
An Efficient Algebraic Solution to the Perspective-Three-Point Problem

Tong Ke

University of Minnesota

Minneapolis, USA

kexxx069@cs.umn.edu

Stergios I. Roumeliotis

University of Minnesota

Minneapolis, USA

stergios@cs.umn.edu
∗

Abstract

In this work, we present an algebraic solution to the

classical perspective-3-point (P3P) problem for determin-

ing the position and attitude of a camera from observations

of three known reference points. In contrast to previous ap-

proaches, we first directly determine the camera’s attitude

by employing the corresponding geometric constraints to

formulate a system of trigonometric equations. This is then

efficiently solved, following an algebraic approach, to de-

termine the unknown rotation matrix and subsequently the

camera’s position. As compared to recent alternatives, our

method avoids computing unnecessary (and potentially nu-

merically unstable) intermediate results, and thus achieves

higher numerical accuracy and robustness at a lower com-

putational cost. These benefits are validated through exten-

sive Monte-Carlo simulations for both nominal and close-

to-singular geometric configurations.

1. Introduction

The Perspective-n-Point (PnP) is the problem of deter-

mining the 3D position and orientation (pose) of a cam-

era from observations of known point features. The PnP

is typically formulated and solved linearly by employing

lifting (e.g., [1]), or as a nonlinear least-squares problem

minimized iteratively (e.g., [9]) or directly (e.g., [11]). The

minimal case of the PnP (for n=3) is often used in practice,

in conjunction with RANSAC, for removing outliers [5].

The first solution to the P3P problem was given by

Grunert [8] in 1841. Since then, several methods have

been introduced, some of which [8, 4, 19, 5, 17, 7] were

reviewed and compared, in terms of numerical accuracy,

by Haralick et al. [10]. Common to these algorithms is

that they employ the law of cosines to formulate a sys-

tem of three quadratic equations in the features’ distances

from the camera. They differ, however, in the elimina-

∗This work was supported by the National Science Foundation (IIS-

1328722).

tion process followed for arriving at a univariate polyno-

mial. Later on, Quan and Lan [22] and more recently Gao et

al. [6] employed the same formulation but instead used the

Sylvester resultant [3] and Wu-Ritz’s zero-decomposition

method [24], respectively, to solve the resulting system of

equations, and, in the case of [6], to determine the number

of real solutions. Regardless of the approach followed, once

the feature’s distances have been computed, finding the

camera’s orientation, expressed as a unit quaternion [12] or

a rotation matrix [13], often requires computing the eigen-

vectors of a 4× 4 matrix (e.g., [22]) or performing singular

value decomposition (SVD) of a 3 × 3 matrix (e.g., [6]),

respectively, both of which are time-consuming. Further-

more, numerical error propagation from the computed dis-

tances to the rotation matrix significantly reduces the accu-

racy of the computed pose estimates.

To the best of our knowledge, the first method1 that does

not employ the law of cosines in its P3P problem formula-

tion is that of Kneip et al. [15], and later on that of Mas-

selli and Zell [18]. Specifically, [15] and [18] follow a ge-

ometric approach for avoiding computing the features’ dis-

tances and instead directly solve for the camera’s pose. In

both cases, however, several intermediate terms (e.g., tan-

gents and cotangents of certain angles) need to be com-

puted, which negatively affect the speed and numerical pre-

cision of the resulting algorithms.

Similar to [15] and [18], our proposed approach does not

require first computing the features’ distances. Differently

though, in our derivation, we first eliminate the camera’s

position and the features’ distances to result into a system

of three equations involving only the camera’s orientation.

Then, we follow an algebraic process for successively elim-

inating two of the unknown 3-dof and arriving into a quar-

tic polynomial. Our algorithm (summarized in Alg. 1) re-

quires fewer operations and involves simpler and numeri-

cally more stable expressions, as compared to either [15]

or [18], and thus performs better in terms of efficiency, ac-

1Nister and Stewenius [20] earlier also followed a geometric approach

for solving the generalized P3P resulting into an octic univariate polyno-

mial whose odd monomials vanish for the case of the central P3P.

7225

curacy, and robustness. Specifically, the main advantages of

our approach are:

• Our algorithm’s implementation takes about 33% of

the time required by the current state of the art [15]. 2

• Our method achieves better accuracy than [15, 18] un-

der nominal conditions. Moreover, we are able to fur-

ther improve the numerical precision by applying root

polishing to the solutions of the quartic polynomial

while remaining significantly faster than [15, 18].

• Our algorithm is more robust than [15, 18] when

considering close-to-singular configurations (the three

points are almost collinear or very close to each other).

The remaining of this paper is structured as follows. Sec-

tion 2 presents the definition of the P3P problem, as well

as our derivations for estimating first the orientation and

then the position of the camera. In Section 3, we assess

the performance of our approach against [15] , [18], and [6]

in simulation for both nominal and singular configurations.

Finally, we conclude our work in Section 4.

