
Vision Algorithms for Mobile Robotics

Lecture 09
Multiple View Geometry 3

Davide Scaramuzza

http://rpg.ifi.uzh.ch
1

http://rpg.ifi.uzh.ch/

Lab Exercise 7 – Today

Implement the P3P algorithm and RANSAC.

Additionally, we will outline the mini projects

2

Outline

• Robust Structure from Motion

• Bundle Adjustment

3

Robust Estimation

• Matched points are usually contaminated by outliers (i.e., wrong image matches).

4
Image 1 Image 2

Robust Estimation

• Matched points are usually contaminated by outliers (i.e., wrong image matches).
• Causes of outliers are:

• Repetitive features (i.e., features with the same appearance)
• Geometric and photometric changes to which the descriptor is not invariant
• Large image noise
• Occlusions
• Moving objects
• Image or motion blur

• For reliable and accurate visual odometry, outliers must be removed
• This is the task of Robust Estimation

5
Image 1 Image 2

Effect of Outliers on Visual Odometry

6

Before removing the outliers

After removing the outliers

Expectation Maximization (EM) algorithm

• EM is a simple method for model fitting in the presence of outliers (very noisy points or
wrong data)

• It can be applied to all sorts of problems where the goal is to estimate the parameters of
a model from the data (e.g., camera calibration, Structure from Motion, DLT, PnP, P3P,
Homography, etc.)

• Let’s review EM applied to the line fitting problem

7

[1] Dellaert, The expectation maximization algorithm, Georgia Institute of Technology, 2002. PDF (explains the original papers below)
[2] Hartley, Maximum likelihood estimation from incomplete data, Biometrics, 1958.
[3] Dempster, Laird, Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 1977.

https://www.researchgate.net/profile/Frank-Dellaert-2/publication/2875333_The_Expectation_Maximization_Algorithm/links/53fc5e180cf2dca8ffff14ca/The-Expectation-Maximization-Algorithm.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

EM applied to line fitting

8

EM applied to line fitting

9

1. Estimate line parameters that fit all data points

(e.g., using least-square: 𝑚𝑖𝑛σ𝑟𝑖
2, where 𝑟𝑖 is

the point-to-line distance)

EM applied to line fitting

10

1. Estimate line parameters that fit all data points

(e.g., using least-square: 𝑚𝑖𝑛σ𝑟𝑖
2, where 𝑟𝑖 is

the point-to-line distance)

2. Calculate residual error 𝑟𝑖 for each data point and

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing
the likelihood that such assignment is correct
(estimates the Expectation)

EM applied to line fitting

11

1. Estimate line parameters that fit all data points

(e.g., using least-square: minσ 𝑟𝑖
2, where 𝑟𝑖 is

the point-to-line distance)

2. Calculate residual error 𝑟𝑖 for each data point and

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing
the likelihood that such assignment is correct
(estimates the Expectation)

3. Re-estimate line parameters (e.g., using

weighted least-squares: minσ𝑤𝑖𝑟𝑖
2)

(Maximization Step)

EM applied to line fitting

12

1. Estimate line parameters that fit all data points

(e.g., using least-square: minσ 𝑟𝑖
2, where 𝑟𝑖 is

the point-to-line distance)

2. Calculate residual error 𝑟𝑖 for each data point and

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing
the likelihood that such assignment is correct
(estimates the Expectation)

3. Re-estimate line parameters (e.g., using

weighted least-squares: minσ𝑤𝑖𝑟𝑖
2)

(Maximization Step)

4. Iterate 2 and 3 till convergence

5. Select as inliers the data points with weight
higher than a threshold

Problem of EM algorithm

Very sensitive to initial condition:

• This is because EM selects the initial condition by minimizing the sum of squared
residuals σ𝑟𝑖

2.

• While this is a convex function, the result is strongly influenced by a few large error values
(e.g., outliers).

