostrikov, Philbin,  PlaNet - Photo Geolocation with Convolutional Neural Networks, European Conference on Computer Vision 
(ECCV), 2016. PDF

https://arxiv.org/pdf/1602.05314.pdf
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𝐿 𝑓 𝑥, 𝜃 . 𝑥

Network

predictionImage
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• In unsupervised learning we only have access to input data or images.
• Usually, these methods are more popular because they can use much 

larger datasets that do not need to be manually labelled.

Unsupervised Learning
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Unsupervised Learning

• Monocular Depth Estimation

[1] Godard, Mac Aodha, Brostow, Unsupervised Monocular Depth Estimation with Left-Right Consistency , Conference of Computer Vision and 
Pattern Recognition (CVPR), 2017. PDF

https://arxiv.org/pdf/1609.03677.pdf
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Unsupervised Learning

• Structure from Motion

[1] Zhou, Brown, Snavely, Lowe, Unsupervised Learning of Depth and Ego-Motion from Video, Conference of Computer Vision and Pattern 
Recognition (CVPR), 2017. PDF

https://arxiv.org/pdf/1609.03677.pdf
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Unsupervised Learning

[1] Meister, Hur, Roth, Unsupervised Learning of Optical Flow with a Bidirectional Census Loss, Association for the Advancement of Artificial 
Intelligence (AAAI), 2018. PDF

• Dense Optical Flow

Characteristic of the learned flow:
• Robustness against light changes (Census Transform)
• Occlusion handling (Bi-directional Flow)
• Smooth flow

https://arxiv.org/pdf/1711.07837.pdf
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Supervised Unsupervised

Performance Usually better for the same dataset size. Usually worse, but can outperform supervised 
methods due to larger data availability.

Data availability Low, due to manual labelling. High, no labelling required.

Training Simple, ground truth gives a strong 
supervision signal.

Sometimes difficult, loss functions have to be 
engineered to get good results.

Generalizability Good, although sometimes the network 
learns to blindly copy the labels provided, 
leading to poor generalizability.

Better, since unsupervised losses often encode 
the task in a more fundamental way.

Unsupervised vs. Supervised learning
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Place Recognition – NetVLAD 

f(     ) f(     )

+

• Design an “image representation” 
extractor 𝑓(𝐼, 𝜃)



Trainable pooling layer

Aggregate (BoW, VLAD, FV)Extract local features (SIFT)Image I F(I)

2
0
0
1
0
1
…
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NetVLAD – Method 

Arandjelović, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition, 
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

• Mimic the classical pipeline with deep learning

https://arxiv.org/pdf/1511.07247.pdf


Disclaimer: The actual NetVlad loss is a slightly more complicated version of the one above

Matching samples

Non matching samples

margin
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NetVLAD – Loss 

Arandjelović, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition, 
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

• Triplet loss formulation

https://arxiv.org/pdf/1511.07247.pdf


Query Top result

Green: Correct    Red: Incorrect

38Arandjelović, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition, 
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

NetVLAD – Results 

• Code, dataset and trained network online: give it a try here!

https://arxiv.org/pdf/1511.07247.pdf
http://www.di.ens.fr/willow/research/netvlad/
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Simultaneous Localization and Mapping – DROID-SLAM

[1] Teed, Deng, DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras, 
Conference on Neural Information Processing Systems (NeurIPS) 2021 PDF

• End-to-end trained method that computes camera pose and depth from images directly
• Depth and pose refinement through recurrent connection
• Uses learned, dense bundle adjustment as a key building block

https://arxiv.org/pdf/2108.10869.pdf


Occupancy Networks – 3D Shape as Decision Boundary
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Dense 3D Reconstruction as Classification 

[1] Mescheder, Oechsle, Niemeyer, Nowozin, Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019, PDF

https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf


Novel View Synthesis – Neural Radiance Fields (NeRF)

images with poses reconstructed neural 
radiance field

synthesized novel 
viewpoints
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Render new views from a set of images with corresponding poses.

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European 
Conference of Computer Vision (ECCV), 2020. PDF
[2] An overview and a reference for many follow-up works can be found here

https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf
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Neural Radiance Fields (NeRF): Method

𝐶 𝑟 = 2
"!

