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Next week, seminar by NASA JPL during lecture
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• When: Thursday, December 5 at 8:00 am followed by Lecture 12

• Title: “Vision-Based Navigation Challenges for Mars Helicopters” 

• Who: Dr. Jeff Delaune: https://www-robotics.jpl.nasa.gov/people/Jeff_Delaune/ 

https://www-robotics.jpl.nasa.gov/people/Jeff_Delaune/


Next week afternoon, public talk by NASA JPL
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• When: Thursday, December 5 at 16:15hrs 

• Where: UZH Irchel Campus, Y15-G40, followed by apero

• Title: “Robotics Challenges for Planetary Exploration at JPL”

• Info: https://www.spacehub.uzh.ch/en/events/Robotics-Challenges-for-Planetary-Exploration-at-NASA-
JPL.html 

https://www.spacehub.uzh.ch/en/events/Robotics-Challenges-for-Planetary-Exploration-at-NASA-JPL.html
https://www.spacehub.uzh.ch/en/events/Robotics-Challenges-for-Planetary-Exploration-at-NASA-JPL.html


RPG Lab Open Doors

• When: December 19, at 13:00hrs

• Where: Robotics and Perception Group, Andreasstrasse, 15, 2.11
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Lab Exercise – Today

Implement the Kanade-Lucas-Tomasi (KLT) tracker
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Template tracking

Goal: follow a template image in a video sequence
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Problem Formulation

Goal: estimate the transformation 𝑊 (warp) between a template 𝑇 and the current image 𝐼
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Template image 𝑇

𝑇(𝐱) 

𝑊 𝐱, 𝐩

warp

𝐼(𝑊 𝐱, 𝐩 )

Current image 𝐼



Common 2D Transformations (recall Lecture 03, slides 36-37)
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𝑥′ = 𝑥 + 𝑎1

𝑦′ = 𝑦 + 𝑎2

𝑥′ = 𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1

𝑦′ = 𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2

𝑥′ = 𝑎1𝑥 + 𝑎3𝑦 + 𝑎5

𝑦′ = 𝑎2𝑥 + 𝑎4𝑦 + 𝑎6

𝑥′ =
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3

𝑎7𝑥 + 𝑎8𝑦 + 1

𝑦′ =
𝑎4𝑥 + 𝑎5𝑦 + 𝑎6

𝑎7𝑥 + 𝑎8𝑦 + 1

We denote the transformation W 𝐱, 𝐩 and p the set of parameters 𝐩 = (𝑎1, 𝑎2, … , 𝑎𝑛)

• Translation

• Euclidean

• Affine

• Projective
(homography)



Two possible approaches

• Indirect methods (i.e., feature based)

• Direct methods
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✓ Can cope with large frame-to-frame motions (large basin 
of convergence)

 Slow due to costly feature extraction, matching, and 
outlier removal (e.g., RANSAC)

✓ All information in the image can be exploited (higher 
accuracy, higher robustness to motion blur and weak 
texture (i.e., weak gradients))

✓ Increasing the camera frame-rate reduces computational 
cost per frame (no RANSAC needed)

 Very sensitive to intial value → limited frame-to-frame 
motion (small basin of convergence)



Indirect methods work by detecting and matching features
(i.e., feature based)

1. Detect and match features that are invariant to scale, rotation, view point changes (e.g., SIFT)

2. Geometric verification (RANSAC) (e.g., 4-point RANSAC for planar objects, or 5 or 8-point RANSAC for 3D objects)

3. Refine estimate by minimizing the 
sum of squared reprojection errors between the 
observed feature 𝒇𝑖 in the current image and the 
warped corresponding feature 𝑊(𝐱𝑖 , 𝐩) from the template

• Pros: can cope with large frame-to-frame motion 
and strong illumination changes

• Cons: computationally expensive
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𝐩 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐩 ෍

𝑖=1

𝑵

𝑊(𝐱𝑖 , 𝐩) − 𝒇𝑖 𝟐



Direct methods work by directly processing pixel intensities 
(i.e. without features)