• Thus, EM converges to the wrong solution if initial condition is far from the true one

• Alternative options:

• GNC algorithm

• RANSAC algorithm

13

Graduated Non-Convexity algorithm (GNC)

Idea: optimize a surrogate function σ𝜌𝜇(𝑟𝑖), where µ
controls the amount of non-convexity.

• Start by solving the non-robust convex optimization function (µ → 0,
i.e., least squares)

• At each iteration, gradually increase non-convexity (µ →∞) and
recompute weights 𝑤𝑖 till we achieve the desired level of robustness.

• It is shown in [1] to be robust up to 90% of outliers with five times
fewer iterations than RANSAC.

• However, RANSAC can cope with even more than 90% outliers.

14

[1] Yang, Antonante, Tzoumas, Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection,
International Conference on Robotics and Automation (ICRA), 2020. Best paper award in Robot Vision. PDF. Code.
[2] Blake, Zisserman, Visual Reconstruction. MIT Press, Cambridge, Massachusetts, 1987.

Won’t be asked
at the exam

☺

https://arxiv.org/pdf/1909.08605
https://github.com/MIT-SPARK/GNC-and-ADAPT

RANSAC (RAndom SAmple Consensus)

• RANSAC is the standard method for model fitting in the presence of outliers (very noisy points or wrong
data)

• It is non-deterministic: you get a different result everytime you run it

• It is not sensitive to the initial condition, and does not get stuck in local maxima

• It can be applied to all sorts of problems where the goal is to estimate the parameters of a model from the
data (e.g., camera calibration, Structure from Motion, DLT, PnP, P3P, Homography, etc.)

• Let’s review RANSAC for line fitting and see how we can use it to do Structure from Motion

15

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image
analysis and automated cartography. Graphics and Image Processing, 1981. PDF.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf

RANSAC

16

RANSAC

17

1. Select a sample of 2 points at random

RANSAC

18

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

RANSAC

19

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

RANSAC

20

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

RANSAC

21

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝒌 times

RANSAC

22

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝒌 times

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝑘 times

6. Select the set with the maximum number of
inliers obtained within 𝒌 iterations

RANSAC

23

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝑘 times

6. Select the set with the maximum number of
inliers obtained within 𝒌 iterations

7. Finally, calculate the model parameters using
all the inliers

NB: RANSAC is non deterministic: every time you
run it you may get a different result (due to the
random hypotheses’ generation process).
Conversely, EM and GNC are deterministic

RANSAC

24

RANSAC

• How many iterations does RANSAC need?

• Ideally: check all possible combinations of 2 points in a dataset of N points.

• Number of all pairwise combinations:
𝑁 𝑁−1

2
• computationally unfeasible if 𝑁 is too large.

Example, for 1000 points you need to check all 1000×999/2 ≅ 500’000 possibilities!

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?

• We will see that it is enough to check a subset of all combinations if we have a rough estimate of the
percentage of inliers in our dataset

• This can be done in a probabilistic way

25

RANSAC

• How many iterations does RANSAC need?
• 𝑵:= total number of data points

• 𝒘 := number of inliers /𝑁→𝒘: fraction of inliers in the dataset →𝒘 = 𝑃(selecting an inlier-point out of the dataset)

• Assumption: the 2 points necessary to estimate a line are selected independently

• →𝒘 𝟐= 𝑃(both selected points are inliers)

• → 𝟏 − 𝒘 𝟐 = 𝑃(at least one of these two points is an outlier)

• Let 𝒌 be the number of RANSAC iterations executed so far

• → (𝟏 − 𝒘 𝟐) 𝒌 = 𝑃(RANSAC never selected two points that are both inliers after 𝒌 iterations)

• Let 𝒑 ∶= Probability to have selected at least two points that are both inliers after 𝒌 iterations. We call 𝒑 Probability of Success

• →𝟏 − 𝒑 = (𝟏 − 𝒘 𝟐) 𝒌 and therefore:

26

)1log(

)1log(
2

w

p
k

−

−
=

RANSAC

• How many iterations does RANSAC need?