2. Problem Formulation and Solution

2.1. Problem Definition

Given the positions, Gpi, of three known features fi, i =
1, 2, 3, with respect to a reference frame {G}, and the cor-

responding unit-vector, bearing measurements, Cbi, i =
1, 2, 3, our objective is to estimate the position, GpC , and

orientation, i.e., the rotation matrix G

C
C, of the camera {C}.

2.2. Solving for the orientation

From the geometry of the problem (see Fig. 1), we have

(for i = 1, 2, 3):

Gpi =
GpC + di

G

C
CCbi (1)

where di , ‖GpC − Gpi‖ is the distance between the cam-

era and the feature fi.
In order to eliminate the unknown camera position, GpC ,

and feature distance, di, i = 1, 2, 3, we subtract pair-

wise the three equations corresponding to (1) for (i, j) =
(1, 2), (1, 3), and (2, 3), and project them on the vector

2Although Masselli and Zell [18] claim that their algorithm runs faster

than Kneip et al.’s [15], our results (see Section 3) show the opposite to

be true (by a small margin). The reason we arrive at a different conclusion

is that our simulation randomly generates a new geometric configuration

for each run, while Masselli employs only one configuration during their

entire simulation, in which they save time due to caching.

Figure 1. The camera {C}, whose position, GpC , and orientation,
G

CC, we seek to determine, observes unit-vector bearing measure-

ment Cbi of a feature fi, whose position, Gpi, is known.

G

C
C(Cbi × Cbj) to yield the following system of 3 equa-

tions in the unknown rotation G

C
C:

(Gp1 − Gp2)
T G

C
C(Cb1 × Cb2) = 0 (2)

(Gp1 − Gp3)
T G

C
C(Cb1 × Cb3) = 0 (3)

(Gp2 − Gp3)
T G

C
C(Cb2 × Cb3) = 0 (4)

Next, and in order to compute one of the 3 unknown degrees

of rotational freedom, we introduce the following factoriza-

tion of G

C
C:

G

C
C = C(k1, θ1)C(k2, θ2)C(k3, θ3) (5)

where3

k1 ,
Gp1 − Gp2

‖Gp1 − Gp2‖
, k3 ,

Cb1 × Cb2

‖Cb1 × Cb2‖
, k2 ,

k1 × k3

‖k1 × k3‖
(6)

Substituting (5) in (2), yields a scalar equation θ2:

kT

1C(k2, θ2)k3 = 0 (7)

which we solve by employing Rodrigues’ rotation for-

mula [16]:4

C(k2, θ2) = cos θ2I− sin θ2⌊k2⌋+(1− cos θ2)k2k
T

2 (8)

to get

θ2 = arccos(kT

1k3)±
π

2
(9)

Note that we only need to consider one of these two solu-

tions [in our case, we select θ2 = arccos(kT

1k3) − π
2 ; see

Fig. 2], since the other one will result in the same G

C
C (see

3C(k, θ) denotes the rotation matrix describing the rotation about the

unit vector, k, by an angle θ. Note that in the ensuing derivations, all

rotation angles are defined using the left-hand rule.
4⌊k⌋ denotes the 3×3 skew-symmetric matrix corresponding to k such

that ⌊k⌋a = k× a, ∀ k,a ∈ R
3. Note also that if k is a unit vector, then

⌊k⌋2 = kkT − I, while for two vectors a, b, ⌊a⌋⌊b⌋ = baT − (aTb)I.

Lastly, it is easy to show that ⌊⌊a⌋b⌋ = baT − abT .

7226

Figure 2. Geometric relation between unit vectors

k1, k2, k3, k′

3, k′′

3 , and u1. Note that k1, k3, and k′

3

belong to a plane π1 whose normal is k2. Also, k2, k′

3, and k′′

3

lie on a plane, π2, normal to π1.

Appendix 5.2 for a formal proof).

In what follows, we describe the process for eliminating

θ3 from (3) and (4), and eventually arriving into a quartic

polynomial involving a trigonometric function of θ1. To do

so, we once again substitute in (3) and (4) the factorization

of G

C
C defined in (5) to get (for i = 1, 2):

uT

i C(k1, θ1)C(k2, θ2)C(k3, θ3)vi = 0 (10)

where

ui ,
Gpi − Gp3, vi ,

Cbi × Cb3, i = 1, 2, (11)

and employ the following property of rotation matrices

C(k1, θ1)C(k2, θ2)C
T (k1, θ1) = C(C(k1, θ1)k2, θ2)

to rewrite (10) in a simpler form as

uT

i C(k1, θ1)C(C(k2, θ2)k3, θ3)C(k2, θ2)vi = 0

⇒ uT

i C(k1, θ1)C(k′

3, θ3)v
′

i = 0 (12)

where

v′

i , C(k2, θ2)vi, i = 1, 2

k′

3 , C(k2, θ2)k3 = k2 × k1 (13)

The last equality in (13) is geometrically depicted in Fig. 2

and algebraically derived in Appendix 5.1. Analogously, it

is straightforward to show that

k′

1 , CT (k2, θ2)k1 = −k2 × k3

Next, by employing Rodrigues’ rotation formula [see (8)],

for expressing the product of a rotation matrix and a vector

as a linear function of the unknown
[

cos θ sin θ
]