""
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡	

𝑇 𝑡 = exp −2
"!

"
𝜎 𝒓 𝑠 𝑑𝑠	

Color: 

Transmittance: 𝒓 𝑡 = 𝒐 + 𝑡𝒅Position along ray: 

Ray direction: 𝒅

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European 
Conference of Computer Vision (ECCV), 2020. PDF
[2] An overview and a reference for many follow-up works can be found here

Images are rendered by integrating transmittance and color along a ray
both of which are modelled with a multilayer perceptron

𝒓 𝑡 , 𝒅	 𝒄, 𝜎

𝒅
𝒅

𝒅
𝒅

https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf
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Neural Radiance Fields (NeRF): Training

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European 
Conference of Computer Vision (ECCV), 2020. PDF
[2] An overview and a reference for many follow-up works can be found here

We train this multilayer perceptron by minimizing the rendering loss on the 
input images, thereby effectively overfitting. 

𝒓 𝑡 , 𝒅	 𝒄, 𝜎

𝒅
𝒅

𝒅
𝒅

rendering lossbackpropagationNeRF is stored in the 
weights of the MLP!

https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf
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Neural Radiance Fields (NeRF): Results

Compared to previous approaches, NeRF generates highly photorealistic, and 
consistent novel views.
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3D Gaussian Splatting

[1] Kerbl, Kopanas, Leimkühler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF

Scenes represented as a collection of 3D Gaussian primitives, enabling efficient 
reconstruction and visualization of complex environments with high fidelity.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf
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3D Gaussian Splatting: Method

[1] Kerbl, Kopanas, Leimkühler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF

The approach begins with a sparse SfM point cloud to initialize 3D Gaussians, 
optimizing their density using a differentiable tile-based rasterizer.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf
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3D Gaussian Splatting: Results

[1] Kerbl, Kopanas, Leimkühler, Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023, PDF

3D GS shows both better reconstruction quality and higher efficiency,
While NeRF suffers from slow rendering and training.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf
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Gaussian Splatting SLAM

[1] Matsuki, Murai, Kelly, Davison. Gaussian Splatting SLAM, CVPR 2024, PDF

• 3D Gaussians as the only 3D representation
• VO pipeline instead of SLAM (no loop closure)

Monocular SLAM Results (x20)

https://openaccess.thecvf.com/content/CVPR2024/papers/Matsuki_Gaussian_Splatting_SLAM_CVPR_2024_paper.pdf
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Gaussian Splatting SLAM

[1] Matsuki, Murai, Kelly, Davison. Gaussian Splatting SLAM, CVPR 2024, PDF

• Better tracking performance than DROID SLAM à GS provides better view 
synthesis

• Underperform when comparing with full SLAM pipeline like ORB SLAM

https://openaccess.thecvf.com/content/CVPR2024/papers/Matsuki_Gaussian_Splatting_SLAM_CVPR_2024_paper.pdf
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Conclusions

Deep learning, when applied in the correct circumstances, can achieve remarkable 
performance on a variety of tasks by learning patterns from data

It works especially well when 
• Sufficient data is available
• All operations are differentiable

Make sure to avoid the following pitfalls:
• Make sure to optimize the correct metric
• Test your model to an inch of its life
• Always monitor generalization
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Additional Readings

• Nielsen, Neural Networks and Deep Learning, 2018. PDF
• Bengio, Practical Recommendations for Gradient-Based Training of Deep 

Architectures, 2012. PDF
• Goodfellow, Bengio, Courville, Deep Learning, 2016 Website

https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://arxiv.org/pdf/1206.5533.pdf
https://www.deeplearningbook.org/
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• Conclusions
• Machine Learning for Drones
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Outline
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Inspection Agriculture Transport Search and Rescue

The drone market is valued $24 billions today

Source: Swiss Drone Industry Report 2021, p. 22:
https://drive.google.com/file/d/1ljesolDoUu1-IVX14nqJRCT-wpEQB22_/view

https://drive.google.com/file/d/1ljesolDoUu1-IVX14nqJRCT-wpEQB22_/view


• By a human pilot
• requires line of sight or video link
• requires a lot of training 