→ knowing the fraction of inliers 𝒘, after k iterations we will have a probability 𝒑 of finding a set of points free of outliers

• Example: if we want a probability of success 𝒑 = 𝟗𝟗% and we know that 𝒘 = 𝟓𝟎%→ 𝒌 = 16 iterations

• these are significantly fewer than the number of all possible combinations (500,000)!

• Notice: the number of data points does not influence the minimum number of iterations k, only 𝒘 does!

• In practice we only need a rough estimate of 𝒘. More advanced variants of RANSAC estimate the fraction of inliers and
adaptively update it at every iteration (how?)

27

)1log(

)1log(
2

w

p
k

−

−
=

RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points from this line

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

28

)1log(

)1log(
2

w

p
k

−

−
=

RANSAC applied to General Model Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

29

)1log(

)1log(
s

w

p
k

−

−
=

RANSAC applied to General Model Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

30

))1(1log(

)1log(
s

p
k

−−

−
=

NB: The formula is more
commonly written

as a function of the fraction of
outliers 𝜺

The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients:

1. What’s the model in SFM?

2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can we
define a distance metric that measures how well a point fits the model?

31

Answers

1. What’s the model in SFM?
• The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for uncalibrated cameras)

• Alternatively, R and T

2. What’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points for calibrated cameras

2. However, if we use the 8-point algorithm, then 8 is the minimum (for both calibrated or uncalibrated cameras)

3. How do we compute the distance of a point from the model?
1. Algebraic error

2. Directional error

3. Epipolar line distance

4. Reprojection error

32

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

33

Image 1 Image 2

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

34

Image 1

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

35

Image 1

1. Randomly select 8 point
correspondences and compute the
model

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

36

Image 1

1. Randomly select 8 point
correspondences and compute the
model

2. Compute distance of all other points
from this model and count the inliers

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

37

Image 1

1. Randomly select 8 point
correspondences and compute the
model

2. Compute distance of all other points
from this model and count the inliers

3. Repeat from 1

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

38

Image 1

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

39

Image 1

1. Randomly select 8 point
correspondences and compute the
model

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

40

Image 1

1. Randomly select 8 point
correspondences and compute the
model

2. Compute distance of all other points
from this model and count the inliers

Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote
the motion vectors of the features

41

Image 1

1. Randomly select 8 point
correspondences and compute the
model

2. Compute distance of all other points
from this model and count the inliers

3. Repeat from 1 for 𝒌 times

))1(1log(

)1log(
8

−−

−
=

p
k

RANSAC iterations 𝒌 vs. 𝒔

𝒌 increases exponentially with the number of points 𝒔 estimate the model

Let’s assume 𝒑 = 99% and 𝜺 = 50% (fraction of outliers):

• 8-point RANSAC

• 𝒔 = 8 points (8-point algorithm)

• 5-point RANSAC

• 𝒔 = 5 points (5-point algorithm)

• 2-point RANSAC (e.g., line fitting)

• 𝒔 = 2 points

42

iterations
p

k 1177
))1(1log(

)1log(
8

=
−−

−
=



iterations
p

k 145
))1(1log(

)1log(
5

=
−−

−
=



iterations
p

k 16
))1(1log(

)1log(
2

=
−−

−
=

 𝑠

𝑘

RANSAC iterations 𝒌 vs. 𝜺

𝒌 is increases exponentially with the fraction of outliers 𝜺:

43

These plots were computed
assuming 𝑝 = 99%

RANSAC iterations

• As observed, 𝒌 is exponential with the number of points 𝒔 necessary to estimate the model

• The 8-point algorithm is extremely simple and was very successful; however, it requires more than 1177
iterations

• Because of this, there has been a large interest by the research community in using smaller motion
parameterizations (i.e., smaller 𝒔)

• The first efficient solution to the minimal-case solution (5-point algorithm) took almost a century (Kruppa
1913 → Nister 2004)

• The 5-point RANSAC (Nister 2004) only requires 145 iterations; however:

• The 5-point algorithm can return up to 10 solutions of E (worst case scenario)

• The 8-point algorithm only returns a unique solution of E

44

Can we use less than 5 points?