T

, i.e.,

C(k, θ)v = (− cos θ⌊k⌋2 − sin θ⌊k⌋+ kkT)v

=
[

−⌊k⌋2v −⌊k⌋v
]

[

cos θ
sin θ

]

+ (kTv)k (14)

in (12) yields (for i = 1, 2):

(

[

−⌊k1⌋2ui ⌊k1⌋ui

]

[

cos θ1
sin θ1

]

+ (kT

1ui)k1

)

T

·
(

[

−⌊k′

3⌋2v′

i −⌊k′

3⌋v′

i

]

[

cos θ3
sin θ3

]

+ (k′

3
T

v′

i)k
′

3

)

= 0

(15)

Expanding (15) and rearranging terms, yields (for i = 1, 2)

[

cos θ1
sin θ1

]

T
[

uT

i ⌊k1⌋2⌊k′

3⌋2v′

i uT

i ⌊k1⌋2⌊k′

3⌋v′

i

uT

i ⌊k1⌋⌊k′

3⌋2v′

i uT

i ⌊k1⌋⌊k′

3⌋v′

i

] [

cos θ3
sin θ3

]

+(kT

1ui)
[

−kT

1 ⌊k′

3⌋2v′

i −kT

1 ⌊k′

3⌋v′

i

]

[

cos θ3
sin θ3

]

=(k′

3
T

v′

i)
[

uT

i ⌊k1⌋⌊k′

3⌋k1 uT

i ⌊k1⌋k′

3

]

[

cos θ1
sin θ1

]

(16)

Notice that the term uT

i ⌊k1⌋⌊k′

3⌋ appears three times in

(16), and

uT

1 ⌊k1⌋⌊k′

3⌋ = uT

1k
′

3k
T

1

= (Gp1 − Gp3)
T ⌊k1⌋⌊k′

3⌋
= (Gp1 − Gp2 +

Gp2 − Gp3)
T ⌊k1⌋⌊k′

3⌋
= (Gp2 − Gp3)

T ⌊k1⌋⌊k′

3⌋
= uT

2k
′

3k
T

1 = uT

2 ⌊k1⌋⌊k′

3⌋ (17)

This motivates us to rewrite (12) as (for i = 1, 2):

0 = uT

i C(k1, θ1)C(k′

3, θ3)v
′

i

= uT

i C(k1, θ1)C(k1,−φ)C(k1, φ)C(k′

3, θ3)v
′

i

= uT

i C(k1, θ1 − φ)C(C(k1, φ)k
′

3, θ3)C(k1, φ)v
′

i

= uT

i C(k1, θ
′

1)C(k′′

3 , θ3)v
′′

i (18)

where

θ′1 , θ1 − φ, v′′

i , C(k1, φ)v
′

i, k
′′

3 , C(k1, φ)k
′

3 (19)

To simplify the equation analogous to (16) that will re-

sult from (18) [instead of (16)], we seek to find a φ
(not necessarily unique) such that uT

1k
′′

3 = 0, and hence,

uT

i ⌊k1⌋⌊k′′

3⌋ = 0 [see (17)], i.e.,

0 = uT

1k
′′

3

= uT

1C(k1, φ)k
′

3 (20)

= uT

1 (cosφI− sinφ⌊k1⌋+ (1− cosφ)k1k
T

1)k
′

3

= cosφuT

1k
′

3 − sinφuT

1 ⌊k1⌋k′

3

= cosφuT

1k
′

3 − sinφuT

1k2

⇒
[

cosφ sinφ
]

=
1

δ

[

uT

1k2 uT

1k
′

3

]

(21)

7227

where

δ ,

√

(uT

1k
′

3)
2 + (uT

1k2)2 = ‖u1 × k1‖ (22)

and thus [from (19) using (8)]

k′′

3 = cosφk′

3 − sinφ⌊k1⌋k′

3 + (1− cosφ)k1k
T

1k
′

3

= (k′

3k
T

2u1 − k2k
′

3
T

u1)/δ = u1 × (k′

3 × k2)/δ

=
u1 × k1

‖u1 × k1‖
(23)

Now, we can expand (18) using (14) to get an equation anal-

ogous to (16):

[

cos θ′1
sin θ′1

]

T
[

uT

i ⌊k1⌋2⌊k′′

3⌋2v′′

i uT

i ⌊k1⌋2⌊k′′

3⌋v′′

i

uT

i ⌊k1⌋⌊k′′

3⌋2v′′

i uT

i ⌊k1⌋⌊k′′

3⌋v′′

i

] [

cos θ3
sin θ3

]

+ (kT

1ui)
[

−kT

1 ⌊k′′

3⌋2v′′

i −kT

1 ⌊k′′

3⌋v′′

i

]

[

cos θ3
sin θ3

]

=

(k′′

3
T

v′′

i)
[

uT

i ⌊k1⌋⌊k′′

3⌋k1 uT

i ⌊k1⌋k′′

3

]

[

cos θ′1
sin θ′1

]

(24)

Substituting uT

i ⌊k1⌋⌊k′′

3⌋ = 0 [see (17)] in (24) and renam-

ing terms, yields (for i = 1, 2):

