Multiple View Geometry 4

1 Numerical Exercises

- 1. In addition to computing the camera pose with 3D-2D correspondences, it is possible to estimate the relative pose transformation based on 3D-3D correspondences. In the following, you will derive the first steps for the "Least-Squares Fitting of Two 3-D Point Sets" Arun et al., PAMI87. Consider two point sets $\{p_i\}$ and $\{p'_i\}$ with i = 1, 2, ..., N and relation $p'_i = Rp_i + T$, where R is a rotation matrix, and T a translation vector.
 - (a) Write down the least-square cost, which is minimized to find R and T.
 - (b) Write down the transformation between the centroids p and p' of the two points sets $\{p_i\}$ and $\{p'_i\}$ and express the translation vector T based on p, p' and R.
 - (c) Using the normalized cocordinates $q_i = p_i p$ and $q'_i = p'_i p'$, show that the least-square cost can be written only in terms of q_i , q'_i and R.
 - (d) Briefly explain in one or two sentences how you would proceed and what are the benefits of the above computations for finding R and T.
- 2. Consider a stereo camera pair with a relative transformation between the left and right camera $t_{l,r}$. Additionally, we have estimates for the relative motion $t_{k,k+1}^{ll}$ between the left camera from timestep k to k + 1, the relative motion $t_{k+2,k}^{lr}$ between the left camera at timestep k + 2 to the right camera at timestep k, the relative motion $t_{k+1,k+2}^{rr}$ between the right camera at timestep k + 1 and k + 2, and the relative motion $t_{k,k+3}^{ll}$ between the left camera at timestep k and k + 3.

Write the optimization problem for optimizing the relative motion estimates.