Yes, if you use motion constraints!

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry

45















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

0
12
=pEp

T
Epipolar constraint

RT][E


= Essential matrix

𝑥

𝑦

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry

46















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

















−

−=


0cossin

cos00

sin00

][







T

𝑥

𝑦

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry

47















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

==


RTE][















 −



















−

−

100

0cossin

0sincos

0cossin

cos00

sin00











𝑥

𝑦

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry

48















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

==


RTE][

()

()

() () 















−−−

−

0cossin

cos00

sin00







“2-Point RANSAC”, Ortin & Montiel, Indoor robot motion based on monocular images, Robotica, 2001. PDF.

𝑥

𝑦

http://webdiis.unizar.es/~josemari/ortin_robotica_2001.pdf

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Constraint:

49















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

“2-Point RANSAC”, Ortin & Montiel, Indoor robot motion based on monocular images, Robotica, 2001. PDF.

𝑥

𝑦

0
12
=pEp

T

−𝑢1𝑠𝑖𝑛 𝜙 − 𝜃 +𝑣1 cos 𝜙 − 𝜃 + 𝑢2 sin 𝜙 − 𝑣2 cos 𝜙 = 0

http://webdiis.unizar.es/~josemari/ortin_robotica_2001.pdf

Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Observe that 𝜌 was cancelled out. Since only 𝜃, 𝜑 can be determined and every point correspondence
provides one scalar equation, then 2 point correspondences are sufficient to estimate  and 𝜑

50















 −

=

100

0cossin

0sincos





R

















=

0

sin

cos





T

“2-Point RANSAC”, Ortin & Montiel, Indoor robot motion based on monocular images, Robotica, 2001. PDF.

𝑥

𝑦

−𝑢1𝑠𝑖𝑛 𝜙 − 𝜃 +𝑣1 cos 𝜙 − 𝜃 + 𝑢2 sin 𝜙 − 𝑣2 cos 𝜙 = 0

http://webdiis.unizar.es/~josemari/ortin_robotica_2001.pdf

Less than 2 points?

• Can we use less than 2 point correspondences?

• Yes, if we exploit wheeled vehicles with non-holonomic constraints

51

Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

52

Example of Ackerman steering principle Locally-planar circular motion

Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

𝜑 = 𝜃/2 => only 1 DoF (θ); thus, only 1 point correspondence is sufficient [Scaramuzza, 2011]

53

Example of Ackerman steering principle Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic
Constraints, International Journal of Computer Vision, 2011. PDF.

This is the smallest parameterization possible and results in

the most efficient algorithm for removing outliers

http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf

Planar & Circular Motion (e.g., cars)

Let’s compute the Epipolar Geometry

54

Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic
Constraints, International Journal of Computer Vision, 2011. PDF.















 −

=

100

0cossin

0sincos





R























=

0
2

sin

2
cos







T

0
12
=pEp

T
Epipolar constraint

RT][E


= Essential matrix

http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf

Planar & Circular Motion (e.g., cars)

Let’s compute the Epipolar Geometry

55

Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic
Constraints, International Journal of Computer Vision, 2011. PDF.















 −

=

100

0cossin

0sincos





R























=

0
2

sin

2
cos







T

0
12
=pEp

T
Epipolar constraint

RT][E


= Essential matrix

100

0cossin

0sincos

0
2

cos
2

sin

2
cos00

2
sin00

][E =















 −

























−

−==


















RT























− 0
2

cos
2

sin

2
cos00

2
sin00













Notice that 𝜌 can be cancelled out

= 0
12

pEp
T 0)(

2
cos)(

2
sin

1212
=−








++








vvuu
















+

−
−=

−

12

121
tan2

uu

vv


http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf

1-Point RANSAC Algorithm

56

Only 1 iteration!