[

cos θ′1
sin θ′1

]

T
[

f̄i1 f̄i2
0 0

] [

cos θ3
sin θ3

]

+
[

f̄i4 f̄i5
]

[

cos θ3
sin θ3

]

=
[

0 f̄i3
]

[

cos θ′1
sin θ′1

]

⇒
[

f̄i1 cos θ
′

1 + f̄i4 f̄i2 cos θ
′

1 + f̄i5
]

[

cos θ3
sin θ3

]

= f̄i3 sin θ
′

1

(25)

where5

f̄i1 , uT

i ⌊k1⌋2⌊k′′

3⌋2v′′

i = δvT

i k2

f̄i2 , uT

i ⌊k1⌋2⌊k′′

3⌋v′′

i = δvT

i k
′

1

f̄i3 , (k′′

3
T

v′′

i)u
T

i ⌊k1⌋k′′

3 = δvT

i k3

f̄i4 , −(uT

i k1)k
T

1 ⌊k′′

3⌋2v′′

i = (uT

i k1)(v
T

i k
′

1)

f̄i5 , −(uT

i k1)k
T

1 ⌊k′′

3⌋v′′

i = −(uT

i k1)(v
T

i k2)

For i = 1, 2, (25) results into the following system:

[

f̄11 cos θ
′

1 + f̄14 f̄12 cos θ
′

1 + f̄15
f̄21 cos θ

′

1 + f̄24 f̄22 cos θ
′

1 + f̄25

] [

cos θ3
sin θ3

]

=

[

f̄13
f̄23

]

sin θ′1

(26)

Note that since f̄11f̄14+f̄12f̄15 = 0, we can further simplify

(26) by introducing θ′3, where

[

cos θ′3
sin θ′3

]

,

[

f̄11 cos θ3+f̄12 sin θ3√
f̄2

11
+f̄2

12

− f̄14 cos θ3+f̄15 sin θ3√
f̄2

14
+f̄2

15

]T

(27)

5The simplified expressions for the terms shown after the second equal-

ity, require lengthy derivations which we omit due to space limitations.

Replacing θ3 by θ′3 in (26), we have

[

f11 cos θ
′

1 f15
f21 cos θ

′

1 + f24 f22 cos θ
′

1 + f25

] [

cos θ′3
sin θ′3

]

=

[

f13
f23

]

sin θ′1

(28)

where

f11 , δkT

3
Cb3 (29)

f21 , δ(CbT

1
Cb2)(k

T

3
Cb3) (30)

f22 , δ(kT

3
Cb3)‖Cb1 × Cb2‖ (31)

f13 , f̄13 = δvT

1k3 (32)

f23 , f̄23 = δvT

2k3 (33)

f24 , (uT

2k1)(k
T

3
Cb3)‖Cb1 × Cb2‖ (34)

f15 , −(uT

1k1)(k
T

3
Cb3) (35)

f25 , −(uT

2k1)(
CbT

1
Cb2)(k

T

3
Cb3) (36)

From (28), we have

[

cos θ′3
sin θ′3

]

=det

([

f11 cos θ
′

1 f15
f21 cos θ

′

1 + f24 f22 cos θ
′

1 + f25

])

−1

·
[

f22 cos θ
′

1 + f25 −f15
−(f21 cos θ′1 + f24) f11 cos θ

′

1

] [

f13
f23

]

sin θ′1

(37)

Computing the norm of both sides of (37), results in

∥

∥

∥

∥

[

f22 cos θ
′

1 + f25 −f15
−(f21 cos θ′1 + f24) f11 cos θ

′

1

] [

f13
f23

]
∥

∥

∥

∥

2

(1− cos2 θ′1)

= det

([

f11 cos θ
′

1 f15
f21 cos θ

′

1 + f24 f22 cos θ
′

1 + f25

])2

which is a 4th-order polynomial in cos θ′1 that can be com-

pactly written as:

4
∑

j=0

αj cos
j θ′1 = 0 (38)

with

α4 , g25 + g21 + g23 (39)

α3 , 2(g5g6 + g1g2 + g3g4) (40)

α2 , g26 + 2g5g7 + g22 + g24 − g21 − g23 (41)

α1 , 2(g6g7 − g1g2 − g3g4) (42)

α0 , g27 − g22 − g24 (43)

(44)

7228

where

g1 , f13f22 (45)

g2 , f13f25 − f15f23 (46)

g3 , f11f23 − f13f21 (47)

g4 , −f13f24 (48)

g5 , f11f22 (49)

g6 , f11f25 − f15f21 (50)

g7 , −f15f24 (51)

We compute the roots of (38) in closed form to find cos θ′1.

Similarly to [15] and [18], we employ Ferrari’s method [2]

to attain the resolvent cubic of (38), which is subsequently

solved by Cardano’s formula [2]. Once the (up to) four real

solutions of (38) have been determined, an optional step is

to apply root polishing following Newton’s method, which

improves accuracy for minimal increase in the processing

cost (see Section 3.2). Regardless, for each solution of

cos θ′1, we will have two possible solutions for sin θ′1, i.e.,

sin θ′1 = ±
√

1− cos2 θ′1 (52)

which, in general, will result in two different solutions for
C

G
C. Note though that only one of them is valid if we use

the fact that di > 0 (see Appendix 5.3).

