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1. Hardware Improvements

2. Big Data Available

3. Algorithmic Progress

What changed?
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Image Classification

Task of assigning an input image a label from a fixed set of categories.

[1] Slide adapted from CNNs for Visual Recognition (Stanford) Website


https://cs231n.github.io/

The semantic gap

What computers see compared to what we see
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Classification Challenges

Directly specifying how a category looks like is impossible.

Viewpoint variation Scale variation Deformation Occlusion

We need use a Data Driven Approach



Supervised Learning

Find function f(x, ) that imitates a ground truth signal

N numbers representin
f(x,0) = P :
" class scores

Predicted Ground truth, y;

0.1 1.0
0.7 0.0
Function parameters 0.0 0.0

pdate

10

or weights \ \
N Loss(f(x;,0),v;)



Machine Learning Keywords

1. Loss: Quantify how good 6 are
2. Optimization: The process of finding 6 that minimize the loss
3. Function: Problem modelling — Deep networks are highly non-linear f (x, 0)



Classifiers: K-Nearest neighbor

Features are represented in the descriptor space

] n ®
) [ _
Training
Training <> Test 9
examples [] example examples
from class 1 from class 2
= [ _
[]
u [ _

f(x,0) = label of the K training examples nearest to x

How fast is training? How fast is testing?
* 0(1), O(n)
What is a good distance metric ? What K should be used? ®

12



Classifiers: Linear

Find a linear function to separate the classes:

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

f(x,0) = sgn(6-x + b)
What is 6? What is the dimensionality of images?

13



Whatis f(x,0)?

Classifiers

Good classifier

‘ non-linear

Bad classifier (over fitting)

14



Biological Inspiration

f(x,0) = F(0x), F is a non-linear activation function (Step, ReLU, Sigmoid)

x1

wl
X2

W2
X3 w3

2 +~0
-
wn

XN

[1] Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 1958. PDF


https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf

Multi Layer Perceptron

put layer

input layer
hidden layer 1 hidden layer 2

7

Non-linear Activation functions (RelLU, sigmoid, etc.)

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF

16


https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf

Forward Propagation

Forward Pass

Loss(f (xi,0), y:)

input layer

hidden layer 1 hidden layer 2

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF 17


https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf

Optimization: Back-propagation
Compute gradients with respect to all parameters and perform gradient descent

Onew = o1a — uVgLoss

Loss(f (xi,0), y:)

input layer

hidden layer 1 hidden layer 2

e

Backward Pass

[1] Michael Nielsen, Neural Networks and Deep Learning, Chapter 2 PDF
[2] Dreyfus, Artificial Neural Networks, Back Propagation and the Kelley-Bryson Gradient Procedure, Journal of Guidance, 1989. PDF

18


https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://www.gwern.net/docs/ai/1990-dreyfus.pdf

Problems of fully connected network

Too many parameters — possible overfitting.

put layer

input layer
hidden layer 1 hidden layer 2

However, we are not using the fact that inputs are images!

19



Convolutional Neural Networks

[

N O

WEEE
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7 2 (2x2)+(0x6)+(2x2) +
\_/{ (-1x2)+(0x4)+(1x1) =-3
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// E//
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= |
; L —
lution filter L |
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/
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/
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BUSINESS INSIDER:

[1] LeCun, Bottou, Bengio, Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998. PDF

20


http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

Going Deep

Convolutional Fully-

Convolutional
I layer 2 Convolutional Locally- cqg;}g;: Eed
laver 3 connected

layer -
SO ﬁ o -:;;;Efrfﬁ’;; _5.55-4"5 -';.;';_2_55,;.::» S A
. Poolin Poolm
/ Poct Fully-
- lz(;}?ei*n layer layer connested  Output layer
Input layer layer 1

21



Why Deep?

1. Inspired by the human visual system
2. Learn multiple layers of transformations of input
3. Extract progressively more sophisticated representations

10 mm

22
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Outline
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Supervised Learning

* In supervised learning we assume have access to both input data or
images and ground truth labels.

* Networks trained with supervision usually perform best
* However, getting ground truth is hard, since it often must be hand-labelled

ground truth label

> L(f(?}, 0),y)

prediction

24



Supervised Learning

* Image Segmentation

[1] Long, Shelhamer, Fully Convolutional Networks for Semantic Segmentation, Conference of Computer Vision and Pattern Recognition
(CVPR), 2015. PDF

25


https://arxiv.org/pdf/1411.4038.pdf

Supervised Learning

* Image Captioning

"baseball player is throwing ball ‘woman is holding bunch of "black cat is sitting on top of
in game.”’ bananas.’ suitcase.”