The most efficient algorithm for

removing outliers (<1ms)

Compute 𝜃 for
every point

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF















+

−
−=

−

12

121
tan2

uu

vv


1-Point RANSAC Algorithm

57

Only 1 iteration!

The most efficient algorithm for

removing outliers (<1ms)

Compute θ for
every point

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF















+

−
−=

−

12

121
tan2

uu

vv


Comparison of RANSAC algorithms

58

8-Point RANSAC
[Longuet-Higgins’81]

5-Point RANSAC
[Nister’04]

2-Point RANSAC
[Ortin’01]

1-Point RANSAC
[Scaramuzza’11]

Numb. of
iterations

> 1177 >145 >16 =1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Fraction of outliers in the data (%)

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s
,

N

%99 use typically we where
))1(1log(

)1log(
=

−−

−
= p

p
N

s


5-point
2-point

1-point

Visual Odometry with 1-Point RANSAC

59
Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic

Constraints, International Journal of Computer Vision, 2011. PDF.

http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf

Latest and Greatest ☺

60

Differentiable RANSAC

• RANSAC is not differentiable since it relies on selecting a hypothesis based on maximizing the number of
inliers (i.e., argmax).

• DSAC shows how sample consensus can be used in a differentiable way

• This enables the use of sample consensus in a variety of learning tasks.

61

Choose the best
based on score

Randomly sample
based on score

E. Brachmann et al., DSAC - Differentiable RANSAC for Camera Localization, International Conference on Computer Vision and Pattern Recognition (CVPR),
2017. PDF. Video.

https://arxiv.org/abs/1611.05705
https://youtu.be/YWSGq7CUSRA

Deep Fundamental Matrix Estimation

• Input: two sets of noisy local features (coordinates + descriptors) contaminated by outliers

• Output: fundamental matrix

• Idea: solve a weighted homogeneous least-squares problem, where robust weights are estimated using
deep networks

• Robust: handles extreme wide-baseline image pairs

62

Top-bottom as image-pair

Red: inlier correspondences
Blue: outlier correspondences

Epipolar lines

Green: estimated
Blue: ground-truth

Ranftl, Koltun, Deep Fundamental Matrix Estimation, European Conference on Computer Vision (ECCV), 2018. PDF.

http://vladlen.info/papers/deep-fundamental.pdf

SuperGlue: Learning Feature Matching with Graph Neural Networks

• Input: two sets of noisy local features (coordinates + descriptors) contaminated by outliers

• Output: strong & outlier-free matches

• Combines deep learning with classical optimization (Graph Neural Networks, Attention, Optimal Transport

• Robust: handles extreme wide-baseline image pairs

63
Sarlin, DeTone, Malisiewicz, Rabinovich, SuperGlue: Learning Feature Matching with Graph Neural Networks,

International Conference on Computer Vision and Pattern Recognition (CVPR), 2020. PDF. Code.

https://arxiv.org/pdf/1911.11763
https://github.com/magicleap/SuperGluePretrainedNetwork

Outline

• Robust Structure from Motion

• Bundle Adjustment

64

2-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and motion 𝑹, 𝑻

• Commonly used after least square estimation of 𝑅 and 𝑇 (e.g., after 8- or 5-point algorithm)

• Optimizes 𝑃𝑖 , 𝑅, 𝑇 by minimizing the Sum of Squared Reprojection Errors:

65C1
C2

𝑝1
𝑖 𝑝2

𝑖

𝑷𝒊

Reprojected point
𝜋 𝑃, 𝐾1, 𝐼, 0

Camera 1 reprojection error
𝑝1 − 𝜋 𝑃,𝐾1, 𝐼, 0

Reprojected point
𝜋 𝑃, 𝐾2, 𝑅, 𝑇

Camera 2 reprojection error
𝑝2 − 𝜋 𝑃, 𝐾2, 𝑅, 𝑇

𝑹, 𝑻

𝑃𝑖 , 𝑅, 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝑅,𝑇෍

𝑖=1

𝑁

𝑝1
𝑖 − 𝜋 𝑃𝑖 , 𝐾1, 𝐼, 0

2
+ 𝑝2

𝑖 − 𝜋 𝑃𝑖 , 𝐾2, 𝑅, 𝑇
2

Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle adjustment – A modern
synthesis, Vision Algorithms: Theory and Practice, Springer, 2000. PDF.