Next, for each pair of (cos θ′1, sin θ
′

1), we compute cos θ′3
and sin θ′3 from (37), which can be written as

[

cos θ′3
sin θ′3

]

=
sin θ′1

g5 cos2 θ′1 + g6 cos θ′1 + g7

[

g1 cos θ
′

1 + g2
g3 cos θ

′

1 + g4

]

(53)

Lastly, instead of first computing θ1 from (19) and θ3
from (27) to find G

C
C using (5), we hereafter describe a

faster method for recovering G

C
C. Specifically, from (5),

(12) and (18), we have

G

C
C = C(k1, θ1)C(k2, θ2)C(k3, θ3)

= C(k1, θ1)C(k′

3, θ3)C(k2, θ2)

= C(k1, θ
′

1)C(k′′

3 , θ3)C(k1, φ)C(k2, θ2) (54)

Since k1 is perpendicular to k′′

3 , we can construct a rotation

matrix C̄ such that

C̄ =
[

k1 k′′

3 k1 × k′′

3

]

and hence

k1 = C̄e1, k
′′

3 = C̄e2 (55)

where

[

e1 e2 e3
]

, I3

Substituting (55) in (54), we have

G

C
C = C̄C(e1, θ

′

1)C(e2, θ3)C̄
TC(k1, φ)C(k2, θ2)

= C̄C(e1, θ
′

1)C(e2, θ3)C(e2, θ
′

3 − θ3)
¯̄C

= C̄C(e1, θ
′

1)C(e2, θ
′

3)
¯̄C (56)

where

¯̄C , C(e2, θ3 − θ′3)C̄
TC(k1, φ)C(k2, θ2)

= C(e2, θ3 − θ′3)
[

k′

1 k3 k′

1 × k3

]

T

(27)
=

[

Cb1 k3
Cb1 × k3

]

T

The advantages of (56) are: (i) The matrix product

C(e1, θ
′

1)C(e2, θ
′

3) can be computed analytically; (ii) C̄, ¯̄C
are invariant to the (up to) four possible solutions and thus,

we only need to construct them once.

2.3. Solving for the position

Substituting in (1) the expression for d3 from (63) and

rearranging terms, yields

GpC = Gp3 −
δ sin θ′1
kT

3
Cb3

G

C
CCb3 (57)

Note that we only use (1) for i = 3 to compute GpC from
G

C
C. Alternatively, if we care more for accuracy than speed,

we can find the position using a least-squares approach

based on (1) (see [14] for details). Lastly, the proposed P3P

solution is summarized in Alg. 1.

Algorithm 1: Solving for the camera’s pose

Input: Gpi, i = 1, 2, 3 the features’ positions;
Cbi, i = 1, 2, 3 bearing measurements

Output: GpC , the position of the camera; C

G
C, the

orientation of the camera

1 Compute k1, k3 using (6)

2 Compute ui and vi using (11), i = 1, 2
3 Compute δ and k′′

3 using (22) and (23)

4 Compute the fij’s using (29)-(36)

5 Compute αi, i = 0, 1, 2, 3, 4 using (39)-(51)

6 Solve (38) to get n (n = 2 or 4) real solutions for

cos θ′1, denoted as cos θ
′(i)
1 , i = 1...n

7 for i = 1 : n do

8 sin θ
′(i)
1 ← sign(kT

3
Cb3)

√

1− cos2 θ
′(i)
1

9 Compute cos θ
′(i)
3 and sin θ

′(i)
3 using (53)

10 Compute C

G
C(i) using (56)

11 Compute Gp
(i)
C using (57)

12 end

7229

position orientation

Gao’s method 6.36E-05 1.31E-04

Kneip’s method 1.18E-05 1.02E-05

Masselli’s method 1.84E-08 4.89E-10

Proposed method 1.66E-10 5.30E-12

Proposed method+Root polishing 5.07E-11 1.53E-13
Table 1. Nominal case: Pose mean errors.

3. Simulation results

Our algorithm is implemented6 in C++ using the same

linear algebra library, TooN [23], as [15] We employ simu-

lation data to test our code and compare it to the solutions

of [15] and [18]. For each single P3P problem, we ran-

domly generate three 3D landmarks, which are uniformly

distributed in a 0.4× 0.3× 0.4 cuboid centered around the

origin. The position of the camera is GpC = e3, and its

orientation is C

G
C = C(e1, π).

3.1. Numerical accuracy

We generate simulation data without adding any noise

or rounding error to the bearing measurements, and run all

three algorithms on 50,000 randomly-generated configura-

tions to assess their numerical accuracy. Note that the posi-

tion error is computed as the norm of the difference between

the estimate and the ground truth of GpC . As for the orien-

tation error, we compute the rotation matrix that transforms

the estimated G

C
C to the true one, convert it to the equiva-

lent axis-angle representation, and use the absolute value of

the angle as the error. Since there are multiple solutions to a

P3P problem, we compute the errors for all of them and pick

the smallest one (i.e., the root closest to the true solution).