• By an autopilot: autonomous navigation
• GPS: doesn’t work in GPS denied or degraded environments
• Lidar (e.g., Exyn): expensive, heavy, power hungry
• Cameras (e.g., Parrot, DJI, Skydio): cheap, lightweight, passive (i.e., low power)

59

How are current commercial drones controlled?
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2010
EU SFLY Project (2009-2012)

[Bloesch, ICRA 2010]
1st onboard goal-oriented 

vision-based flight
(previous research focused 

on reactive navigation)

2020
• Skydio (2018-2020), 
• DJI (2018-2020), 
• NASA Mars Helicopter (2020)

1st products in the market 
or sent to another planet J

Last 10-years Progress on Autonomous Vision-based Flight

http://rpg.ifi.uzh.ch/docs/ICRA10_bloesch.pdf


61

Flight Speed [m/s]

Ra
ng

e 
[k

m
]

0
0

3

6

9

12

5 10 15 20 25

kg

Ah

5"

Sm
al

l
Dr

on
e

0.7

1.8

9.5 km @ 16 m/s

Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, IEEE RAL, 2022. PDF

Flying Fast to Fly Far

http://rpg.ifi.uzh.ch/docs/Arxiv21_Bauersfeld.pdf
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Perception Planning

Images
IMU 

Control
Command

State Estimation
Mapping

Polynomial Trajectories
Trajectory Optimization

PID Control
Model Predictive Control
Reinforcement Learning
Iterative Learning Control

Related Work: The Traditional Approach
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Perception Planning

Images
IMU 

Control
Command

Mature Algorithms, but brittle
during high speed due to motion
blur.

Require strong assumptions
about the environment (e.g, 
CAD of scene).

Needs significant tuning, 
especially at high speed.

This fine-grained modularity makes the robotic system fragile: 
The modules do not interact with each other.

Related Work: The Problem
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Images
IMU Command

Related Work: End-to-End Learning

Neural Network

High-Level commands (forward, left, right) Low-Level commands (collective thrust, bodyrates) 

Don’t exploit the agile 
dynamics of the drone

Too sample inefficient to be used on a 
physical drone. Only shown in Sim. 
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Augment the traditional robotic cycle 
with learning-based methods. 

Hypothesis: 
Neural Networks can distill the knowledge of mature robotics algorithms 
into computationally efficient and robust sensorimotor policies.

Our Research



• Learning High-Speed Flight in the Wild

• NeuroBEM: Hybrid Aerodynamic Quadrotor Model

• Autonomous Drone Racing

66

Projects
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What does it take to achieve similar spatial awareness to a human with comparable sensing (and 
computing) in the context of high-speed flight?

Assumptions:

● No external sensing or computing.

● Test environment not seen in advance.

● Possibly dynamic environment.

Available Information:

● Visual Feedback (multiple cameras).

● Inertial Feedback.

● An intention (e.g. fly straight).

Human pilots fly under similar 
assumptions!

Learning High-Speed Flight in the Wild

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy


68Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy
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We predict collision-free receding-horizon trajectories using a neural network with access to visual 
and inertial observations, as well as a reference velocity. 

M
 =

 3
M

 =
 3

Pretrained 
MobileNet-V3

Stereo Depth

Velocity and Attitude

Desired Direction State Encoder

M x 32

M x 32

Shared Weights

Multiple-Hypothesis Action Prediction

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy


70

We follow the privileged learning paradigm to train the network purely in simulation*.

1. Design an expert planner with access to full knowledge of the environment. 
This expert uses a fine-grained point-cloud of the scene to find collision-free trajectories with 
sampling.

2. Distill the knowledge of the expert into a deep neural network. 
Basically do imitation learning from a set of expert demonstrations.

This simple idea hides quite some challenges!

* Impossible to collect a dataset of real-world demonstrations since it is not possible (or very expensive) to 
have a perfect map of the environment.