"a young boy is holding a "a cat is sitting on a couch witha  "a woman holding a teddy bearin ~ "a horse is standing in the middle
baseball bat” remote control. front of a mirror” of aroad”

[1] Karpathy, Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions, Conference of Computer Vision and Pattern
Recognition (CVPR), 2015. PDF

26


https://arxiv.org/pdf/1412.2306.pdf

Supervised Learning

* Image Localization

Photo CC-BY-NC by steveke

[1] Weyland, Kostrikov, Philbin, PlaNet - Photo Geolocation with Convolutional Neural Networks, European Conference on Computer Vision
(ECCV), 2016. PDF

27


https://arxiv.org/pdf/1602.05314.pdf

* Introduction
e Supervised Learning

[° Unsupervised Learning ]

* Applications to Computer Vision
* Conclusions
* Machine Learning for Drones

Outline
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Unsupervised Learning

* In unsupervised learning we only have access to input data or images.

e Usually, these methods are more popular because they can use much
larger datasets that do not need to be manually labelled.

> L(f(x,0).%)
1

prediction

29



Unsupervised Learning

* Monocular Depth Estimation

L)
Ir I"l
& d

_[Il I b

[1] Godard, Mac Aodha, Brostow, Unsupervised Monocular Depth Estimation with Left-Right Consistency , Conference of Computer Vision and
Pattern Recognition (CVPR), 2017. PDF



https://arxiv.org/pdf/1609.03677.pdf

Unsupervised Learning

e Structure from Motion

(a) Training: unlabeled video clips.

Targel view Depth CNN

Nearby views PPose CNN

[1] Zhou, Brown, Snavely, Lowe, Unsupervised Learning of Depth and Ego-Motion from Video, Conference of Computer Vision and Pattern
Recognition (CVPR), 2017. PDF


https://arxiv.org/pdf/1609.03677.pdf

Unsupervised Learning

* Dense Optical Flow

Characteristic of the learned flow:

* Robustness against light changes (Census Transform)
e Occlusion handling (Bi-directional Flow)

* Smooth flow

»  Backward warp

8 |

12(x+wf)

m \ ’A‘ . “ m
Forward-backward
m h T “ m

| I (x +w?)

Smoothness loss Eg Consistency loss E¢ > Data loss Ep

[1] Meister, Hur, Roth, Unsupervised Learning of Optical Flow with a Bidirectional Census Loss, Association for the Advancement of Artificial
Intelligence (AAAI), 2018. PDF

32


https://arxiv.org/pdf/1711.07837.pdf

Unsupervised vs. Supervised learning

Supervised

Unsupervised

Performance

Usually better for the same dataset size.

Usually worse, but can outperform supervised
methods due to larger data availability.

Data availability

Low, due to manual labelling.

High, no labelling required.

Training

Simple, ground truth gives a strong
supervision signal.

Sometimes difficult, loss functions have to be
engineered to get good results.

Generalizability

Good, although sometimes the network
learns to blindly copy the labels provided,
leading to poor generalizability.

Better, since unsupervised losses often encode
the task in a more fundamental way.
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Place Recognition — NetVLAD

* Design an “image representation”
extractor f(1,0)

Geotagged image
database

Image representation space

35



NetVLAD — Method

* Mimic the classical pipeline with deep learning

;&" Y | "*\\‘\\\1 / - f \
i x, 2
AE - P 0
, _ boa i X/{’_,_,{f—f-"*. \ 0
) g ’ } » i‘! cr "‘.‘ » 1
£ | : I\ ///)\\\ 0
/‘\\\\ /// 1
\_\i/ | )
Image | Extract local features (SIFT) Aggregate (BoW, VLAD, FV) F(I)
Image Convolutional Neural Network NetVLAD layer
C T kD
l | _______soft-assignment_______ Lap
: [ conv (wib) | s ft ! L2 | vector
! L] 1x1xDxK SoTi-max | | normalization ||
| == = = =
| : | X - :
: , :W — , X .| VLAD core (c) —V»- intra- |
| *HxD map mterpreted as normalization |
: I : NxD local descriptors x |