https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf

2-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and motion 𝑹, 𝑻

• Commonly used after least square estimation of 𝑅 and 𝑇 (e.g., after 8- or 5-point algorithm)

• Optimizes 𝑃𝑖 , 𝑅, 𝑇 by minimizing the Sum of Squared Reprojection Errors:

Good to know:

• Like in the formula, we typically assume the first camera as the world frame, but it’s arbitrary

• Occasionally, the residual terms are weighted

• In order to not get stuck in local minima, the initial values of 𝑃𝑖 , 𝑅, 𝑇 should be close to the optimum

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton to local minima)

• Can be modified to also optimize the intrinsic parameters

• Implementation details in Exercise 9

66

𝑃𝑖 , 𝑅, 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝑅,𝑇෍

𝑖=1

𝑁

𝑝1
𝑖 − 𝜋 𝑃𝑖 , 𝐾1, 𝐼, 0

2
+ 𝑝2

𝑖 − 𝜋 𝑃𝑖 , 𝐾2, 𝑅, 𝑇
2

What is the key difference with the reprojection error minimization seen
in previous lectures (Lecture 3, slide 21, and Lecture 7, slide 26)?

𝑛-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and camera poses 𝐶1 = 𝐼, 0 , … , 𝐶𝑘 = [𝑅𝑘 , 𝑇𝑘]

• Minimizes the Sum of Squared Reprojection Errors across all views

• NB: we assume the first camera as the world frame,
that’s why 𝐶1 = 𝐼, 0

67

𝑃𝑖 , 𝐶2, … , 𝐶𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶2,…,𝐶𝑛 ෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

𝑝𝑘
𝑖 − 𝜋 𝑃𝑖, 𝐾𝑘, 𝐶𝑘

2

Ck

C1
C2

𝑝1
𝑖 𝑝2

𝑖

𝑷𝒊

Reprojected point
𝜋 𝑃, 𝐾1, 𝐶1

Reprojected point
𝜋 𝑃, 𝐾2, 𝐶2 Reprojected point

𝜋 𝑃, 𝐾2, 𝐶𝑘

Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle adjustment – A modern
synthesis, Vision Algorithms: Theory and Practice, Springer, 2000. PDF.

https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf

Huber and Tukey Norms

• To prevent that large reprojection errors can negatively impact the optimization, a more robust norm ρ
is used instead of the 𝐿2:

• ρ is a robust cost function (Huber or Tukey) to alleviate the contribution of wrong matches:

• Huber norm:

• Tukey norm:

68

𝑃𝑖 , 𝐶2, … , 𝐶𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶2,…,𝐶𝑛 ෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

ρ 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾𝑘 , 𝐶𝑘

𝑥2 if 𝑥 ≤ 𝑘
𝑘 2 𝑥 − 𝑘 if 𝑥 ≥ 𝑘

ρ 𝑥 =

α2 if 𝑥 ≥ α

α2 1 − 1 −
𝑥

α

2 3

if 𝑥 ≤ α
ρ 𝑥 =

These formulas are not asked at the exam
but their plots and meaning is asked ☺

Things to remember

• EM algorithm

• RANSAC algorithm and its application to SFM

• 8 vs 5 vs 1 point RANSAC, pros and cons

• Bundle Adjustment

69

Reading

• CH. 8.1.4, 8.3.1, 11.3 of Szeliski book, 2nd edition

• Ch. 14.2 of Corke book

70

Understanding Check

Are you able to answer the following questions?
• What are the causes of outliers?
• What effects may outliers have on VO?
• How does EM work? What are the issues?
• Why do we need RANSAC?
• What is the theoretical maximum number of combinations to explore?
• After how many iterations can RANSAC be stopped to guarantee a given success probability?
• What is the trend of RANSAC vs. iterations, vs. the fraction of outliers, vs. the number of points to estimate the model?
• How do we apply RANSAC to the 8-point algorithm, DLT, P3P?
• How can we reduce the number of RANSAC iterations for the SFM problem? (1- and 2-point RANSAC)
• Bundle Adjustment. Mathematical expression and illustration. Tukey and Huber norms.

