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Lab Exercise 7 – Today

Implement the P3P algorithm and RANSAC.

Additionally, we will outline the mini projects
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Outline

• Robust Structure from Motion

• Bundle Adjustment
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Robust Estimation

• Matched points are usually contaminated by outliers (i.e., wrong image matches).
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Robust Estimation

• Matched points are usually contaminated by outliers (i.e., wrong image matches). 
• Causes of outliers are:

• Repetitive features (i.e., features with the same appearance)
• Geometric and photometric changes to which the descriptor is not invariant
• Large image noise
• Occlusions
• Moving objects
• Image or motion blur

• For reliable and accurate visual odometry, outliers must be removed 
• This is the task of Robust Estimation
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Effect of Outliers on Visual Odometry
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Before removing the outliers

After removing the outliers



Expectation Maximization (EM) algorithm

• EM is a simple method for model fitting in the presence of outliers (very noisy points or 
wrong data)

• It can be applied to all sorts of problems where the goal is to estimate the parameters of 
a model from the data (e.g., camera calibration, Structure from Motion, DLT, PnP, P3P, 
Homography, etc.)

• Let’s review EM applied to the line fitting problem
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[1] Dellaert, The expectation maximization algorithm, Georgia Institute of Technology, 2002. PDF (explains the original papers below)
[2] Hartley, Maximum likelihood estimation from incomplete data, Biometrics, 1958.
[3] Dempster, Laird, Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 1977.

https://www.researchgate.net/profile/Frank-Dellaert-2/publication/2875333_The_Expectation_Maximization_Algorithm/links/53fc5e180cf2dca8ffff14ca/The-Expectation-Maximization-Algorithm.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19


EM applied to line fitting
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EM applied to line fitting
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1. Estimate line parameters that fit all data points 

(e.g., using least-square: 𝑚𝑖𝑛σ𝑟𝑖
2, where 𝑟𝑖 is 

the point-to-line distance) 



EM applied to line fitting
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1. Estimate line parameters that fit all data points 

(e.g., using least-square: 𝑚𝑖𝑛σ𝑟𝑖
2, where 𝑟𝑖 is 

the point-to-line distance) 

2. Calculate residual error 𝑟𝑖 for each data point and 

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing 
the likelihood that such assignment is correct 
(estimates the Expectation)



EM applied to line fitting
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1. Estimate line parameters that fit all data points 

(e.g., using least-square: minσ 𝑟𝑖
2, where 𝑟𝑖 is 

the point-to-line distance) 

2. Calculate residual error 𝑟𝑖 for each data point and 

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing 
the likelihood that such assignment is correct 
(estimates the Expectation)

3. Re-estimate line parameters (e.g., using 

weighted least-squares: minσ𝑤𝑖𝑟𝑖
2) 

(Maximization Step)



EM applied to line fitting
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1. Estimate line parameters that fit all data points 

(e.g., using least-square: minσ 𝑟𝑖
2, where 𝑟𝑖 is 

the point-to-line distance) 

2. Calculate residual error 𝑟𝑖 for each data point and 

assign it a weight (e.g., 𝑤𝑖 = 𝑒−𝑟𝑖
2

representing 
the likelihood that such assignment is correct 
(estimates the Expectation)

3. Re-estimate line parameters (e.g., using 

weighted least-squares: minσ𝑤𝑖𝑟𝑖
2) 

(Maximization Step)

4. Iterate 2 and 3 till convergence 

5. Select as inliers the data points with weight 
higher than a threshold



Problem of EM algorithm

Very sensitive to initial condition:

• This is because EM selects the initial condition by minimizing the sum of squared 
residuals σ𝑟𝑖

2. 

• While this is a convex function, the result is strongly influenced by a few large error values 
(e.g., outliers).

• Thus, EM converges to the wrong solution if initial condition is far from the true one

• Alternative options:

• GNC algorithm

• RANSAC algorithm
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Graduated Non-Convexity algorithm (GNC)

Idea: optimize a surrogate function σ𝜌𝜇(𝑟𝑖), where µ
controls the amount of non-convexity.

• Start by solving the non-robust convex optimization function (µ → 0, 
i.e., least squares) 

• At each iteration, gradually increase non-convexity (µ →∞) and 
recompute weights 𝑤𝑖 till we achieve the desired level of robustness.