Goal: estimate the parameters p of the transformation 𝑊 𝐱, 𝐩 that minimize the Sum of 
Squared Differences: 
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Template image 𝑇

𝑇(𝐱) 

𝑊 𝐱, 𝐩

warp

𝐼(𝑊 𝐱, 𝐩 )

Current image 𝐼

* Every yellow dot in this image denotes a pixel

𝐩 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐩 ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱)
𝟐



Assumptions

• Brightness constancy
The intensity of the pixels to track does not change much over consecutive 
frames → It does not cope with strong illumination changes

• Temporal consistency
Small frame-to-frame motion (1-2 pixels). 

→ It does not cope with large frame-to-frame motion. However, this can 
be addressed using coarse-to-fine multi-scale implementations (see later)

• Spatial coherency
All pixels in the template undergo the same transformation (i.e., they all lay 
on the same 3D surface)
→ No errors in the template image boundaries: only the object to track 
appears in the template image
→ No occlusion: the entire template is visible in the input image

12



The Kanade-Lucas-Tomasi (KLT) tracker

• Simplified case: pure translation

• General case
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Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.
Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF.

Baker, Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, 2004. PDF.

https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf
https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf


KLT tracking applied to pure translation

Consider the reference patch centered at (𝑥, 𝑦) in image 𝐼0 and the shifted patch centered at (𝑥 + 𝑢, 𝑦 + 𝑣) 
in image 𝐼1. The patch has size Ω. We want to find the motion vector (𝑢, 𝑣) that minimizes the Sum of 
Squared Differences (SSD):
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𝑆𝑆𝐷 𝑢, 𝑣 = ෍

𝑥,𝑦∈Ω

(𝐼0 𝑥, 𝑦 − 𝐼1 𝑥 + 𝑢, 𝑦 + 𝑣 )2
𝐼0

𝐼1

(𝑥, 𝑦) 

(𝑥, 𝑦) 

(𝑥 + 𝑢, 𝑦 + 𝑣) 

𝐼1 𝑥 + 𝑢, 𝑦 + 𝑣 ≅ 𝐼1 𝑥, 𝑦 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣

֜  𝑆𝑆𝐷 𝑢, 𝑣 ≅ ෍

𝑥,𝑦∈Ω

(𝐼0 𝑥, 𝑦 − 𝐼1 𝑥, 𝑦 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 )2

֜  𝑆𝑆𝐷 𝑢, 𝑣 ≅ ෍

𝑥,𝑦∈Ω

(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣)2

This is a simple quadratic function in two variables (𝑢, 𝑣)



KLT tracking applied to pure translation
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To minimize it, we differentiate it with respect to (𝑢, 𝑣) and equate it to zero:

𝜕𝑆𝑆𝐷

𝜕𝑢
= 0 ,  

𝜕𝑆𝑆𝐷

𝜕𝑣
= 0

−2 ෍ 𝐼𝑥(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣) = 0

−2 ෍ 𝐼𝑦 ∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 = 0

𝜕𝑆𝑆𝐷

𝜕𝑢
= 0 ֜

𝜕𝑆𝑆𝐷

𝜕𝑣
= 0 ֜

֜  𝑆𝑆𝐷 𝑢, 𝑣 ≅ ෍

𝑥,𝑦∈Ω

(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣)2



KLT tracking applied to pure translation

• Linear system of two equations in two unknowns

• We can write them in matrix form:
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෍ 𝐼𝑥(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣) = 0

෍ 𝐼𝑦 ∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 = 0

෍ 𝐼𝑥𝐼𝑥 ෍ 𝐼𝑥𝐼𝑦

෍ 𝐼𝑥𝐼𝑦 ෍ 𝐼𝑦𝐼𝑦

𝑢
𝑣

=

෍ 𝐼𝑥∆𝐼

෍ 𝐼𝑦∆𝐼

֜
𝑢
𝑣

=

෍ 𝐼𝑥𝐼𝑥 ෍ 𝐼𝑥𝐼𝑦

෍ 𝐼𝑥𝐼𝑦 ෍ 𝐼𝑦𝐼𝑦

−1

෍ 𝐼𝑥∆𝐼

෍ 𝐼𝑦∆𝐼

Notice that these are NOT matrix products but 
pixel-wise products!