71

	Slide 1: Vision Algorithms for Mobile Robotics Lecture 09 Multiple View Geometry 3
	Slide 2: Lab Exercise 7 – Today
	Slide 3: Outline
	Slide 4: Robust Estimation
	Slide 5: Robust Estimation
	Slide 6: Effect of Outliers on Visual Odometry
	Slide 7: Expectation Maximization (EM) algorithm
	Slide 8: EM applied to line fitting
	Slide 9: EM applied to line fitting
	Slide 10: EM applied to line fitting
	Slide 11: EM applied to line fitting
	Slide 12: EM applied to line fitting
	Slide 13: Problem of EM algorithm
	Slide 14: Graduated Non-Convexity algorithm (GNC)
	Slide 15: RANSAC (RAndom SAmple Consensus)
	Slide 16: RANSAC
	Slide 17: RANSAC
	Slide 18: RANSAC
	Slide 19: RANSAC
	Slide 20: RANSAC
	Slide 21: RANSAC
	Slide 22: RANSAC
	Slide 23: RANSAC
	Slide 24: RANSAC
	Slide 25: RANSAC
	Slide 26: RANSAC
	Slide 27: RANSAC
	Slide 28: RANSAC applied to Line Fitting
	Slide 29: RANSAC applied to General Model Fitting
	Slide 30: RANSAC applied to General Model Fitting
	Slide 31: The Three Key Ingredients of RANSAC
	Slide 32: Answers
	Slide 33: Example: 8-point RANSAC applied to SFM
	Slide 34: Example: 8-point RANSAC applied to SFM
	Slide 35: Example: 8-point RANSAC applied to SFM
	Slide 36: Example: 8-point RANSAC applied to SFM
	Slide 37: Example: 8-point RANSAC applied to SFM
	Slide 38: Example: 8-point RANSAC applied to SFM
	Slide 39: Example: 8-point RANSAC applied to SFM
	Slide 40: Example: 8-point RANSAC applied to SFM
	Slide 41: Example: 8-point RANSAC applied to SFM
	Slide 42: RANSAC iterations bold italic k vs. bold italic s
	Slide 43: RANSAC iterations bold italic k vs. bold italic script epsilon
	Slide 44: RANSAC iterations
	Slide 45: Planar Motion
	Slide 46: Planar Motion
	Slide 47: Planar Motion
	Slide 48: Planar Motion
	Slide 49: Planar Motion
	Slide 50: Planar Motion
	Slide 51: Less than 2 points?
	Slide 52: Planar & Circular Motion (e.g., cars)
	Slide 53: Planar & Circular Motion (e.g., cars)
	Slide 54: Planar & Circular Motion (e.g., cars)
	Slide 55: Planar & Circular Motion (e.g., cars)
	Slide 56: 1-Point RANSAC Algorithm
	Slide 57: 1-Point RANSAC Algorithm
	Slide 58: Comparison of RANSAC algorithms
	Slide 59: Visual Odometry with 1-Point RANSAC
	Slide 60: Latest and Greatest 
	Slide 61: Differentiable RANSAC
	Slide 62: Deep Fundamental Matrix Estimation
	Slide 63: SuperGlue: Learning Feature Matching with Graph Neural Networks
	Slide 64: Outline
	Slide 65: 2-View Bundle Adjustment (BA)
	Slide 66: 2-View Bundle Adjustment (BA)
	Slide 67: n-View Bundle Adjustment (BA)
	Slide 68: Huber and Tukey Norms
	Slide 69: Things to remember
	Slide 70: Reading
	Slide 71: Understanding Check

