Vision Algorithms for Mobile Robotics

Lecture 04
Image Filtering

Davide Scaramuzza
http://rpg.ifi.uzh.ch
Today’s exercise session replaced by lecture

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Exercise</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.09.2023</td>
<td>Lecture 02 - Image Formation: perspective projection and camera models</td>
<td>Exercise 01 - Augmented reality wireframe cube</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>05.10.2023</td>
<td>Lecture 03 - Camera Calibration</td>
<td>Exercise 02 - PnP problem</td>
<td>Leonard, Leonard, Jiaxu</td>
</tr>
<tr>
<td>12.10.2023</td>
<td>Lecture 03 continued</td>
<td>Lecture 04 - Filtering & Edge detection</td>
<td>Scaramuzza</td>
</tr>
<tr>
<td></td>
<td>Exercise session replaced by continuation of Lecture 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.10.2023</td>
<td>Lecture 05 - Point Feature Detectors, Part 1</td>
<td>Exercise 03 - Harris detector + descriptor + matching</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>02.11.2023</td>
<td>Lecture 07 - Multiple-view Geometry 1</td>
<td>Exercise 05 - Stereo vision: rectification, epipolar matching, disparity, triangulation</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>09.11.2023</td>
<td>Lecture 08 - Multiple-view Geometry 2</td>
<td>Exercise 06 - Eight-Point Algorithm</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>16.11.2023</td>
<td>Lecture 09 - Multiple-view Geometry 3</td>
<td>Exercise 07 - P3P algorithm and RANSAC</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>23.11.2023</td>
<td>Lecture 10 - Multiple-view Geometry 4</td>
<td>Continuation of Lecture 10 + Exercise session on Intermediate VO Integration</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td></td>
<td>Lecture 12a (1st hour) - Place Recognition</td>
<td>Lecture 12b (2nd hour) - Dense 3D Reconstruction</td>
<td>Scaramuzza, Scaramuzza, Leonard</td>
</tr>
<tr>
<td></td>
<td>Lecture 12c (3rd and 4th hour, replaces exercise) - Deep Learning Tutorial</td>
<td>Optional Exercise on Place Recognition</td>
<td>Scaramuzza, Leonard</td>
</tr>
<tr>
<td>07.12.2023</td>
<td>Lecture 13 - Visual inertial fusion</td>
<td>Exercise 09 - Bundle Adjustment</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>14.12.2023</td>
<td>Lecture 14 - Event-based vision + lab visit after the lecture</td>
<td>Exercise session: Final VO Integration</td>
<td>Scaramuzza, Leonard, Jiaxu</td>
</tr>
<tr>
<td>21.12.2023</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today’s Outline

• Low-pass filtering
 • Linear filters
 • Non-linear filters

• Edge Detection
 • Canny edge detector
Image filtering

- The word *filter* comes from frequency-domain processing, where “filtering” refers to the process of accepting or rejecting certain frequency components.

- We distinguish between low-pass and high-pass filtering:
 - A **low-pass filter** smooths an image (retains low-frequency components).
 - A **high-pass filter** retains the contours (also called edges) of an image (high frequency).
Today’s Outline

• Low-pass filtering
 • Linear filters
 • Non-linear filters

• Edge Detection
 • Canny edge detector
Low-pass filtering applied to noise reduction

- **Salt and pepper noise**: random occurrences of black and white pixels
- **Impulse noise**: random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian distribution

Salt and pepper noise and Impulse noise are caused by
- data transmission errors,
- failure in memory cell, or
- analog-to-digital converter errors.
Additive Independent and Identically Distributed Gaussian noise

It is Independent and Identically Distributed (I.I.D.) noise drawn from a zero-mean Gaussian distribution:

\[\eta(x, y) \sim \mathcal{N}(0, \sigma) \]

Ideal image \(I(x, y) \) Noise \(I'(x, y) + \eta(x, y) \)

How can we reduce the noise to recover the “ideal image”?
Moving average

• Replaces each pixel with an *average* of all the values in its neighborhood

• Assumptions:
 • Expect *noise process to be i.i.d. Gaussian*
 • Expect *pixels to be like their neighbors*
Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Moving average in 1D:
Weighted Moving Average