• It is shown in [1] to be robust up to 90% of outliers with five times 
fewer iterations than RANSAC.

• However, RANSAC can cope with even more than 90% outliers.
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[1] Yang, Antonante, Tzoumas, Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection, 
International Conference on Robotics and Automation (ICRA), 2020. Best paper award in Robot Vision. PDF. Code.
[2] Blake, Zisserman, Visual Reconstruction. MIT Press, Cambridge, Massachusetts, 1987.

Won’t be asked 
at the exam

☺

https://arxiv.org/pdf/1909.08605
https://github.com/MIT-SPARK/GNC-and-ADAPT


RANSAC (RAndom SAmple Consensus)

• RANSAC is the standard method for model fitting in the presence of outliers (very noisy points or wrong 
data)

• It is non-deterministic: you get a different result everytime you run it

• It is not sensitive to the initial condition, and does not get stuck in local maxima

• It can be applied to all sorts of problems where the goal is to estimate the parameters of a model from the 
data (e.g., camera calibration, Structure from Motion, DLT, PnP, P3P, Homography, etc.)

• Let’s review RANSAC for line fitting and see how we can use it to do Structure from Motion
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M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image 
analysis and automated cartography. Graphics and Image Processing, 1981. PDF.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf


RANSAC
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RANSAC
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1. Select a sample of 2 points at random



RANSAC
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1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample



RANSAC
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1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point



RANSAC
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1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis



RANSAC

21

1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝒌 times



RANSAC
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1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝒌 times



1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝑘 times

6. Select the set with the maximum number of 
inliers obtained within 𝒌 iterations

RANSAC
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1. Select a sample of 2 points at random

2. Calculate model parameters that fit the data in 
the sample

3. Calculate the residual error for each data point

4. Select data that support current hypothesis

5. Repeat from step 1 for 𝑘 times

6. Select the set with the maximum number of 
inliers obtained within 𝒌 iterations

7. Finally, calculate the model parameters using 
all the inliers

NB: RANSAC is non deterministic: every time you 
run it you may get a different result (due to the 
random hypotheses’ generation process). 
Conversely, EM and GNC are deterministic

RANSAC
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RANSAC

• How many iterations does RANSAC need? 

• Ideally: check all possible combinations of 2 points in a dataset of N points. 

• Number of all pairwise combinations: 
𝑁 𝑁−1

2
• computationally unfeasible if 𝑁 is too large. 

Example, for 1000 points you need to check all 1000×999/2 ≅ 500’000 possibilities!

• Do we really need to check all possibilities or can we stop RANSAC after some iterations? 

• We will see that it is enough to check a subset of all combinations if we have a rough estimate of the 
percentage of inliers in our dataset

• This can be done in a probabilistic way
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RANSAC

• How many iterations does RANSAC need?
• 𝑵:= total number of data points 

• 𝒘 := number of inliers /𝑁→𝒘: fraction of inliers in the dataset →𝒘 = 𝑃(selecting an inlier-point out of the dataset)

• Assumption: the 2 points necessary to estimate a line are selected independently

• →𝒘 𝟐= 𝑃(both selected points are inliers)

• → 𝟏 − 𝒘 𝟐 = 𝑃(at least one of these two points is an outlier)

• Let 𝒌 be the number of RANSAC iterations executed so far

• → ( 𝟏 − 𝒘 𝟐 ) 𝒌 = 𝑃(RANSAC never selected two points that are both inliers after 𝒌 iterations) 

• Let  𝒑 ∶= Probability to have selected at least two points that are both inliers after 𝒌 iterations. We call 𝒑 Probability of Success

• →𝟏 − 𝒑 = ( 𝟏 − 𝒘 𝟐 ) 𝒌 and therefore:
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RANSAC

• How many iterations does RANSAC need?

→ knowing the fraction of inliers 𝒘, after k iterations we will have a probability 𝒑 of finding a set of points free of outliers

• Example: if we want a probability of success 𝒑 = 𝟗𝟗% and we know that 𝒘 = 𝟓𝟎%→ 𝒌 = 16 iterations

• these are significantly fewer than the number of all possible combinations (500,000)! 

• Notice: the number of data points does not influence the minimum number of iterations k, only 𝒘 does!

