Notes on Convolution

Leonard Bauersfeld

October 26, 2023

1 Notation

In discrete time, consider two signals $f[i], g[i]$. Their convolution $*$ is defined as

$$
(f * g)[n]=\sum_{m=-M}^{m=M} f[n-m] g[m]
$$

with support $\{-M,-M+1, \ldots, M-1, M\}$. Outside of the support, the signal is zero. In continuous time, consider two functions $f(x), g(x)$. Their convolution is defined as

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(u) g(x-u) \mathrm{du}
$$

2 Properties

Commutation

$$
\begin{equation*}
f * g=g * f \tag{1}
\end{equation*}
$$

Proof (through a change of variables):

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(u) g(x-u) \mathrm{d} u=\int_{-\infty}^{\infty} f(x-v) g(v) \mathrm{d} v=\int_{-\infty}^{\infty} g(v) f(x-v) \mathrm{d} v=(g * f)(x)
$$

Dirac Delta

Let $\delta(x)$ denote the dirac delta function, defined as

$$
\begin{gather*}
\delta(x)=\left\{\begin{array}{ll}
0 & x \neq 0 \\
\text { undefined } & x=0
\end{array}, \quad \int_{-\infty}^{\infty} \delta(u) \mathrm{du}=1\right. \\
 \tag{2}\\
f * \delta=f
\end{gather*}
$$

Proof (through using the definition):

$$
(f * \delta)(x)=\int_{-\infty}^{\infty} f(u) \delta(x-u) \mathrm{d} u=f(x)
$$

Derivatives

$$
\begin{equation*}
(f * g)^{\prime}=f^{\prime} * g \stackrel{\text { 区 }}{=} g^{\prime} * f \tag{3}
\end{equation*}
$$

Proof:

$$
(f * g)^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{-\infty}^{\infty} f(u) g(x-u) \mathrm{d} \mathrm{u}=\int_{-\infty}^{\infty} f(u) \frac{\mathrm{d}}{\mathrm{~d} x} g(x-u) \mathrm{d} u=f * g^{\prime}
$$