The distributions and the means of the position and ori-

entation errors are depicted in Fig.s 3 - 4 and Table 1. As

evident, we get similar results to those presented in [18] for

Kneip et al.’s [15] and Masselli and Zell’s methods [18],

while our approach outperforms both of them by two or-

ders of magnitude in terms of accuracy. This can be at-

tributed to the fact that our algorithm requires fewer oper-

ations and thus exhibits lower numerical-error propagation.

For completeness, in Table 1, we also list the pose errors for

OpenCV’s [21] implementation of Gao’s method [6].

Lastly, and as shown in the results of Table 1, we can fur-

ther improve the numerical precision by applying root pol-

ishing. Typically, two iterations of Newton’s method [25]

lead to significantly better results, especially for the orien-

tation, while taking only 0.01 µs per iteration, or about 5%

of the total processing time.

3.2. Processing cost

We use a test program that solves 100,000 randomly gen-

erated P3P problems and calculates the total execution time

6Our code is available as supplemental material and in OpenCV [21].

-18 -16 -14 -12 -10 -8 -6
log10(error) (Orientation)

0

0.5

1

1.5

2

2.5

co
un

t

×10 4

Proposed method+Root polishing
Proposed method
Masselli's method
Kneip's method
Gao's method

Figure 3. Nominal case: Histogram of orientation errors.

-18 -16 -14 -12 -10 -8 -6
log10(error) (Position)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

co
un

t

Proposed method+Root polishing
Proposed method
Masselli's method
Kneip's method
Gao's method

Figure 4. Nominal case: Histogram of position errors.

to evaluate the computational cost of the three algorithms

considered. We run it on a 2.0 GHz×4 Core laptop and the

results show that our code takes 0.43 µs on average (0.41

µs without root polishing) while [15], [18] and [6] take 1.3

µs, 1.5 µs, and 3.1 µs respectively. This corresponds to a

3× speed up (or 33% of the time of [15]). Note also, in

contrast to what is reported in [18], Masselli’s method is

actually slower than Kneip’s. As mentioned earlier, Mas-

selli’s results in [18] are based on 1,000 runs of the same

features’ configuration, and take advantage of data caching

to outperform Kneip.

3.3. Robustness

There are two typical singular cases that lead to infinite

solutions in the P3P problem:

• Singular case 1: The 3 landmarks are collinear.

• Singular case 2: Any two of the 3 bearing measure-

ments coincide.

7230

In practice, it is almost impossible for these conditions to

hold exactly, but we may still have numerical issues when

the geometric configuration is close to these cases. To test

the robustness of the three algorithms considered, we gen-

erate simulation data corresponding to small perturbations

(uniformly distributed within [−0.05 0.05]) of the features’

positions when in singular configurations. The errors are

defined as in Section 3.1, while we compute the medians7

of them to assess the robustness of the three methods. For

fairness, we do not apply root polishing to our code here.

According to the results shown in Fig.s 5 - 8 and Tables 2 -

3, our method achieves the best accuracy in these two close-

to-singular cases. The reason is that we do not compute any

quantities that may suffer from numerical issues, such as

cotangent and tangent in [15] and [18], respectively.

-18 -16 -14 -12 -10 -8 -6
log10(error) (Position)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

co
un

t

Proposed method
Masselli's method
Kneip's method

Figure 5. Singular case 1: Histogram of position errors.

-18 -16 -14 -12 -10 -8 -6
log10(error) (Orientation)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

co
un

t

Proposed method
Masselli's method
Kneip's method

Figure 6. Singular case 1: Histogram of orientation errors.

7In close-to-singular cases, a few instances of large errors (10−1) may

dominate and skew the mean. Instead, the median is a robust measure of

the central tendency, and provides a better performance metric.

position orientation

Kneip’s method 1.42E-14 1.34E-14

Masselli’s method 7.13E-15 6.15E-15

Proposed method 5.16E-15 3.73E-15
Table 2. Singular case 1: Pose median errors.

position orientation

Kneip’s method 8.10E-14 8.85E-14

Masselli’s method 7.24E-14 6.07E-14

Proposed method 6.73E-14 1.75E-14
Table 3. Singular case 2: Pose median errors.

-18 -16 -14 -12 -10 -8 -6
log10(error) (Position)

0

2000

4000

6000

8000

10000

12000

co
un

t

Proposed method
Masselli's method
Kneip's method

Figure 7. Singular case 2: Histogram of position errors.

-18 -16 -14 -12 -10 -8 -6
log10(error) (Orientation)

0

2000

4000

6000

8000

10000

12000

co
un

t

Proposed method
Masselli's method
Kneip's method

Figure 8. Singular case 2: Histogram of orientation errors.

4. Conclusion and Future Work

In this paper, we have introduced an algebraic approach

for computing the solutions of the P3P problem in closed

form. Similarly to [15] and [18], our algorithm does not

solve for the distances first, and hence reduces numerical-

error propagation. Differently though, it does not involve

7231

numerically-unstable functions (e.g., tangent, or cotangent)

and has simpler expressions than the two recent alternative

methods [15, 18], and thus it outperforms them in terms of

speed, accuracy, and robustness to close-to-singular cases.