- Can add weights to our moving average
- Uniform weights: \([1, 1, 1, 1, 1] / 5\)
Weighted Moving Average

- Non-uniform weights: \([1, 4, 6, 4, 1] / 16\)
This operation is called *convolution*

- Example of convolution between two signals
 - One of the sequences is flipped (right to left) before sliding over the other
 - Notation: $a*b$
 - Nice properties: linearity, associativity, commutativity, etc.
This operation is called *convolution*

- Example of convolution between two signals
 - One of the sequences is flipped (right to left) before sliding over the other
 - Notation: $a*b$
 - Nice properties: linearity, associativity, commutativity, etc.
2D Filtering via 2D Convolution

- Flip the filter in both dimensions (bottom to top, right to left) (=180 deg turn)
- Then slide the filter over the image and compute sum of products

\[I'[x, y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I[x - u, y - v]H[u, v] \]

\[I' = I \ast H \]

- Convolution replaces each pixel with a weighted sum of its neighbors
- The filter \(H \) is also called “kernel” or “mask”
Review: Convolution vs. Cross-correlation

Convolution: \(I' = I * H \)

- Properties: linearity, associativity, commutativity

\[
I'[x, y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I[x-u, y-v]H[u, v]
\]

Cross-correlation: \(I' = I \otimes H \)

Properties: linearity, but no associativity and no commutativity

\[
I'[x, y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I[x+u, y+v]H[u, v]
\]

For a Gaussian or box filter, will the output of convolution and correlation be different?
Box Filter

Input image

$I[x, y]$

Filtered image

$I'[x, y]$

"box filter" $\frac{1}{9}$

"box filter"
Box Filter

Input image

\[I[x, y] \]

Filtered image

\[I'[x, y] \]

“box filter”
Box Filter

Input image \(I[x, y] \)

Filtered image \(I'[x, y] \)

"box filter"
Box Filter

Input image

\[I[x, y] \]

Filtered image

\[I'[x, y] \]
Box Filter

Input image

\[I[x, y] \]

Filtered image

\[I'[x, y] \]

“box filter”

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9
0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0
0 0 0 90 90 90 90 90 0
0 0 0 90 90 90 90 90 0
0 0 0 90 90 90 90 90 0
0 0 0 90 0 90 90 90 0
0 0 0 90 90 90 90 90 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Box Filter

Input image

$I[x, y]$

Filtered image

$I'[x, y]$

“box filter”
Box Filter

Box filter:
white = max value, black = zero value

original

filtered
Gaussian Filter

What if we want **center pixels** to have **higher influence on the output**?

This kernel is the approximation of a Gaussian function:

\[
H[u, v] = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}
\]

\[
s_{u,v} = \frac{1}{16}
\]

\[
I[x, y]
\]
Gaussian Filter
Comparison with Box Filter

This “web”-like effect is called aliasing and is caused by the high frequency components of the box filter.
Separable Filters

• Box filter:
\[
\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]

• Gaussian filter:
\[
\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}
\]

• Sobel filter:
\[
\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}
\]
Separable Filters

• A convolution with a 2D filter of $w \times w$ pixel size requires w^2 **multiply-add operations per pixel**

• 2D convolution can be sped up if the filter is **separable**, i.e., can be written as the product of two 1D filters (i.e., $H = v \cdot h^T$): first perform a 1D horizontal convolution with h followed by a 1D vertical convolution with v:

\[
I' = I \ast H = (I \ast h^T) \ast v
\]

• Separable filters require only $2w$ **multiply-add operations per pixel**

• Box filters and Gaussian filters are separable
Gaussian Filter

What parameters matter?

- **Size** of the kernel
- NB: a Gaussian function has **infinite support**, but discrete filters use finite kernels

\[\sigma = 5 \text{ pixels} \]

with \(10 \times 10\) pixel kernel

\[\sigma = 5 \text{ pixels} \]

with \(30 \times 30\) pixel kernel

Which one approximates better the ideal Gaussian filter, the left or the right one?
Gaussian Filter

What parameters matter?

