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Abstract 
A method for photogrammetric data reduction without the 
necessity for neither fiducial marks nor initial approxima-
tions for inner and outer orientation parameters of the camera 
has been developed. This approach is particularly suitable for 
reduction of data from non-metric photography, but has also 
distinct advantages in its application to metric photography.  
Preliminary fictitious data tests indicate that the approach 
is promising. Experiments with real data are underway.

1.  INTRODUCTION
In analytical photogrammetry, measurements of image points 
are normally done on comparators. The transformation of 
comprarator coordinates into object space coordinates is usu-
ally performed in two steps:

	 a)	 Transformation from comparator coordinates into im-
age coordinates, and

	 b)	 Transformation from image coordinates into object 
space (ground coordinates)

For the transformation from comparator coordinates into 
image coordinates, it is necessary to calibrate and measure 
fiducial marks. For the transformation from image coordinates 
into object space coordinates, an iterative solution is gener-
ally used, for which one needs initial approximations for the 
unknown parameters (elements of outer orientation and in 
some cases also elements of inner orientation of the camera).

In working with hand-held non-metric cameras, neither of 
the above two requirements are satisfied. In view of the ever 
increasing use of non-metric cameras in close-range photo-
grammetry, particularly in cases of medium to low accuracy 
requirements, it was deemed desirable to develop a method 
suitable for data reduction from non-metric photography.

The proposed method involves a direct linear transforma-
tion from comparator coordinates into object space coordi-
nates. In a sense, it is a simultaneous solution for the two 
aforementioned transformations. Since the image coordinate 

system is not involved in the approach, fiducial marks are 
not needed. Furthermore, the method is a direct solution and 
does not involve initial approximations for the unknown 
parameters of inner and outer orientation of the camera. 

The proposed method is thus particularly suitable for re-
duction of data in non-metric photogrammetry. When applied 
to metric photography, the proposed approach yields at least 
the same accuracy as the conventional methods, but is easier 
to program (no linearization necessary) and uses less com-
puter memory and executing time. 

2.  Mathematical Basis of the Proposed Method
As mentioned above, the proposed method involves a simul-
taneous solution of two transformations which are usually 
done separately in conventional analytical photogrammetry.

The transformation of comparator coordinates into image 
coordinates is generally done in the following forms: 

	 x– = a1 +a2x + a3y	
(1)

	 y– = a4 +a5x + a6y,

where:
x–, y– are image coordinates
x, y are comparator coordinates

Such a transformation takes into account errors in perpen-
dicularity between the x and y comparator coordinate axes, 
and possible differential linear distortions along the x and y 
comparator coordinate axes (due to lens distortion, film defor-
mation and comparator unadjustment).

Photogrammetric Engineering & Remote Sensing
Vol. 81, No. 1, February 2015, pp. 103–107.

0099-1112/14/812–103
© 2014 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.81.2.103

When does a scientific paper become a “classic”?  In the case 
of the below article, there is a following that has born the test 
of time.  Each year at the beginning of the school semester, we 
receive many requests from professors for reprints of this arti-
cle to use in class. The original article was published in 1971 
as part of committee work within ASP (the original name for 
ASPRS), but it has not appeared in PE&RS or other journals, 
as far as we know. Unfortunately, one of the authors has 
passed away and we have not been able to reach the other, 

but if you were a student or colleague of either we would 
appreciate hearing from you. Dr Karara was an important 
member of ASPRS and there is a lengthy In Memoriam in the 
July 2001 issue of PE&RS, but we have located little further 
information about Y.I. Abdel-Aziz. In light of the continuing 
demand for their paper, it makes its PE&RS debut in this is-
sue. We hope you enjoy this “classic.”

–Dr. Michael Hauck, ASPRS Executive Director

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 Februar y  2015 	 103



The transformation from image coordinates into object space 
coordinates is usually done using the following equation:
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(2)

Where: 
x–, y– are image coordinates of points,
X,Y,Z are object-space coordinates of points,
XO,YO,ZO are the object-space coordinates of exposure sta-
tions, 
C is the camera constant,
λ is a scale factor, and
aij are the coefficients of transformation

Equation (2) may be expressed as:
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Substituting equation (1) into equation (3) one gets:
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Eliminating y from equations (4), one gets:
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Eliminating x from equations (4) one gets:

a a a a a a a a y

c
a a a a X X a a a a

1

1 O 1

5 4 2 3 5 6 6

1 5 21 2 2 5 22 2

−( ) + −( ) +

−( ) −( ) + −( )) −( ) + −( ) −( )
−( ) + −( ) + −( ) =

Y Y a a a a Z Z

a X X a Y Y a Y Y
O 1 O

O O O

3 5 23 2

31 32 33

00.
	