• In practice we only need a rough estimate of 𝒘. More advanced variants of RANSAC estimate the fraction of inliers and 
adaptively update it at every iteration (how?)
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RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points from this line

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem
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RANSAC applied to General Model Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem
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RANSAC applied to General Model Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < 𝑑)

7. Store these inliers

8. until maximum number of iterations 𝒌 reached

9. The set with the maximum number of inliers is chosen as a solution to the problem
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The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key 
ingredients:

1. What’s the model in SFM?

2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can we 
define a distance metric that measures how well a point fits the model?

31



Answers

1. What’s the model in SFM?
• The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for uncalibrated cameras)

• Alternatively, R and T

2. What’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points for calibrated cameras

2. However, if we use the 8-point algorithm, then 8 is the minimum (for both calibrated or uncalibrated cameras)

3. How do we compute the distance of a point from the model?
1. Algebraic error

2. Directional error

3. Epipolar line distance

4. Reprojection error
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Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

33
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Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features

34

Image 1



Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features
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Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features
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1. Randomly select 8 point
correspondences and compute the 
model

2. Compute distance of all other points 
from this model and count the inliers



Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features
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1. Randomly select 8 point
correspondences and compute the 
model

2. Compute distance of all other points 
from this model and count the inliers

3. Repeat from 1



Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features

38

Image 1



Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features
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Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features

40

Image 1

1. Randomly select 8 point
correspondences and compute the 
model

2. Compute distance of all other points 
from this model and count the inliers



Example: 8-point RANSAC applied to SFM

• Let’s consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by 
arrows

• For convenience, we overlay the features of the second image on the first image and use arrows to denote 
the motion vectors of the features
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Image 1

1. Randomly select 8 point
correspondences and compute the 
model

2. Compute distance of all other points 
from this model and count the inliers

3. Repeat from 1 for 𝒌 times
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RANSAC iterations 𝒌 vs. 𝒔

𝒌 increases exponentially with the number of points 𝒔 estimate the model

Let’s assume 𝒑 = 99% and 𝜺 = 50% (fraction of outliers):

• 8-point RANSAC 

• 𝒔 = 8 points (8-point algorithm)

• 5-point RANSAC 

• 𝒔 = 5 points (5-point algorithm)

• 2-point RANSAC (e.g., line fitting)

• 𝒔 = 2 points
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RANSAC iterations 𝒌 vs. 𝜺

𝒌 is increases exponentially with the fraction of outliers 𝜺:
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These plots were computed 
assuming 𝑝 = 99% 



RANSAC iterations

• As observed, 𝒌 is exponential with the number of points 𝒔 necessary to estimate the model

• The 8-point algorithm is extremely simple and was very successful; however, it requires more than 1177 
iterations

• Because of this, there has been a large interest by the research community in using smaller motion 
parameterizations (i.e., smaller 𝒔)

• The first efficient solution to the minimal-case solution (5-point algorithm) took almost a century (Kruppa 
1913 → Nister 2004)

• The 5-point RANSAC (Nister 2004) only requires 145 iterations; however:

• The 5-point algorithm can return up to 10 solutions of E (worst case scenario)

• The 8-point algorithm only returns a unique solution of E

44

Can we use less than 5 points?

Yes, if you use motion constraints!



Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry
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Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry
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Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry
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Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Geometry
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Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Let’s compute the Epipolar Constraint: 
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Planar Motion

Planar motion is described by three parameters: θ, φ, ρ

Observe that 𝜌 was cancelled out. Since only 𝜃, 𝜑 can be determined and every point correspondence 
provides one scalar equation, then 2 point correspondences are sufficient to estimate  and 𝜑
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Less than 2 points?

• Can we use less than 2 point correspondences?

• Yes, if we exploit wheeled vehicles with non-holonomic constraints
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Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

52

Example of Ackerman steering principle Locally-planar circular motion



Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

𝜑 = 𝜃/2 => only 1 DoF (θ); thus, only 1 point correspondence is sufficient [Scaramuzza, 2011]
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Example of Ackerman steering principle Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic 
Constraints, International Journal of Computer Vision, 2011. PDF.

This is the smallest parameterization possible and results in 

the most efficient algorithm for removing outliers

http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf


Planar & Circular Motion (e.g., cars)

Let’s compute the Epipolar Geometry
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Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic 
Constraints, International Journal of Computer Vision, 2011. PDF.
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Planar & Circular Motion (e.g., cars)

Let’s compute the Epipolar Geometry
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Locally-planar circular motion

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic 
Constraints, International Journal of Computer Vision, 2011. PDF.
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1-Point RANSAC Algorithm

56

Only 1 iteration!