As part of our ongoing work, we are currently extend-

ing our approach to also address the case of the generalized

(non-central camera) P3P [20].

5. Appendix

5.1. Proof of k′

3 = k2 × k1

First, note that k2 × k1 is a unit vector since k2 is per-

pendicular to k1. Also, from (13) and (7) we have

kT

1k
′

3 = kT

1C(k2, θ2)k3 = 0 (58)

Then, we can prove k′

3 = k2 × k1 by showing that their

inner product is equal to 1:

(k2 × k1)
Tk′

3 = kT

1 (k
′

3 × k2)

(6)
=

kT

1 (k
′

3 × (k1 × k3))

‖k1 × k3‖
(9)
=

kT

1 (k1(k
T

3k
′

3)− k3(k
T

1k
′

3))

cos θ2

=
kT

3C(k2, θ2)k3

cos θ2
= 1

5.2. Equivalence between the two solutions of θ2

When solving for θ2 [see (9)], we have two possible so-

lutions θ
(1)
2 = arccos(kT

1k3) − π
2 and θ

(2)
2 = θ

(1)
2 + π.

Next, we will prove that using θ
(2)
2 to find G

C
C is equivalent

to using θ
(1)
2 . First, note that (see Fig. 2)

C(k2, θ
(1)
2 +

π

2
)k3 = C(k2,

π

2
)k′

3 = −k2 × k′

3

= −k2 × (k2 × k1) = k1 (59)

Then, we can write C(k2, θ
(2)
2) as

C(k2, θ
(2)
2)

=C(k2, θ
(1)
2 +

π

2
)C(k2,

π

2
)

=C(k2, θ
(1)
2 +

π

2
)C(k3, π)C(k2,−

π

2
)C(k3,−π)

=C(C(k2, θ
(1)
2 +

π

2
)k3, π)C(k2, θ

(1)
2 +

π

2
)C(k2,−

π

2
)C(k3, π)

(59)
=C(k1, π)C(k2, θ

(1)
2)C(k3, π) (60)

If we use θ
(2)
2 to find G

C
C,

G

C
C = C(k1, θ

(2)
1)C(k2, θ

(2)
2)C(k3, θ

(2)
3)

(60)
= C(k1, θ

(2)
1)C(k1, π)C(k2, θ

(1)
2)C(k3, π)C(k3, θ

(2)
3)

= C(k1, θ
(2)
1 + π)C(k2, θ

(1)
2)C(k3, θ

(2)
3 + π) (61)

Note that G

C
C in (61) is of the same form as that in (5),

so any solutions of G

C
C computed using θ

(2)
2 will be found

by using θ
(1)
2 . Thus, we do not need to consider any other

solutions for θ1 and θ3 beyond the ones found for G

C
C.

5.3. Determining the sign of sin θ′1

From (52), we have two solutions for sin θ′1, and thus

for θ′1, with θ
′(2)
1 = −θ′1. This will also result into two

solutions for θ′3 [see (53)] and, hence, two solutions for θ3:

θ3 and θ
(2)
3 = θ3 + π. Considering these two options, we

get two distinct solutions for G

C
C [see (54)]:

C1 , C(k1, θ
′

1)C(k′′

3 , θ3)C(k1, φ)C(k2, θ2)

C2 , C(k1,−θ′1)C(k′′

3 , θ3 + π)C(k1, φ)C(k2, θ2)

Then, notice that

C2C
T

1 = C(k1,−θ′1)C(k′′

3 , π)C(k1,−θ′1)
= C(k′′

3 , π)C(CT (k′′

3 , π)k1,−θ′1)C(k1,−θ′1)
= C(k′′

3 , π)C(−k1,−θ′1)C(k1,−θ′1)
= C(k′′

3 , π)

If C1 = C2, this would require

C(k′′

3 , π) = C2C
T

1 = I

which cannot be true, hence C1 and C2 cannot be equal.

Thus, there are always two different solutions of G

C
C.

If, however, we use the fact that di (i = 1, 2, 3) is pos-

itive, we can determine the sign of sin θ′1, and choose the

valid one among the two solutions of G

C
C. Subtracting (1)

pairwise for (i = 3) from (i = 1), we have

Gp1 − Gp3 =d1
G

C
CCb1 − d3

G

C
CCb3

⇒ Gp1 − Gp3 =C(k1, θ
′

1)C(k′′

3 , θ3)C(k1, φ)

·C(k2, θ2)(d1
Cb1 − d3

Cb3) (62)

Multiplying both sides of (62) with k′′

3
T

C(k1,−θ′1) from

the left, yields

k′′

3
T

C(k1,−θ′1)(Gp1 − Gp3)

=k′′

3
T

C(k1, φ)C(k2, θ2)(d1
Cb1 − d3

Cb3)

⇒k′′

3
T

(cos θ′1I+ sin θ′1⌊k1⌋+ (1− cos θ′1)k1k
T

1)u1

=k′

3
T

C(k2, θ2)(d1
Cb1 − d3

Cb3)

(23)⇒ sin θ′1k
′′

3
T ⌊k1⌋u1 = kT

3 (d1
Cb1 − d3

Cb3)

⇒− sin θ′1u
T

1 ⌊k1⌋k′′

3 = −d3kT

3
Cb3

⇒δ sin θ′1 = d3(k
T

3
Cb3) (63)

Using the fact that d3 > 0 and δ > 0, we select the sign of

sin θ′1 to be the same as that of kT

3
Cb3.

7232

References

[1] A. Ansar and K. Daniilidis. Linear pose estimation from

points or lines. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25(5):578–589, 2003.