KLT tracking applied to pure translation

• Linear system of two equations in two unknowns

• We can write them in matrix form:
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෍ 𝐼𝑥(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣) = 0

෍ 𝐼𝑦 ∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 = 0

෍ 𝐼𝑥𝐼𝑥 ෍ 𝐼𝑥𝐼𝑦

෍ 𝐼𝑥𝐼𝑦 ෍ 𝐼𝑦𝐼𝑦

𝑢
𝑣

=

෍ 𝐼𝑥∆𝐼

෍ 𝐼𝑦∆𝐼

֜
𝑢
𝑣

=

෍ 𝐼𝑥𝐼𝑥 ෍ 𝐼𝑥𝐼𝑦

෍ 𝐼𝑥𝐼𝑦 ෍ 𝐼𝑦𝐼𝑦

−1

෍ 𝐼𝑥∆𝐼

෍ 𝐼𝑦∆𝐼

Haven’t we seen this matrix already?

This is the M matrix of the Harris detector (Lecture 05)



KLT tracking applied to pure translation

For M to be invertible, det(𝑀) should be non zero, which means that its eigenvalues should be large (i.e., not 
a flat region, not an edge) → in practice, it should be a corner or more generally contain texture!
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Edge → det(M) is low

Flat → det(M) is low

Texture → det(M) is high

𝑀 =

෍ 𝐼𝑥𝐼𝑥 ෍ 𝐼𝑥𝐼𝑦

෍ 𝐼𝑥𝐼𝑦 ෍ 𝐼𝑦𝐼𝑦

RR 







= −

2

11

0

0







Application to Corner Tracking

Color encodes motion direction

When does it fail? 
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Application to Optical Flow

What if you track every single pixel in the image?
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Application to Optical Flow
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Application to Optical Flow
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Application to Optical Flow
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The Kanade-Lucas-Tomasi (KLT) tracker

• Simplified case: pure translation

• General case

24
Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.

Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF.

https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf


KLT applied to generic warps

Goal: estimate the parameters p of the transformation 𝑊 𝐱, 𝐩 that minimize the SSD: 

25

Template image

𝑇(𝐱) 

𝑊 𝐱, 𝐩

warp

𝐼(𝑊 𝐱, 𝐩 )

Current image

* Every yellow dot in this image denotes a pixel

𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱)
𝟐



KLT applied to generic warps

Goal: estimate the parameters p of the transformation 𝑊 𝐱, 𝐩 that minimize the SSD: 

• KLT follows the Gauss-Newton method for minimization, that is:
• Applies a first-order approximation of the warp

• Attempts to minimize the SSD iteratively

26

𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱)
𝟐



KLT applied to generic warps

• Assume that an initial estimate of p is known. Then, we want to find the increment ∆𝐩 that minimizes

• First-order Taylor approximation of 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 yelds to:
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𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 − 𝑇(𝐱)
𝟐

𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 ≅ 𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩

𝛻𝐼 = 𝐼𝑥, 𝐼𝑦 = Image gradient evaluated at 𝑊(𝐱, 𝐩) Jacobian of the warp 𝑊(𝐱, 𝐩)

𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱)
𝟐



KLT applied to generic warps

• By replacing 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 with its 1st order approximation, we get

• How do we minimize it?

• We differentiate SSD with respect to ∆𝐩 and we equate it to zero, i.e., 
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𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 − 𝑇(𝐱)
𝟐

𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱)

𝟐

𝜕𝑆𝑆𝐷

𝜕∆𝐩
= 0



KLT applied to generic warps
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𝜕𝑆𝑆𝐷

𝜕∆𝐩
= 2 ෍

𝐱∈𝐓

𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱)

𝜕𝑆𝑆𝐷

𝜕∆𝐩
= 0

2 ෍

𝐱∈𝐓

𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱) = 0 ֜

𝑆𝑆𝐷 = ෍

𝐱∈𝐓

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱)

𝟐



KLT applied to generic warps
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֜ ∆𝐩 = 𝐻−1 ෍

𝐱∈𝐓

𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝑇 𝐱 − 𝐼 𝑊 𝐱, 𝐩 =

𝐻 = ෍

𝐱∈𝐓

𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝛻𝐼
𝜕𝑊

𝜕𝐩

Second moment matrix (Hessian) of the warped image

What does H look like when the warp is a pure translation?