The most efficient algorithm for 

removing outliers (<1ms)

Compute 𝜃 for 
every point 

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF
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1-Point RANSAC Algorithm

57

Only 1 iteration!

The most efficient algorithm for 

removing outliers (<1ms)

Compute θ for 
every point 

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF
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Comparison of RANSAC algorithms
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8-Point RANSAC
[Longuet-Higgins’81]

5-Point RANSAC
[Nister’04]

2-Point RANSAC
[Ortin’01]

1-Point RANSAC
[Scaramuzza’11]
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Visual Odometry with 1-Point RANSAC 

59
Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-Holonomic 

Constraints, International Journal of Computer Vision, 2011. PDF.

http://rpg.ifi.uzh.ch/docs/IJCV11_scaramuzza.pdf


Latest and Greatest ☺
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Differentiable RANSAC

• RANSAC is not differentiable since it relies on selecting a hypothesis based on maximizing the number of 
inliers (i.e., argmax).

• DSAC shows how sample consensus can be used in a differentiable way

• This enables the use of sample consensus in a variety of learning tasks.
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Choose the best
based on score

Randomly sample 
based on score

E. Brachmann et al., DSAC - Differentiable RANSAC for Camera Localization, International Conference on Computer Vision and Pattern Recognition (CVPR), 
2017. PDF. Video.

https://arxiv.org/abs/1611.05705
https://youtu.be/YWSGq7CUSRA


Deep Fundamental Matrix Estimation

• Input: two sets of noisy local features (coordinates + descriptors) contaminated by outliers

• Output: fundamental matrix 

• Idea: solve a weighted homogeneous least-squares problem, where robust weights are estimated using 
deep networks

• Robust: handles extreme wide-baseline image pairs
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Top-bottom as image-pair

Red: inlier correspondences
Blue: outlier correspondences

Epipolar lines

Green: estimated
Blue: ground-truth

Ranftl, Koltun, Deep Fundamental Matrix Estimation, European Conference on Computer Vision (ECCV), 2018. PDF.

http://vladlen.info/papers/deep-fundamental.pdf


SuperGlue: Learning Feature Matching with Graph Neural Networks

• Input: two sets of noisy local features (coordinates + descriptors) contaminated by outliers

• Output: strong & outlier-free matches

• Combines deep learning with classical optimization (Graph Neural Networks, Attention, Optimal Transport

• Robust: handles extreme wide-baseline image pairs
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Sarlin, DeTone, Malisiewicz, Rabinovich, SuperGlue: Learning Feature Matching with Graph Neural Networks, 

International Conference on Computer Vision and Pattern Recognition (CVPR), 2020. PDF. Code.

https://arxiv.org/pdf/1911.11763
https://github.com/magicleap/SuperGluePretrainedNetwork


Outline

• Robust Structure from Motion

• Bundle Adjustment

64



2-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and motion 𝑹, 𝑻

• Commonly used after least square estimation of 𝑅 and 𝑇 (e.g., after 8- or 5-point algorithm)

• Optimizes 𝑃𝑖 , 𝑅, 𝑇 by minimizing the Sum of Squared Reprojection Errors:

65C1
C2

𝑝1
𝑖 𝑝2

𝑖

𝑷𝒊

Reprojected point
𝜋 𝑃, 𝐾1, 𝐼, 0

Camera 1 reprojection error
𝑝1 − 𝜋 𝑃,𝐾1, 𝐼, 0

Reprojected point
𝜋 𝑃, 𝐾2, 𝑅, 𝑇

Camera 2 reprojection error
𝑝2 − 𝜋 𝑃, 𝐾2, 𝑅, 𝑇

𝑹, 𝑻

𝑃𝑖 , 𝑅, 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝑅,𝑇෍

𝑖=1

𝑁

𝑝1
𝑖 − 𝜋 𝑃𝑖 , 𝐾1, 𝐼, 0

2
+ 𝑝2

𝑖 − 𝜋 𝑃𝑖 , 𝐾2, 𝑅, 𝑇
2

Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle adjustment – A modern 
synthesis, Vision Algorithms: Theory and Practice, Springer, 2000. PDF.