• **Variance** of Gaussian: controls the amount of smoothing

• Recall: standard deviation $= \sigma$ [pixels], variance $= \sigma^2$ [pixels2]

![Gaussian Filter](image)

$\sigma = 2$ pixels

with 30 \times 30 pixel kernel

$\sigma = 5$ pixels

with 30 \times 30 pixel kernel
Gaussian Filter

σ is called “scale” of the Gaussian kernel, and **controls the amount of smoothing.**
Sample Matlab code

>> hsize = 20;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread('panda.jpg');
>> outim = imfilter(im, h);
>> imshow(outim);
Boundary issues

• What about near the image edges?
 • the filter window falls off the edges of the image
 • need to pad the image borders
 • methods:
Boundary issues

• What about near the image edges?
 • the filter window falls off the edges of the image
 • need to pad the image borders
• methods:
 • zero padding (black)
Boundary issues

• What about near the image edges?
 • the filter window falls off the edges of the image
 • need to pad the image borders
• methods:
 • zero padding (black)
 • wrap around
Boundary issues

• What about near the image edges?
 • the filter window falls off the edges of the image
 • need to pad the image borders
• methods:
 • zero padding (black)
 • wrap around
 • copy edge
Boundary issues

- What about near the image edges?
 - the filter window falls off the edges of the image
 - need to pad the image borders
- methods:
 - zero padding (black)
 - wrap around
 - copy edge
 - reflect across edge
Summary on (linear) smoothing filters

• Smoothing filter
 • has **positive values** (also called coefficients)
 • **sums to 1** → preserve brightness of constant regions
 • removes “**high-frequency**” components; “**low-pass**” filter
Today’s Outline

• Low-pass filtering
 • Linear filters
 • Non-linear filters

• Edge Detection
 • Canny edge detector
Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!
Median Filter

- It is a **non-linear filter**

- **Removes spikes:**
 - good for *"impulse noise"*
 - and *"salt & pepper noise"*

```
Input patch
10 15 20
23 90 27
33 31 30

Sort
10 15 20 23 30 31 33 90

Element to be replaced

Median value
27

Output patch
10 15 20
23 27
33 31 30

Replace element
```
Median Filter

- It is a **non-linear filter**
- **Removes spikes:**
 - good for "impulse noise"
 - and "salt & pepper noise"

Plots of one row of the image
Median Filter

- It is a **non-linear filter**

- **Removes spikes:**
 good for “impulse noise” and “salt & pepper noise”

- Differently from linear filters, it **preserves strong edges**

![Diagram of Median Filter](image)
Gaussian vs. Median Filter

- **Gaussian filters do not preserve strong edges (discontinuities).** This is because they apply the same kernel everywhere.
- **Median filters do preserve strong edges but don’t smooth** as good as Gaussian filters with **Gaussian noise**.
Bilateral Filter

• **Bilateral filters** solve this by adapting the kernel locally to the intensity profile, so they are **patch-content** dependent.

• Bilateral filters only **smooth pixels with brightness similar to the center pixel** and ignore **influence of pixels with different brightness across the discontinuity**.

![Diagram of Bilateral Filter](image)
Bilateral Filter

\[I'[x, y] = \frac{1}{W_p[x, y]} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I[x - u, y - v] G_{\sigma_r}(I[x - u, y - v] - I[x, y]) G_{\sigma_s}[u, v] \]

smoothed image

\[W_p[x, y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} G_{\sigma_r}(I[x - u, y - v] - I[x, y]) G_{\sigma_s}[u, v] \]

Normalization factor

(adaptive filter)

(normalization factor)
Bilateral Filter

Stronger edges are smoothed

- \(\sigma_r = 0.1 \)
- \(\sigma_r = 0.25 \)
- \(\sigma_r = \infty \) (Gaussian blur)

\(\sigma_s = 2 \)

\(\sigma_s = 6 \)

\(\sigma_s = 18 \)

Larger neighborhoods are smoothed

Input image
Today’s Outline

• Low-pass filtering
 • Linear filters
 • Non-linear filters

• Edge Detection
 • Canny edge detector
Edge Detection

- Goal: to find the boundaries (edges) of objects within images
Edge Detection

- Edges look like steep cliffs in the $I(x,y)$ function
Derivatives and Edges

• An edge is a place of fast change in the image intensity function
Differentiation and Convolution