(5b)

Equations (5a) and (5b) may be expressed as:
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Eliminating d1 and d3 from equations (6) one gets:
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Eliminating d2 and d4 from equations (7), one gets:
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Eliminating b12′ from equations (8), one gets:

	
l1X + l2Y + l3Z + l4

l9X + l10Y + l11Z + 1
x +                                   =0,

and		  (9)

	
l5X + l6Y + l7Z + l8

l9X + l10Y + l11Z + 1
y +                                   =0.

Equations (9) are the basis of the proposed method. 

3.  Mathematical Model in the Conventional (Collinearity)  
     Approach
As mentioned above, the transformation from comparator co-
ordinates (x, y) into image coordinates (x–, y–)  is usually done 
using equations (1):

	 x– = a1 + a2x + a3y	
(1)	 y– = a4 + a5x + a6y

Since the selection of the image coordinate axes is ar-
bitrary, let us select the definition shown in Fig. 1, where 
the y– image coordinate axis is parallel to the y comparator 
coordinate axis and passes through the image principal point 
(0). The x– image coordinate axis is perpendicular to the y– axis 
and intersects it at the image principal point.

x

yy

0

x

Figure 1. Coordinated Axes. (x & y: comparator coordinate aces; x– & 
y–: image coordinate axes).
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In this case, a5 in equations (1) becomes zero and the rela-
tionship between comparator coordinates and image coordi-
nates can be expressed as:

	 x– = a1 + a2x + a3y
	 y– = a4 + a6y	 (10)

Combining equations (10) and (3) one gets

a11(X – X0) + a12(Y – Y0) + a13(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0)

a1 + a2x + a3y – c ·                                                             = 0
	
(11)

a21(X – X0) + a22(Y – Y0) + a23(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0)

a4 + a6y – c ·                                                             = 0

Equation (11) has 12 unknowns, but they are not linearly 
independent. These unknowns can be reduced to 11 linearly 
independent unknowns by eliminating a2 and a6 and intro-
ducing two unknowns Cx and Cy to replace C;

( C
c
a

C
c
ax y= =

2 6

; , Cx and Cy reflect possible differential linear 

distortions along x and y comparator axes). Equation 11 can 
thus be rewritten as:

a–1 + a–2x – Cx                                                             = 0
a11(X – X0) + a12(Y – Y0) + a13(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0) 	

(12)

a–3 + y – Cy                                                             = 0
a11(X – X0) + a12(Y – Y0) + a13(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0)

Equations (12) represent the basic equations in the conven-
tional (collinearity) approach. As explained above, these 
equations take into consideration the non-prependicularity 
between comparator axes, and differential linear distortions 
along x and y axes. 

4.  Observation Equations 
Expanding equations (12) by Taylor’s series and neglecting 
second and higher order items, one gets:

Vx + a1yVy + b1xΔω + b2xΔϕ + b3xΔκ + b4xΔX0 + b5xΔY0 + b6xΔZ0 + 

b7xΔCx + b8xΔCy + b9xΔa–1 + b10xΔa–2 + b11xΔa–3 + Fx° = 0

and		  (13)

Vy + b1yΔω + b2yΔϕ + b3yΔκ + b4yΔY0 + b5yΔY0 + b6yΔZ0 + b7yΔCy 

+ b8yΔCy + b9yΔa–1 + b10yΔa–2 + b11yΔa–3 + Fy° = 0

Where

Vx, Vy are errors in x and y
a1y = a2, is partial derivative of Fx w.r.t. y
b1x, b1y are the partial derivatives of Fx and Fy (see footnote 
below) w.r.t. ω
b2x, b2y  are the partial derivatives of Fx and Fy w.r.t. ϕ
b3x, b3y  are the partial derivatives of Fx and Fy w.r.t. κ

