Multiple View Geometry 4

1 Numerical Exercises

- 1. In addition to computing the camera pose with 3D-2D correspondences, it is possible to estimate the relative pose transformation based on 3D-3D correspondences. In the following, you will derive the first steps for the "Least-Squares Fitting of Two 3-D Point Sets" Arun et al., PAMI87. Consider two point sets $\{p_i\}$ and $\{p_i'\}$ with i=1,2,...,N and relation $p_i'=Rp_i+T$, where R is a rotation matrix, and T a translation vector.
 - (a) Write down the least-square cost, which is minimized to find R and T. Solution:

$$\Sigma^{2} = \sum_{i=1}^{N} \|p'_{i} - (Rp_{i} + T)\|^{2}$$

(b) Write down the transformation between the centroids p and p' of the two points sets $\{p_i\}$ and $\{p'_i\}$ and express the translation vector T based p, p' and R. Solution:

$$\frac{1}{N} \sum_{i=1}^{N} p'_{i} = R(\frac{1}{N} \sum_{i=1}^{N} p_{i}) + T$$

$$p' = Rp + T$$

Reformulating the above equation leads to:

$$T = \frac{1}{N} \sum_{i=1}^{N} p'_{i} - R(\frac{1}{N} \sum_{i=1}^{N} p_{i})$$
$$T = p' - Rp$$

(c) Using the normalized cocordinates $q_i = p_i - p$ and $q'_i = p'_i - p'$, show that the least-square cost can be written only in terms of q_i , q'_i and R.

Solution

Plugging in p_i , p'_i and T from (b) into the least-square cost Σ^2 from (a), we obtain the following formula.

$$\Sigma^{2} = \sum_{i=1}^{N} \|q'_{i} + p' - (R(q_{i} + p) + p' - Rp)\|^{2}$$
$$\Sigma^{2} = \sum_{i=1}^{N} \|q'_{i} - Rq_{i}\|^{2}$$

(d) Briefly explain in one or two sentences how you would proceed and what are the benefits of the above computations for finding R and T.

Solution:

Based on the cost function in (c) for the least-squares problem, we first compute the optimal rotation matrix R using SVD independently from T. Once R is found, the translation vector T can be obtained with the formula in (b).

2. Consider a stereo camera pair with a relative transformation between the left and right camera $t_{l,r}$. Additionally, we have estimates for the relative motion $t_{k,k+1}^{ll}$ between the left camera from timestep k to k+1, the relative motion $t_{k+2,k}^{lr}$ between the left camera at timestep k+2 to the right camera at timestep k, the relative motion $t_{k+1,k+2}^{rr}$ between the right camera at time step k+1 and k+2, and the relative motion $t_{k,k+3}^{ll}$ between the left camera at timestep k and k+3

Write the optimization problem for optimizing the relative motion estimates.

Solution:

$$\left\{t_{k,k+1}^{ll},t_{k+1,k+2}^{rr},t_{k+2,k}^{lr}\right\} = \arg\min_{\left\{t_{k,k+1}^{ll},t_{k+1,k+2}^{rr},t_{k+2,k}^{lr}\right\}} \left\|t_{k,k+1}^{ll}t_{l,r}t_{k+1,k+2}^{rr}(t_{l,r})^{-1} - t_{l,r}(t_{k+2,k}^{lr})^{-1}\right\|^{2}$$

Since there is only one pose estimate for timestep k+3, it is not possible to optimize the relative motion estimate $t_{k,k+3}^{ll}$