• For a continuous function $I(x, y)$ the partial derivative along x is:

$$\frac{\partial I(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{I(x + \varepsilon, y) - I(x, y)}{\varepsilon}$$

• For a discrete function, we can use adjacent or central finite differences:

$$\frac{\partial I(x, y)}{\partial x} \approx \frac{I(x + 1, y) - I(x, y)}{1}$$

or

$$\frac{\partial I(x, y)}{\partial x} \approx \frac{I(x + 1, y) - I(x - 1, y)}{2}$$

What would be the respective filters along x and y to implement the partial derivatives as a convolution?
Partial Derivatives using Adjacent Differences

\[
\begin{align*}
\frac{\partial I(x, y)}{\partial x} & \quad \frac{\partial I(x, y)}{\partial y} \\
\begin{bmatrix} -1 & 1 \end{bmatrix} & \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\end{align*}
\]
Partial Derivatives using Central Differences

Prewitt filter
\[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \]

Sobel filter
\[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \]

Sample Matlab code

```matlab
>> im = imread('lion.jpg');
>> h = fspecial('sobel');
>> outim = imfilter(double(im), h);
>> imagesc(outim);
>> colormap gray;
```
Image Gradient

• The image gradient: \(\nabla I = \begin{bmatrix} \frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \end{bmatrix} \)

• The gradient points in the direction of steepest ascent:

\[\nabla | = \begin{bmatrix} \frac{\partial I}{\partial x}, 0 \end{bmatrix} \]

\[\nabla | = \begin{bmatrix} 0, \frac{\partial I}{\partial y} \end{bmatrix} \]

• The gradient direction (perpendicular to the edge) is given by:

\[\theta = \text{atan2} \left(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x} \right) \]

• The edge strength is given by the gradient magnitude

\[\| \nabla I \| = \sqrt{ \left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2 } \]
Effects of Noise

- Consider a single row or column of the image

\[I(x) \]

\[\frac{\partial I(x)}{\partial x} \]

Where is the edge?
Solution: smooth first

Location of edges: look for peaks in $\frac{\partial}{\partial x}(I \ast H)$
Alternative: combine derivative and smoothing filter

• Differentiation property of convolution:
 \[
 \frac{\partial}{\partial x} (I * H) = I * \frac{\partial H}{\partial x}
 \]
Derivative of Gaussian filter G along x

$$(I * G) * H = I * (G * H)$$

$$
\begin{bmatrix}
0.0030 & 0.0133 & 0.0219 & 0.0133 & 0.0030 \\
0.0133 & 0.0596 & 0.0983 & 0.0596 & 0.0133 \\
0.0219 & 0.0983 & 0.1621 & 0.0983 & 0.0219 \\
0.0133 & 0.0596 & 0.0983 & 0.0596 & 0.0133 \\
0.0030 & 0.0133 & 0.0219 & 0.0133 & 0.0030 \\
\end{bmatrix} * \begin{bmatrix}
-1 \\
1
\end{bmatrix}
$$
Derivative of Gaussian Filters

x-direction
y-direction
Laplacian of Gaussian

\[
\frac{\partial^2}{\partial x^2} (I \ast H) = I \ast \frac{\partial^2 H}{\partial x^2}
\]

Location of edges: look for Zero-crossings of \(I \ast \frac{\partial^2 H}{\partial x^2}\)
Laplacian of Gaussian (LoG)

• The Laplacian of Gaussian is a circularly symmetric filter defined as:

\[\nabla^2 G_\sigma = \frac{\partial^2 G_\sigma}{\partial x^2} + \frac{\partial^2 G_\sigma}{\partial y^2} \]

\(\nabla^2 \) is the Laplacian operator: \(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \)

• Two commonly used approximations of LoG filter:

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
Example: Convolving an Image with $\nabla^2 G_\sigma$

$\sigma = 4.8972$
Summary on Linear Filters

• Smoothing filter
 • has **positive values** (also called coefficients)
 • **sums to 1** → preserve brightness of constant regions
 • **removes “high-frequency” components; “low-pass” filter**

• Derivative filter:
 • has **opposite signs** used to get high response in regions of high contrast
 • **sums to 0** → no response in constant regions
 • **highlights “high-frequency” components: “high-pass” filter**
Today’s Outline

• Low-pass filtering
 • Linear filters
 • Non-linear filters

• Edge Detection
 • Canny edge detector
The Canny Edge-Detection Algorithm (1986)

Despite invented in 1986, the Canny edge detector is still the most popular edge detection algorithm today.