[2] G. Cardano, T. R. Witmer, and O. Ore. The Rules of Algebra:

Ars Magna, volume 685. Courier Corporation, 2007.

[3] D. A. Cox, J. Little, and D. O’Shea. Using algebraic ge-

ometry, volume 185. Springer Science & Business Media,

2006.

[4] S. Finsterwalder and W. Scheufele. Das

rückwärtseinschneiden im raum. Verlag d. Bayer. Akad. d.

Wiss., 1903.

[5] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[6] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete

solution classification for the perspective-three-point prob-

lem. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(8):930–943, 2003.

[7] E. W. Grafarend, P. Lohse, and B. Schaffrin. Dreidimen-

sionaler rückwärtsschnitt teil i: Die projektiven gleichungen.

Zeitschrift für Vermessungswesen, pages 1–37, 1989.

[8] J. A. Grunert. Das pothenotische problem in erweit-

erter gestalt nebst über seine anwendungen in der geodäsie.

Grunerts archiv für mathematik und physik, 1:238–248,

1841.

[9] R. M. Haralick, H. Joo, C.-N. Lee, X. Zhuang, V. G. Vaidya,

and M. B. Kim. Pose estimation from corresponding point

data. IEEE Transactions on Systems, Man, and Cybernetics,

19(6):1426–1446, 1989.

[10] R. M. Haralick, D. Lee, K. Ottenburg, and M. Nolle. Anal-

ysis and solutions of the three point perspective pose esti-

mation problem. In Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 592–598, La-

haina, HI, June 3–6 1991.

[11] J. A. Hesch and S. I. Roumeliotis. A direct least-squares

(DLS) method for PnP. In Proc. of the 13th International

Conference on Computer Vision, pages 383–390, Barcelona,

Spain, Nov. 6–13 2011.

[12] B. K. Horn. Closed-form solution of absolute orientation us-

ing unit quaternions. Journal of the Optical Society of Amer-

ica A, 4(4):629–642, 1987.

[13] B. K. Horn, H. M. Hilden, and S. Negahdaripour. Closed-

form solution of absolute orientation using orthonormal

matrices. Journal of the Optical Society of America A,

5(7):1127–1135, 1988.

[14] T. Ke and S. I. Roumeliotis. An efficient algebraic solution

to the perspective-three-point problem. Available: https:

//arxiv.org/abs/1701.08237.

[15] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel

parametrization of the perspective-three-point problem for a

direct computation of absolute camera position and orien-

tation. In Proc. of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 2969–2976, Colorado

Springs, CO, June 21–25 2011.

[16] D. Koks. A roundabout route to geometric algebra. Explo-

rations in Mathematical Physics: The Concepts behind an

Elegant Language, pages 147–184, 2006.

[17] S. Linnainmaa, D. Harwood, and L. S. Davis. Pose deter-

mination of a three-dimensional object using triangle pairs.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 10(5):634–647, 1988.

[18] A. Masselli and A. Zell. A new geometric approach for

faster solving the perspective-three-point problem. In Proc.

of the IEEE International Conference on Pattern Recogni-

tion, pages 2119–2124, Stockholm, Sweden, Aug. 24–28

2014.

[19] E. Merritt. Explicit three-point resection in space. Pho-

togrammetric Engineering, 15(4):649–655, 1949.

[20] D. Nistér and H. Stewénius. A minimal solution to the gener-

alised 3-point pose problem. Journal of Mathematical Imag-

ing and Vision, 27(1):67–79, 2007.

[21] OpenCV. Open Source Computer Vision Library. Available:

http://opencv.org/. Accessed Apr. 10, 2017.

[22] L. Quan and Z. Lan. Linear n-point camera pose determi-

nation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(8):774–780, 1999.

[23] TooN. C++ Linear Algebra Library. Available:

https://www.edwardrosten.com/cvd/toon/

html-user/. Accessed Apr. 10, 2017.

[24] W. Wen-Tsun. Basic principles of mechanical theorem prov-

ing in elementary geometries. Journal of Automated Reason-

ing, 2(3):221–252, 1986.

[25] T. J. Ypma. Historical development of the Newton-Raphson

method. SIAM review, 37(4):531–551, 1995.

7233

https://arxiv.org/abs/1701.08237
https://arxiv.org/abs/1701.08237
http://opencv.org/
https://www.edwardrosten.com/cvd/toon/html-user/
https://www.edwardrosten.com/cvd/toon/html-user/