Trainable pooling layer

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition,
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

36


https://arxiv.org/pdf/1511.07247.pdf

NetVLAD — Loss

* Triplet loss formulation

Dp: ‘ ‘Fg(ﬂ)- F9 (Mﬁ)‘ ‘2—> Matching samples

D?’l: ‘ ‘Fg FQ (‘)‘ ‘2—> Non matching samples

margin

t
Lo = max(D, gy + m — Dy (4),0)

samples

Disclaimer: The actual NetVlad loss is a slightly more complicated version of the one above

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition, 37
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF


https://arxiv.org/pdf/1511.07247.pdf

NetVLAD — Results

* Code, dataset and trained network online: give it a try here!

Top result

Green: Correct Red: Incorrect

Arandjelovi¢, Gronat, Torii, Pajdla, Sivic, NetVLAD: CNN architecture for weakly supervised place recognition,
Conference of Computer Vision and Pattern Recognition (CVPR), 2016. PDF

38


https://arxiv.org/pdf/1511.07247.pdf
http://www.di.ens.fr/willow/research/netvlad/

Novel View Synthesis — Neural Radiance Fields (NeRF)

Render new views from a set of images with corresponding poses.

reconstructed neural synthesized novel

images with poses . : . .
8 P radiance field viewpoints

A g @ g
AN RS
FARIEPR LN - N oA

R E R R TR SR g a3 B @
PG AEFEELFEN - ]
AR g g o
el eFEGE L ED |
SRR R R

< B2 Mgk WA

P EY Y R P

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European
Conference of Computer Vision (ECCV), 2020. PDF

[2] An overview and a reference for many follow-up works can be found here 39


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Method

Images are rendered by integrating transmittance and color along a ray
both of which are modelled with a multilayer perceptron

e
d |k

N

t
Position along ray: r(t) = 0+ td Transmittance: T(t) = exp g_j O'(r(s))ds
tf tn
Ray direction: d Color: C(7) :j (t)g(r(t))c(r(t), d)dt

tn
[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European
Conference of Computer Vision (ECCV), 2020. PDF

[2] An overview and a reference for many follow-up works can be found here

T Ray 2

Ray Distance

40


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Training

We train this multilayer perceptron by minimizing the rendering loss on the
input images, thereby effectively overfitting.

. . |
NeI.RF is stored in the backpropagation rendering loss
weights of the MLP!
r(t),d — - C,0 -g.1.
}7@ o \Q’ Ray'1 , 2
- —
Ty Ray 2 /-\ 2
H gt
2

Ray Distance

[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, European
Conference of Computer Vision (ECCV), 2020. PDF

[2] An overview and a reference for many follow-up works can be found here 4l


https://arxiv.org/pdf/2003.08934.pdf
https://www.matthewtancik.com/nerf

Neural Radiance Fields (NeRF): Results

Compared to previous approaches, NeRF generates highly photorealistic, and
consistent novel views.

42
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Conclusions

Deep learning, when applied in the correct circumstances, can achieve remarkable
performance on a variety of tasks by learning patterns from data

It works especially well when Tweaking Neural Net

e Sufficient data is available —
* All operations are differentiable

IS

Make sure to avoid the following pitfalls:
* Make sure to optimize the correct metric
* Test your model to an inch of its life

e Always monitor generalization Parameters.. . . .

44
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Additional Readings

* Nielsen, Neural Networks and Deep Learning, 2018. PDF

* Bengio, Practical Recommendations for Gradient-Based Training of Deep
Architectures, 2012. PDF

* Goodfellow, Bengio, Courville, Deep Learning, 2016 Website



https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://arxiv.org/pdf/1206.5533.pdf
https://www.deeplearningbook.org/
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The drone market is valued $24 billions today

Inspection Agriculture Transport Search and Rescue

o ¥ <

Source: Swiss Drone Industry Report 2021, p. 22:
https://drive.google.com/file/d/1ljesolDoUul-IVX14nqJRCT-wpEQB22 /view

47


https://drive.google.com/file/d/1ljesolDoUu1-IVX14nqJRCT-wpEQB22_/view

How are current commercial drones controlled?

