Filtering \& Edge detection

1 Numerical Exercises

1. Consider the following 1 D image pixel arrays A and B

$$
A=[3,1,2,1] \quad B=[7,7,6,4]
$$

(a) Compute the filter F, which was applied as convolution to the pixel array A resulting in the output B. Assume that zero padding was applied.

$$
B=A * F
$$

(b) Compute the filter F , which was applied as cross-correlation to the pixel array A resulting in the output B. Assume that zero padding was applied.

$$
B=A \otimes F
$$

(c) Compute the convolution signal C between the pixel array A and B. Use "reflect across edge" padding. The output should have the same size as the input signal.
2. What is the convolution output if filter F is applied to the following A matrix assuming zero padding?

$$
F=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
8 & 7 & 6 & 5 \\
4 & 3 & 2 & 1
\end{array}\right]
$$

3. Find the two 1D separable filters $a, b \in R^{3 \times 1}$ resulting in the following 2D filters such that:

$$
A=a b^{T}
$$

(a) $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{lll}2 & 4 & 2 \\ 1 & 2 & 1 \\ 2 & 4 & 2\end{array}\right]$
4. In the lecture you've seen the Prewitt filter which calculates a partial derivative. For example, the filter

$$
G_{x}=\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right]
$$

calculates the first partial derivative in the x direction. It approximates $\frac{\partial I}{\partial x}$. In a similar fashion, derive a filter $G_{x x}$ which approximates the second order partial derivative in $\times \frac{\partial^{2} I}{\partial x^{2}}$. The filter should be of size 1 x 3 .
(a) Derive the filter $G_{x x, c}$ using central differences (i.e. one pixel on either side of the current pixel)
(b) Derive the filter $G_{x x, f}$ using forward differences (i.e. using only information to the right side of the current pixel). The filter size may be larger than 1 x 3 .