Training Procedure

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy


71Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy


Evaluate on the task of reaching a goal with no prior knowledge about 
the scene.
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Controlled Experiments

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild, 
Science Robotics, 2021. PDF, Video, Code

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy
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Drone Racing – A Proxy Task

• pass a sequence of 
gates in the correct 
order

• fly a given number of 
laps in minimum time

• be quicker than the 
opponent



• Jetson TX2
• Realsense 

T265
• Images
• IMU/VIO

• Weight: 870g
• Thrust: 39N
• TWR: 4.5

75

Our “Swift” Drone



VIO Performance
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Perception System

200 HzIMU 100 HzVIO

30 HzImage

VIO state

• VIO drift accumulates over time
• no robust feature tracking
• IMU forward integration

Localization



Gate Detections
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Perception System

200 HzIMU 100 HzVIO

30 HzGate Det.30 HzImage

VIO state

gate 
detections

100 Hz

Kalman 
Filter obs.

state

• CNN-Unet detecting gates
• PnP for localization
• Kalman filter to fuse VIO+Gates

Perception System

200 HzIMU 100 HzVIO

30 HzGate Det.30 HzImage

VIO state

gate 
detections

100 Hz

Kalman 
Filter obs.

state

Localization



Perception System

200 HzIMU 100 HzVIO

30 HzGate Det.30 HzImage

VIO state

gate 
detections

100 Hz

Kalman 
Filter obs.

state

Control Policy

78

• inputs:
• state estimate (KF)

• pose
• velocity
• bodyrates

• next gate position
• previous action

• command output:
• collective thrust
• bodyrates

• runs at 100 Hz

Perception System

Real-World Operation

200 HzIMU 100 HzVIO

30 HzGate Det.30 HzImage

100 Hz

Kalman 
Filter

gate 
detections

VIO state

Policy
100 Hz

MLP: 2 x 128

Real-World 
Deployment

drone
state

action

previous action

obs.
state

RL Policy Training

Perception System

Real-World Operation

200 HzIMU 100 HzVIO

30 HzGate Det.30 HzImage

100 Hz

Kalman 
Filter

gate 
detections

VIO state

Policy
100 Hz

MLP: 2 x 128

Real-World 
Deployment

drone
state

action

previous action

RL Training Loop

Reward

Simulation Environment
Physics

obs.
state

Policy 

ground-truth 
state 

action



Reward
• progress reward
 𝑟!

"#$% = 𝜆&	(𝑑!'&()!* 	− 𝑑!()!*)	
• perception reward
 	𝑟!

"*#+ = 𝜆, exp(𝜆-	𝛿+)./ )	
• command reward
 𝑟!+.0 = 𝜆/ 𝑎!1 + 𝜆2||

𝑎! −𝑎!'& ,	
• crash penalty

 𝑟!+#)34 =	0
−5.0, 	 𝑖𝑓	𝑐𝑟𝑎𝑠ℎ
0, 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Training Details

• training with PPO
• 100M environment interactions
• 50 min wall-time
• 23 days sim-time

• value and policy network share 
architecture
• network:
• 2 layer MLP
• 128 nodes per layer
• activation: LeakyReLU
• optimizer: Adam
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RL Policy Training
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Perception System

Real-World Operation
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action

Is it good enough?



• Aerodynamic effects
• turbulence & downwash
• ground effect

• Mechanical effects
• soft dampers to shield IMU from motor 

vibrations
• camera moves w.r.t. drone body

• Perception effects 
• illumination & background changes

need policy-specific models

Unmodelled Effects
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Residual Models
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Perception System

Real-World Operation

200 HzIMU 100 HzVIO
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100 Hz
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real-world 
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Dynamics 
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The Swift System



Number of Races Best time-to-finish Wins Losses Win ratio

A. Vanover vs. Swift 9 17.956 4 5 0.44

T. Bitmatta vs. Swift 7 18.746 3 4 0.43

M. Schäpper vs. Swift 9 21.160 3 6 0.33

Swift vs. human pilots 25 17.465 15 10 0.60
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A. Vanover T. Bitmatta M. Schäpper

Head-to-Head Race Results
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•  Autonomous vision-based agile flight as a new research topic (at least 10 years to solve it)

Pushes the limit of existing algorithms in extreme situations

Raises fundamental problems for robotics research

Conclusions and Takeaways
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Come over for projects in DL!
• Visit our webpage for projects! http://rpg.ifi.uzh.ch/student_projects.php
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Check out our student projects!
• Visit our webpage: https://rpg.ifi.uzh.ch/student_projects.php

https://rpg.ifi.uzh.ch/student_projects.php