* By a human pilot
* requires line of sight or video link
* requires a lot of training

* By an autopilot: autonomous navigation
* GPS: doesn’t work in GPS denied or degraded environments

 Lidar (e.g., Exyn): expensive, heavy, power hungry
* Cameras (e.g., Parrot, DJI, Skydio): cheap, lightweight, passive (i.e., low power)

48



Last 10-years Progress on Autonomous Vision-based Flight

SLAM map

2010 2020
EU SFLY Project (2009-2012) * Skydio (2018-2020),
* DIJI(2018-2020),
[Bloesch, ICRA 2010] * NASA Mars Helicopter (2020)
1t onboard goal-oriented
vision-based flight 1%t products in the market
(previous research focused or sent to another planet ©

. . . 49
on reactive navigation)


http://rpg.ifi.uzh.ch/docs/ICRA10_bloesch.pdf

Range [km]

12

Flying Fast to Fly Far

Ah

b |

5 10 15 20 25
Flight Speed [m/s]

Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, |EEE RAL, 2022. PDF


http://rpg.ifi.uzh.ch/docs/Arxiv21_Bauersfeld.pdf

Related Work: The Traditional Approach

Gi- = Ty -/P
: -
Images %‘
IMU Command
[ Perception } [ Planning } [ Control }
State Estimation Polynomial Trajectories PID Control
Mapping Trajectory Optimization Model Predictive Control

Reinforcement Learning
Iterative Learning Control

51



Related Work: The Problem

Bu S

Ok e ¥

- ¥

= e

Images
IMU Command
[ Perception } [ Planning } [ Control }
Mature Algorithms, but brittle Require strong assumptions Needs significant tuning,
during high speed due to motion about the environment (e.g, especially at high speed.
blur. CAD of scene).

I This fine-grained modularity makes the robotic system fragile:
H The modules do not interact with each other.

52



Related Work: End-to-End Learning

Images e
IMU Command
Neural Network
\
High-Level commands (forward, left, right) Low-Level commands (collective thrust, bodyrates)
I Don’t exploit the agile I Too sample inefficient to be used on a

A dynamics of the drone H physical drone. Only shown in Sim.

53



Our Research

v
2/
S Augment the traditional robotic cycle
& with learning-based methods.
2%
a5 |
Hypothesis:

Neural Networks can distill the knowledge of mature robotics algorithms
into computationally efficient and robust sensorimotor policies.

54



Projects

* Learning High-Speed Flight in the Wild

* NeuroBEM: Hybrid Aerodynamic Quadrotor Model

* Autonomous Drone Racing

55



Learning High-Speed Flight in the Wild

What does it take to achieve similar spatial awareness to a human with comparable sensing (and
computing) in the context of high-speed flight?

Human pilots fly under similar
assumptions!

Assumptions:

e No external sensing or computing.
e Test environment not seen in advance.

e Possibly dynamic environment.
Available Information:

e Visual Feedback (multiple cameras).

e Inertial Feedback.

e Anintention (e.g. fly straight).

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,

56
Science Robotics, 2021. PDF, Video, Code



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,

Science Robotics, 2021. PDF, Video, Code


http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Multiple-Hypothesis Action Prediction

We predict collision-free receding-horizon trajectories using a neural network with access to visual
and inertial observations, as well as a reference velocity.

Stereo Depth

n i
B w0,

| Pretrained
MobileNet-V3

M x 32

Velocity and Attitude - _ *

DG

Desired Direction ~— State Encoder % Shared Weights

?é; E M x 32
/

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code

58



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Training Procedure

We follow the privileged learning paradigm to train the network purely in simulation®.

1. Design an expert planner with access to full knowledge of the environment.
This expert uses a fine-grained point-cloud of the scene to find collision-free trajectories with
sampling.

2. Distill the knowledge of the expert into a deep neural network.
Basically do imitation learning from a set of expert demonstrations.

This simple idea hides quite some challenges!

* Impossible to collect a dataset of real-world demonstrations since it is not possible (or very expensive) to
have a perfect map of the environment.

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy

Controlled Experiments

Evaluate on the task of reaching a goal with no prior knowledge about
the scene.

Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza: Learning, High-Speed Flight in the Wild,
Science Robotics, 2021. PDF, Video, Code

61



http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://www.youtube.com/watch?v=m89bNn6RFoQ&feature=youtu.be
https://github.com/uzh-rpg/agile_autonomy




Drone Racing — A Proxy Task

* pass a sequence of
gates in the correct
order g

* fly a given number of
laps in minimum time

* be quicker than the
opponent

ARV
Xy
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352305056 senter
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g
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Our “Swift” Drone

* Jetson TX2

* Realsense
T265

* Images
e IMU/VIO

* Weight: 870g
e Thrust: 39N
* TWR: 4.5
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Localization

VIO Performance

e VIO drift accumulates over time
* no robust feature tracking

* IMU forward integration

Perception System

IMU 200 Hz VIO

100 Hz

e a—
VIO state

65



Localization

Gate Detections Perception System

* CNN-Unet detecting gates MU 200# VIO 100H:
* PnP for localization

e Kalman filter to fuse VIO+Gates

) VIO state

100 Hz

Kalman —
Gate Det, 30Hz Filter obs.

state
gate ‘
detections

66



RL Policy Training

Real-World Operation

previous action

Perception System

Policy
|MU 200 Hz V|0 100 Hz 100 Hz
MLP: 2 x 128
action
VIO state
100 Hz
Kalman J)
Gate Det. 30Hz Filter  obs. Real-World
g e Deployment
gate ‘
1 detections
Vr
e drone
state
—

1z

RL Training Loop

Simulation Environment

Reward

ground-truth
state

Y

Physics
poNel

1

—
Policy action
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RL Policy Training

Reward

e progress reward
prog __ Gate Gate
T: =1 (dt—l —di™")
e perception reward
perc . 4
Tt — /12 exp (’13 5cam
e command reward

Zrtcmd = Aglaf’| + Asla, —
Ar—q]

e crash penalty
—5.0, if crash

0, otherwise

rtcrash —

Training Details

* training with PPO
* 100M environment interactions
* 50 min wall-time
e 23 days sim-time

* value and policy network share
architecture

* network:
e 2 layer MLP
e 128 nodes per layer
* activation: LeakyRelLU
e optimizer: Adam






Real-World Operation

Perception System

IMU

VIO 100 Hz

Gate Det. 30Hz

s it good enough?

VIO state‘

100 Hz

Kalman
Filter

gate ‘
detections

previous action

Policy
100 Hz

MLP: 2 x 128

action

obs. Real-World
g e Deployment

drone
state

RL Training Loop

Simulation Environment

Reward

ground-truth
state

\4

Physics

Policy

action
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Residual Models

Unmodelled Effects

* Aerodynamic effects
e turbulence & downwash
e ground effect

* Mechanical effects

* soft dampers to shield IMU from motor
vibrations

e camera moves w.r.t. drone body

* Perception effects
* illumination & background changes

need policy-specific models

71



The Swift System

Real-World Operation RL Training Loop
Perception System previous action Simulation Environment
Policy .
IMU 200 Hz VIO 100 Hz 100 Hz Reward Physics
MLP: 2 x 128 A
action ' (" /Tv |
VIO state |
100 Hz ‘ el et |
ground-truth residual
Ka.lman Rt e Lk yE==---g lstate wrench T
Gate Det. 30 Hz Filter  obs. Real-World :
state § Perception Dynamics
Deployment § Residual ~ % ~ Residual
gate ‘ real-world A
1 detections experience
_______ , |observed
rr state .
: drone Policy action
state ’->
_
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Head-to-Head Race Results

Number of Races Best time-to-finish Wins Losses Win ratio
A. Vanover vs. Swift 9 17.956 4 5 0.44
T. Bitmatta vs. Swift 7 18.746 3 4 0.43
M. Schapper vs. Swift 9 21.160 3 6 0.33
Swift vs. human pilots 25 17.465 15 10 0.60
A. Vanover M. Schapper

T. Bitmatta
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Conclusions and Takeaways

Autonomous vision-based agile flight as a new research topic (at least 10 years to solve it)

- Pushes the limit of existing algorithms in extreme situations

- Raises fundamental problems for robotics research




Come over for projects in DL!

* Visit our webpage for projects! http://rpg.ifi.uzh.ch/student projects.php

Neural-based scene reconstruction and synthesis using event cameras
- Available

Description: Purely learning-based methods leveraging implicit scene
representations have shown impressive results in the reconstruction and synthesis
of complex scenes from just a few images, largely surpassing those of traditional
methods such as Structure-from-motion, photogrammetry, and image-based
rendering. Due to their recent introduction, their advantages over traditional
methods are still being explored in the field of computer vision. In particular, their

use in conjunction with event-based cameras, bio-inspired sensors with improved
latency, temporal resolution, and dynamic range, is still under-explored.