Notice that these are NOT matrix products but 
pixel-wise products!



KLT algorithm: Discussion

KLT algorithm is iterated until convergence by following 
a predict-correct cycle

1. A prediction 𝐼 𝑊 𝐱, 𝐩 of the warped image is computed from an 
initial estimate of 𝐩

2. The correction parameter ∆𝐩 is then computed as a function of the 
error 𝑇 𝐱 − 𝐼 𝑊 𝐱, 𝐩 between the prediction and the template. 
The larger this error, the larger the correction applied

3. Steps 1 & 2 are iterated until the error is smaller than a threshold and 
the output parameters are used as input for the next frame

6x1

6x6

𝐩 + ∆𝐩

∆𝐩 = 𝐻−1 ෍

𝐱∈𝐓

𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝑇 𝐱 − 𝐼 𝑊 𝐱, 𝐩

𝐼 𝐼(𝑊) 𝑇warp refine

inp
p

+

31



KLT algorithm: Discussion

• How to get the initial estimate p?

• When does the Lucas-Kanade fail?
• If the initial estimate is too far, then the linear approximation does not longer hold

→ Solution: Coarse-to-fine implementations (see next slide)

• Too poor texture
→ Solution: increase the aperture (see next slide)

• Deviations from mathematical warp model: object deformations, illumination changes, etc.
→ Solution: Update the template with the last image: problem: drift 

• Occlusions

• Template background

32



Coarse-to-fine estimation

image I

Pyramid of image I Pyramid of image T

image Timage T

33

𝐼 𝐼(𝑊) 𝑇warp refine

inp
p

+

inp

𝑢 = 10 pixels
of motion displacement

𝑢 = 5 pixels

𝑢 = 1.25 pixels

𝑢 = 2.5 pixels



Aperture Problem

• Consider the motion of the following corner

34



Aperture Problem

• Consider the motion of the following corner

35



Aperture Problem

• Now, look at the local brightness changes through a small aperture

36



Aperture Problem

• Now, look at the local brightness changes through a small aperture

37



Aperture Problem

• Now, look at the local brightness changes through a small aperture

• We cannot always determine the motion direction → Infinite motion solutions may exist!

• Solution?

38



Aperture Problem

• Now, look at the local brightness changes through a small aperture

• We cannot always determine the motion direction → Infinite motion solutions may exist!

• Solution? 

• Increase aperture size!

39



Generalization of KLT

• The same concept (predict/correct) can be applied to tracking of 3D object (in this case, 
what is the transformation to etimate? What is the template?)

40



Generalization of KLT

• The same concept (predict/correct) can be applied to tracking of 3D object (in this case, 
what is the transformation to etimate? What is the template?)

• In order to deal with wrong prediction, it can be implemented in a Particle-Filter fashion 
(using multiple hipotheses that need to be validated)

41



Math Refresher

42



Common 2D Transformations in Matrix form

We denote the transformation W 𝐱, 𝐩 and p the set of parameters 𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛)

• Translation

• Euclidean

• Affine

• Projective
(homography)

43

𝑊 𝐱, 𝐩 =
𝑥 + 𝑎1

𝑦 + 𝑎2
=

1 0 𝑎1

0 1 𝑎2

𝑥
𝑦
1

𝑊 𝐱, 𝐩 =
𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1

𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2
=

cos(𝑎3) −sin(𝑎3) 𝑎1

sin(𝑎3) cos(𝑎3) 𝑎2

𝑥
𝑦
1

𝑊 𝐱, 𝐩 =
𝑎1𝑥 + 𝑎3𝑦 + 𝑎5

𝑎2𝑥 + 𝑎4𝑦 + 𝑎6
=

𝑎1 𝑎3 𝑎5

𝑎2 𝑎4 𝑎6

𝑥
𝑦
1

Homogeneous coordinates

𝑊 ෥𝒙, 𝐩 =

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 1

𝑥
𝑦
1



Common 2D Transformations in Matrix form
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𝑊 𝐱, 𝐩 =
1 0 𝑎1