b4x, b4y  are the partial derivatives of Fx and Fy w.r.t. X0

b5x, b5y  are the partial derivatives of Fx and Fy w.r.t. Y0

b6x, b6y  are the partial derivatives of Fx and Fy w.r.t. Z0

b7x, b7y  are the partial derivatives of Fx and Fy w.r.t. Cx

b8x, b8y  are the partial derivatives of Fx and Fy w.r.t. Cy

b9x, b9y  are the partial derivatives of Fx and Fy w.r.t. a–1

b10x, b10y  are the partial derivatives of Fx and Fy w.r.t. a–2

b11x, b11y  are the partial derivatives of Fx and Fy w.r.t. a–3

Fxo and Fyo are functions of approximate values of the un-
known parameters.

Equations (13) represent the observation equations in the con-
ventional collinearity approach. The observation equations in 
the proposed direct approach may be obtained by expanding 
equations (9) and including all the zero terms (e.g. 0l5 and 0l2) 
for ease of reference:

w1vx + Xl1 + Yl2 + Zl3 + l4 + 0l5 + 0l6 + 0l7 + 0l8 + xXl9 + xYl10 
+ xZl11 + x = 0,

and		  (14)

w2vy + 0l1 + 0l2 + 0l3 + 0l4 + Xl5 + Yl6 + Zl7 + l8 + yXl9 + yYl10 
+ yZl11 + y = 0.

In equations (14) the factor w1 and w2 may be considered as 
weight factors, and their value can be easily determined in 
the solution.

A comparison between equations (13) and equations (14) 
indicate the simplicity of the proposed solution.

5.  Analysis of Errors
Both the conventional and proposed approaches are influ-
enced by the following errors:
	 a.	 Uncertainties in comparator measurements and errors 

in object space coordinates of control points.
	 b.	 Errors in mathematical modeling of film and lens dis-

tortions (random errors as well as unrepresented – or 
residual – systematic errors).

In addition, the conventional iterative approach is subject to 
computational errors due to:
	 a.	 Iteration criteria
	 b.	 Neglecting of second and higher terms in the lineariza-

tion of the observation equations (13).

 Obviously, the proposed direct solution is not subject to 
these computational errors.

6.  Fictitious Data Tests
A number of fictitious data tests were conducted to assess 
the capabilities of the proposed solution (equations 9) and 
compare them to the capabilities of the conventional ap-
proach (equations 12.) As a datum for comparison of the 
two approaches, data from the collinearity approach with 9 
unknowns (only parameters of inner and outer orientation are 
included, errors due to comparator adjustment, lens distor-
tion, and film deformation are not considered) were used. The 
test covered the following aspects: handling of differential 
linear distortions along the x and y comparator coordinate 
axes, correction for non-prependicularity of the comparator 
axes, accuracy of determination of the unknowns (standard 
error of unit weight), and computer executing time.

Tables I through V summarize the results of these prelimi-
nary tests. 

a11(X – X0) + a12(Y – Y0) + a13(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0)

Fx = a–1 + x + a–2y – Cx ·                                                             = 0

a11(X – X0) + a12(Y – Y0) + a13(Z – Z0)
a31(X – X0) + a32(Y – Y0) + a33(Z – Z0)

Fy = a–3 + y – Cy ·                                                             = 0
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Table I. Computer Executing Time. The number of iterations indicated in the 
first column reflect the quality of approximations used in the various experi-
ments with the collinearity solution. 

Number of Iterations in 
Collinearity Approach

Number of 
Points Involved

Executing Time (secs)

Direct Collinearity

2

43

6.16 12.56

4 6.16 22.14

5 6.16 27.21

No Convergence 6.16 No Solution

2

12

3.77 5.80

4 3.77 9.67

6 3.77 13.56

No Convergence 3.77 No Solution

Table II. Standard Error of Unit Weight σ0. Image coordinates perturbed by 
a random error of normal distribution with the standard errors indicated in 
the column “Input” and mean zero.