https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf


2-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and motion 𝑹, 𝑻

• Commonly used after least square estimation of 𝑅 and 𝑇 (e.g., after 8- or 5-point algorithm)

• Optimizes 𝑃𝑖 , 𝑅, 𝑇 by minimizing the Sum of Squared Reprojection Errors:

Good to know:

• Like in the formula, we typically assume the first camera as the world frame, but it’s arbitrary

• Occasionally, the residual terms are weighted

• In order to not get stuck in local minima, the initial values of 𝑃𝑖 , 𝑅, 𝑇 should be close to the optimum

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton to local minima)

• Can be modified to also optimize the intrinsic parameters

• Implementation details in Exercise 9
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𝑃𝑖 , 𝑅, 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝑅,𝑇෍

𝑖=1

𝑁

𝑝1
𝑖 − 𝜋 𝑃𝑖 , 𝐾1, 𝐼, 0

2
+ 𝑝2

𝑖 − 𝜋 𝑃𝑖 , 𝐾2, 𝑅, 𝑇
2

What is the key difference with the reprojection error minimization seen 
in previous lectures (Lecture 3, slide 21, and Lecture 7, slide 26)?



𝑛-View Bundle Adjustment (BA)

• Non-linear, joint optimization of structure, 𝑷𝒊, and camera poses 𝐶1 = 𝐼, 0 , … , 𝐶𝑘 = [𝑅𝑘 , 𝑇𝑘]

• Minimizes the Sum of Squared Reprojection Errors across all views

• NB: we assume the first camera as the world frame,
that’s why 𝐶1 = 𝐼, 0
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𝑃𝑖 , 𝐶2, … , 𝐶𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶2,…,𝐶𝑛 ෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

𝑝𝑘
𝑖 − 𝜋 𝑃𝑖, 𝐾𝑘, 𝐶𝑘

2

Ck

C1
C2

𝑝1
𝑖 𝑝2

𝑖

𝑷𝒊

Reprojected point
𝜋 𝑃, 𝐾1, 𝐶1

Reprojected point
𝜋 𝑃, 𝐾2, 𝐶2 Reprojected point

𝜋 𝑃, 𝐾2, 𝐶𝑘

Triggs, McLauchlan, Hartley, Fitzgibbon, Bundle adjustment – A modern 
synthesis, Vision Algorithms: Theory and Practice, Springer, 2000. PDF.

https://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf


Huber and Tukey Norms

• To prevent that large reprojection errors can negatively impact the optimization, a more robust norm ρ
is used instead of the 𝐿2:

• ρ is a robust cost function (Huber or Tukey) to alleviate the contribution of wrong matches:

• Huber norm:

• Tukey norm:
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𝑃𝑖 , 𝐶2, … , 𝐶𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶2,…,𝐶𝑛 ෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

ρ 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾𝑘 , 𝐶𝑘

𝑥2 if 𝑥 ≤ 𝑘
𝑘 2 𝑥 − 𝑘 if 𝑥 ≥ 𝑘

ρ 𝑥 =

α2 if 𝑥 ≥ α

α2 1 − 1 −
𝑥

α

2 3

if   𝑥 ≤ α
ρ 𝑥 =

These formulas are not asked at the exam
but their plots and meaning is asked ☺



Things to remember

• EM algorithm

• RANSAC algorithm and its application to SFM

• 8 vs 5 vs 1 point RANSAC, pros and cons

• Bundle Adjustment
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Reading

• CH. 8.1.4, 8.3.1, 11.3 of Szeliski book, 2nd edition

• Ch. 14.2 of Corke book
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Understanding Check

Are you able to answer the following questions?
• What are the causes of outliers?
• What effects may outliers have on VO?
• How does EM work? What are the issues?
• Why do we need RANSAC?
• What is the theoretical maximum number of combinations to explore?
• After how many iterations can RANSAC be stopped to guarantee a given success probability?
• What is the trend of RANSAC vs. iterations, vs. the fraction of outliers, vs. the number of points to estimate the model?
• How do we apply RANSAC to the 8-point algorithm, DLT, P3P?
• How can we reduce the number of RANSAC iterations for the SFM problem? (1- and 2-point RANSAC)
• Bundle Adjustment. Mathematical expression and illustration. Tukey and Huber norms.
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