Data-driven Keypoint Extractor for Event Data - Available

Description: Neuromorphic cameras exhibit several amazing properties such as
robustness to HDR scenes, high-temporal resolution, and low power consumption.
Thanks to these characteristics, event cameras are applied for camera pose
estimation for fast motions in challenging scenes. A common technigue for camera
pose estimation is the extraction and tracking of keypoints on the camera plane. In
the case of event cameras, most existing keypoint extraction methods are

handcrafted manually. As a new promising direction, this project tackles the
keypoint extraction in a data-driven fashion based on recent advances in frame-based keypoint extractors.

Developing Smart Vision Assistive Technology - Available

Description: More than 200 million people are estimated to have moderate or
severe vision impairment in 2020. Their lack of autonomy limits the completion of
many daily living activities. In this project, we will focus on applying robotics
techniques, such as state estimation and path planning, to help visually impaired
people to navigate unknown and unstructured environments. Image credits:
Katzschmann et al. 2018.

Adversarial Robustness in Event-Based Neural Networks - Available

. Description: The robustness and reliability of neural networks are of utmost
Adversarial z R

i ’ ; G g B s ;
‘ JR ‘,ii' Events V2 il importance in several computer vision appllcatlons, espemally in automotive
f K | — | v A

applications where real-time predictions are crucial for safe and efficient operation.

Pedestrians detected No Pedestrian

In this context, event-based cameras, due to their unique property of capturing
changes in the scene, have shown impressive performance in low-latency prediction tasks such as object detection,
tracking, and optical flow prediction. However, in order to be widely adopted in the real world, the robustness and
reliability of such event-based networks have to be properly studied and verified. Until now, however, these aspects have
been overlooked in the event-based literature. We look for students with strong programming (Pyhton/Matlab) and
computer vision background. Additionally, knowledge in machine learning frameworks (pytorch, tensorflow) is required.
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Check out our student projects!

* Visit our webpage: https://rpg.ifi.uzh.ch/student projects.php

Learning Rapid UAV Exploration with Foundation Models - Aval

/—) [r\ :f_\‘
AT

Description: In this project, our objective is to efficiently explore unknown indoor
environments using UAVs. Recent research has demonstrated significant success
in integrating foundational models with robotic systems. Leveraging these
foundational models, the drone will employ learned semantic relationships from
large-world-scale data to actively explore and navigate through unknown
environments. While most prior research has focused on ground-based robots, this

project aims to investigate the potential of integrating foundational models with
aerial robots to introduce more agility and flexibility. Applicants should have a solid
understanding of mobile robot navigation, machine learning experience (PyTorch), and programming experience in C++
and Python.

Bayesian Optimization for Racing Aerial Vehicle MPC Tuning - Ava

Description: In recent years, model predictive control, one of the most popular
methods for controlling constrained systems, has benefitted from the

advancements of learning methods. Many applications showed the potential of the
cross fertilization between the two fields, i.e., autonomous drone racing,
autonomous car racing, etc. Most of the research efforts have been dedicated to learn and improve the model dynamics,
however, the controller tuning, which has a crucial importance, have not been studied much.

Description: In recent years, model predictive control, one of the most popular
methods for controlling constrained systems, has benefitted from the
advancements of learning methods. Many applications showed the potential of the
cross fertilization between the two fields, i.e., autonomous drone racing,
autonomous car racing, etc. Most of the research efforts have been dedicated to learn and improve the model dynamics,
however, the controller tuning, which has a crucial importance, have not been studied much.

Efficient Learning-aided Visual Inertial Odometry - Available
Description: Recent works have shown that deep learning (DL) techniques are
beneficial for visual inertial odometry (VIO). Different ways to include DL in VIO
have been proposed: end-to-end learning from images to poses, replacing
one/more block/-s of a standard VIO pipeline with learning-based solutions, and
include learning in a model-based VIO block. The project will start with a study of
the current literature on learning-based VIO/SLAM algorithms and an evaluation of
how/where/when DL is beneficial for VIO/SLAM. We will use the results of this
evaluation to enhance a current state-of-the-art VIO pipeline with DL, focusing our attention on algorithm efficiency at
inference time. The developed learning-aided VIO pipeline will be compared to existing state-of-the-art model-based
algorithms, with focus on robustness, and deployed on embedded platforms (Nvidia Jetson TX2 or Xavier).
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