Number of 
Points

σ0(µm)

Input

Output

Direct Method Conventional

43

3.000 2.781 2.995

5.000 4.635 4.992

10.000 9.271 9.985

20.000 18.545 19.969

12
3.000 2.435 2.692

10.000 8.117 8.972

Table III. Accuracy of Object-Space Coordinates Obtained by the Direct 
and the Collinearity Approaches for different numbers of control points. 
Image coordinates perturbed by a random error of normal distribution with 
standard error: 3.00 µm and mean zero. Z-coordinate axis along camera 
axis. Collinearity according to equation 12. (*Mean square error = d

Sum of squares of residual errors
number of points − 1

).

Method

Number 
of 

Control 
Points

Mean Square Error* (µm)

Estimated 
Standard 

Error of Unit 
Weight (µm)X Y Z

Direct 5 NO SOLUTION POSSIBLE

Collinearity 5 NO SOLUTION POSSIBLE

Direct 6 205 179 408 1.770

Collinearity 6 200 174 407 2.005

Direct 10 165 135 334 2.293

Collinearity 10 172 137 353 2.261

Direct 20 157 94 342 2.792

Collinearity 20 161 95 356 2.744

Direct 30 138 100 301 2.888

Collinearity 30 141 101 310 2.892

Direct 43 135 94 297 2.782

Collinearity 43 135 92 303 2.995

Table IV. The effect of nonperpendicularity of the x and y comparator axes. 
Image coordinates perturbed by a random error of normal distribution with 
standard error: 3.000 um, and mean zero.  
(*Collinearity I:9 unknowns, Collinearity II, 11 unknowns).

Angle between  
x and y

Estimated Standard Error of Unit Weight (µm)

Collinearity I* Collinearity II** Direct Method

90° 2.970 2.995 2.781

91° 19.616 2.995 2.781

95° 97.616 2.995 2.781

99° 194.096 2.995 2.781
	

Table V. The effect of systematic differential linear distortion along the x 
and y comparator axes. Image coordinates perturbed by a random error of 
normal distribution with standard error: 3.000 um and mean zero.  
(*Collinearity I: 9 unknowns, ** Collinearity II: 11 unknowns.)

Scale Factor Estimated Standard Error of Unit Weight (µm)

x y Collinearity I* Collinearity II** Direct Method

1.000 1.000 2.970 2.995 2.781

1.000 1.0001 3.234 2.995 2.781

1.0001 1.0001 2.970 2.995 2.781

1.000 1.0002 3.896 2.995 2.781

1.0002 1.0002 2.970 2.995 2.781
	

Extensive testing of the proposed method using real data is 
currently underway.

7.  Summary of Comparisons Between the Proposed and the       
     Conventional Approaches
The proposed approach is particularly suitable for non-metric 
photography, where no fiducial marks are available, and can also 
be applied with distinct advantages for data reduction in metric 
photography. Following are some comments comparing the pro-
posed approach to the conventional collinearity approach.
	a.	 The proposed method yields at least the same accuracy as 

the conventional solution.
	b.	 The proposed approach is a direct solution involving no 

iterations and needs no initial approximations for the un-
knowns. Thus a solution is obtained even in cases where 
the conventional collinearity approach fails due to the lack 
of reasonable approximations for the unknown parameters 
(inner and/or outer orientation elements). A case in point 
here would be metric photography for which the outer ori-
entation is not known. It follows further that the proposed 
solution is not subject to computational errors due to itera-
tion criteria nor to errors due to neglecting of second and 
higher order terms in linearizing the observation equations.

	c.	 The proposed solution is relatively easy to program since 
it does not involve partial derivatives of the coefficients of 
the observation equation.

	d.	 The computer executing time and the computer memory 
used are less in the proposed method than in the conven-
tional collinearity solution.

	e.	 The number of unknowns in the proposed direct method is 
the same as in the conventional approach, i.e. 11 (eleven). 
Thus a minimum of 6 well distributed control points are 
needed for a solution.

	f.	 The proposed method is at a disadvantage in case of low 
accuracy requirements where one can neglect the com-
parator calibration errors and lens and film distortions. In 
this case the collinearity approach will have 9 unknowns 
compared to the 11 unknowns of the proposed method.
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8.  Concluding Remarks
Preliminary fictitious data tests indicate that the proposed ap-
proach is promising. Even though the method was originally 
developed for data reduction in close-range non-metric pho-
tography, it can be used with distinct advantages in conjunc-
tion with close-range metric photography. Experiments with 
real data are underway, and it is planned to report on these 
tests in the near future.
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