This image is called **Lenna image** and was a standard benchmark in edge detection and image processing: https://en.wikipedia.org/wiki/Lenna

The Canny Edge-Detection Algorithm (1986)

1. **Take a grayscale image.** If RGB, convert it into a grayscale $I(x, y)$ by replacing each pixel by the average value of its R, G, B components.

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, (T-PAMI), 1986. [PDF](#).
The Canny Edge-Detection Algorithm (1986)

2. **Convolve the image** I with x and y derivatives of Gaussian filter and compute the edge strength $\|\nabla I\|$.

$$\frac{\partial g_\sigma}{\partial x} \quad \frac{\partial g_\sigma}{\partial y}$$

$$\frac{\partial I}{\partial x} = I * \frac{\partial g_\sigma}{\partial x}$$

$$\frac{\partial I}{\partial y} = I * \frac{\partial g_\sigma}{\partial y}$$

Edge strength: $\|\nabla I\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, (T-PAMI), 1986. [PDF]
The Canny Edge-Detection Algorithm (1986)

3. **Thresholding**: set to 0 all pixels of $\|\nabla I\|$ whose value is below a given threshold

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, (T-PAMI), 1986. [PDF]
The Canny Edge-Detection Algorithm (1986)

4. **Thinning**: look for local-maxima in the edge strength in the direction of the gradient

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, (T-PAMI), 1986. [PDF](#)
4. **Thinning**: look for local-maxima in the edge strength in the direction of the gradient

 - This can be done by taking the **directional derivative of the edge strength in the direction of the gradient** and then looking for **zero-crossing** (i.e., adjacent pixel locations where the sign changes value)

 - The desired directional derivative is mathematically equivalent to convolving the image $I(x, y)$ with the Laplacian of Gaussian

 $\nabla(\nabla G_\sigma * I) = \nabla^2 G_\sigma * I$

 Edge image: each pixel that is a local maximum of the edge strength in the direction of gradient is set to 1

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, (T-PAMI), 1986. PDF.
The Canny Edge-Detection Algorithm (1986)

What parameters can we tune to remove high frequency details?
Today: Deep Learning-based Edge Detection

Supervised learning from human annotations

HED\(^1\): *CNN-based* Detector in 2015
- >30% better performance
- less computation than Canny

EDTER\(^2\): *State-of-the-art* approach
- Fine edges detection using *Transformer* model
- Integration with *global information*

\(^1\) Xie et al., *Holistically-Nested Edge Detection*, International Conference on Computer Vision (ICCV), 2015. [PDF](#).

\(^2\) Pu et al., *EDTER: Edge Detection with Transformer*, Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [PDF](#).
Summary (things to remember)

• Image filtering (definition, motivation, applications)
• Moving average
• Linear filters and formulation: box filter, Gaussian filter
• Boundary issues
• Non-linear filters
• Median & bilateral filters
• Edge detection
• Derivating filters (Prewitt, Sobel)
• Combined derivative and smoothing filters (deriv. of Gaussian)
• Laplacian of Gaussian
• Canny edge detector
Readings

• Ch. 3.2, 3.3, 7.2.1 of Szeliski book, 2nd Edition
Understanding Check

Are you able to:

• Explain the differences between convolution and cross-correlation?
• Explain the differences between a box filter and a Gaussian filter?
• Explain why one should increase the size of the kernel of a Gaussian filter if \(2\sigma\) is close to the size of the kernel?
• Explain when we would need a median & bilateral filter?
• Explain how to handle boundary issues?
• Explain the working principle of edge detection with a 1D signal?
• Explain how noise does affect this procedure?
• Explain the differential property of convolution?
• Show how to compute the first derivative of an image intensity function along \(x\) and \(y\)?
• Explain why the Laplacian of Gaussian operator is useful?
• List the properties of smoothing and derivative filters?
• Illustrate the Canny edge detection algorithm?
• Explain what non-maxima suppression is and how it is implemented?