0 1 𝑎2

𝑥
𝑦
1

𝑊 𝐱, 𝐩 =
cos(𝑎3) −sin(𝑎3) 𝑎1

sin(𝑎3) cos(𝑎3) 𝑎2

𝑥
𝑦
1

𝑊 𝐱, 𝐩 =
𝑎1 𝑎3 𝑎5

𝑎2 𝑎4 𝑎6

𝑥
𝑦
1

𝑊 ෥𝒙, 𝐩 =

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 1

𝑥
𝑦
1

𝑊 𝐱, 𝐩 = 𝑎4
cos(𝑎3) −sin(𝑎3) 𝑎1

𝑠𝑖𝑛(𝑎3) cos(𝑎3) 𝑎2

𝑥
𝑦
1



Derivative and gradient

• Function: 𝑓 𝑥

• Derivative: 𝑓′ 𝑥 =
𝑑𝑓

𝑑𝑥
, where 𝑥 is a scalar

• Function: 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 )

• Gradient: ∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 )=
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
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Jacobian

• 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛 ) =
𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛 )

⋮
𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛 )

is a vector-valued function

• The derivative in this case is called Jacobian 
𝜕𝐹

𝜕𝐱
:
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Carl Gustav Jacob (1804-1851)

𝜕𝐹

𝜕𝐱
=

𝜕𝑓1

𝜕𝑥1
, … ,

𝜕𝑓1

𝜕𝑥𝑛

⋮
𝜕𝑓𝑚

𝜕𝑥1
, … ,

𝜕𝑓𝑚

𝜕𝑥𝑛



Displacement-model Jacobians ∇𝑊𝑝

𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛)

• Translation:

• Euclidean:

• Affine:
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𝑊 𝐱, 𝐩 =
𝑥 + 𝑎1

𝑦 + 𝑎2

𝑊 𝐱, 𝐩 =
𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1

𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2

𝑊 𝐱, 𝐩 =
𝑎1𝑥 + 𝑎3𝑦 + 𝑎5

𝑎2𝑥 + 𝑎4𝑦 + 𝑎6

𝜕𝑊

𝜕𝐩
=

𝜕𝑊1

𝜕𝑎1

𝜕𝑊1

𝜕𝑎2

𝜕𝑊2

𝜕𝑎1

𝜕𝑊2

𝜕𝑎2

=
1 0
0 1

𝜕𝑊

𝜕𝐩
=

1 0 −𝑥𝑠𝑖𝑛(𝑎3) − 𝑦𝑐𝑜𝑠(𝑎3)
0 1 𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3)

𝜕𝑊

𝜕𝐩
=

𝑥 0 𝑦
0 𝑥 0

0 1 0
𝑦 0 1



Readings

• Baker, Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, 
International Journal of Computer Vision, 2004. PDF.
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https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf


Understanding Check

Are you able to answer the following questions?
• What is the problem formulation of tracking?
• Difference between direct and indirect methods and their pros and cons
• Can you illustrate tracking methods using point features?
• Are you able to explain the underlying assumptions behind direct methods, derive their mathematical expression for 

the case of pure rotation and the meaning of the M matrix?
• When is the M matrix invertible and when not?
• What is optical flow?
• Are you able to describe the working principle of KLT for a generic warp?
• What functional does KLT minimize?
• What is the Hessian matrix and for which warping function does it coincide to that used for pure translation?
• Can you list Lukas-Kanade failure cases and how to overcome them?
• How do we get the initial guess?
• Can you illustrate the coarse-to-fine Lucas-Kanade implementation?
• What is the aperture problem and how can we overcome it?
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