## Multiple View Geometry 4

## 1 Numerical Exercises

1. In addition to computing the camera pose with $3 \mathrm{D}-2 \mathrm{D}$ correspondences, it is possible to estimate the relative pose transformation based on 3D-3D correspondences. In the following, you will derive the first steps for the "Least-Squares Fitting of Two 3-D Point Sets" Arun et al., PAMI87. Consider two point sets $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ with $i=1,2, \ldots, N$ and relation $p_{i}^{\prime}=R p_{i}+T$, where $R$ is a rotation matrix, and $T$ a translation vector.
(a) Write down the least-square cost, which is minimized to find $R$ and $T$.
(b) Write down the transformation between the centroids $p$ and $p^{\prime}$ of the two points sets $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ and express the translation vector $T$ based on $p, p^{\prime}$ and $R$.
(c) Using the normalized cocordinates $q_{i}=p_{i}-p$ and $q_{i}^{\prime}=p_{i}^{\prime}-p^{\prime}$, show that the least-square cost can be written only in terms of $q_{i}, q_{i}^{\prime}$ and $R$.
(d) Briefly explain in one or two sentences how you would proceed and what are the benefits of the above computations for finding $R$ and $T$.
2. Consider a stereo camera pair with a relative transformation between the left and right camera $t_{l, r}$. Additionally, we have estimates for the relative motion $t_{k, k+1}^{l l}$ between the left camera from timestep $k$ to $k+1$, the relative motion $t_{k+2, k}^{l r}$ between the left camera at timestep $k+2$ to the right camera at timestep $k$, the relative motion $t_{k+1, k+2}^{r r}$ between the right camera at time step $k+1$ and $k+2$, and the relative motion $t_{k, k+3}^{l l}$ between the left camera at timestep $k$ and $k+3$.
Write the optimization problem for optimizing the relative motion estimates.
