Multiple View Geometry 4

1 Numerical Exercises

1. In addition to computing the camera pose with $3 \mathrm{D}-2 \mathrm{D}$ correspondences, it is possible to estimate the relative pose transformation based on 3D-3D correspondences. In the following, you will derive the first steps for the "Least-Squares Fitting of Two 3-D Point Sets" Arun et al., PAMI87. Consider two point sets $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ with $i=1,2, \ldots, N$ and relation $p_{i}^{\prime}=R p_{i}+T$, where R is a rotation matrix, and T a translation vector.
(a) Write down the least-square cost, which is minimized to find R and T.

Solution:

$$
\Sigma^{2}=\sum_{i=1}^{N}\left\|p_{i}^{\prime}-\left(R p_{i}+T\right)\right\|^{2}
$$

(b) Write down the transformation between the centroids p and p^{\prime} of the two points sets $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ and express the translation vector T based p, p^{\prime} and R.

Solution:

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} p_{i}^{\prime} & =R\left(\frac{1}{N} \sum_{i=1}^{N} p_{i}\right)+T \\
p^{\prime} & =R p+T
\end{aligned}
$$

Reformulating the above equation leads to:

$$
\begin{gathered}
T=\frac{1}{N} \sum_{i=1}^{N} p_{i}^{\prime}-R\left(\frac{1}{N} \sum_{i=1}^{N} p_{i}\right) \\
T=p^{\prime}-R p
\end{gathered}
$$

(c) Using the normalized cocordinates $q_{i}=p_{i}-p$ and $q_{i}^{\prime}=p_{i}^{\prime}-p^{\prime}$, show that the least-square cost can be written only in terms of q_{i}, q_{i}^{\prime} and R.

Solution:

Plugging in p_{i}, p_{i}^{\prime} and T from (b) into the least-square cost Σ^{2} from (a), we obtain the following formula.

$$
\begin{gathered}
\Sigma^{2}=\sum_{i=1}^{N}\left\|q_{i}^{\prime}+p^{\prime}-\left(R\left(q_{i}+p\right)+p^{\prime}-R p\right)\right\|^{2} \\
\Sigma^{2}=\sum_{i=1}^{N}\left\|q_{i}^{\prime}-R q_{i}\right\|^{2}
\end{gathered}
$$

(d) Briefly explain in one or two sentences how you would proceed and what are the benefits of the above computations for finding R and T.

Solution:

Based on the cost function in (c) for the least-squares problem, we first compute the optimal rotation matrix R using SVD independently from T. Once R is found, the translation vector T can be obtained with the formula in (b).
2. Consider a stereo camera pair with a relative transformation between the left and right camera $t_{l, r}$. Additionally, we have estimates for the relative motion $t_{k, k+1}^{l l}$ between the left camera from timestep k to $k+1$, the relative motion $t_{k+2, k}^{l r}$ between the left camera at timestep $k+2$ to the right camera at timestep k, the relative motion $t_{k+1, k+2}^{r r}$ between the right camera at time step $k+1$ and $k+2$, and the relative motion $t_{k, k+3}^{l l}$ between the left camera at timestep k and $k+3$.
Write the optimization problem for optimizing the relative motion estimates.

Solution:

$$
\left\{t_{k, k+1}^{l l}, t_{k+1, k+2}^{r r}, t_{k+2, k}^{l r}\right\}=\arg \min _{\left\{t_{k, k+1}^{l l}, t_{k+1, k+2}^{r r}, t_{k+2, k}^{l r}\right\}}\left\|t_{k, k+1}^{l l} t_{l, r} t_{k+1, k+2}^{r r}\left(t_{l, r}\right)^{-1}-t_{l, r}\left(t_{k+2, k}^{l r}\right)^{-1}\right\|^{2}
$$

Since there is only one pose estimate for timestep $k+3$, it is not possible to optimize the relative motion estimate $t_{k, k+3}^{l l}$

