Filtering & Edge detection

1 Numerical Exercises

1. Consider the following 1D image pixel arrays A and B

$$A = [3, 1, 2, 1] \qquad \qquad B = [7, 7, 6, 4]$$

(a) Compute the filter F, which was applied as **convolution** to the pixel array A resulting in the output B. Assume that zero padding was applied.

$$B = A * F$$

(b) Compute the filter F, which was applied as **cross-correlation** to the pixel array A resulting in the output B. Assume that zero padding was applied.

$$B = A \otimes F$$

- (c) Compute the convolution signal C between the pixel array A and B. Use "reflect across edge" padding. The output should have the same size as the input signal.
- 2. What is the convolution output if filter F is applied to the following A matrix assuming zero padding?

	ΓΩ	0	1	٦			1	2	3	4	l
E		1	-1		4		5	6	$\overline{7}$	8	
F =		1	0		A	=	8	7	6	5	
	ΓI	0	0]			4	3	2	1	

3. Find the two 1D separable filters $a, b \in \mathbb{R}^{3 \times 1}$ resulting in the following 2D filters such that:

 $A = ab^T$

(a)	A =	$\left[\begin{array}{c} 0\\ 2\\ 0\end{array}\right]$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$
(b)	A =	$\left[\begin{array}{c} 0\\ 0\\ 0\\ 0\end{array}\right]$	0 0 0	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
(c)	A =	$\begin{bmatrix} 2\\1\\2 \end{bmatrix}$	$4 \\ 2 \\ 4$	$\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

4. In the lecture you've seen the Prewitt filter which calculates a partial derivative. For example, the filter

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

calculates the first partial derivative in the x direction. It approximates $\frac{\partial I}{\partial x}$. In a similar fashion, derive a filter G_{xx} which approximates the second order partial derivative in x $\frac{\partial^2 I}{\partial x^2}$. The filter should be of size 3x3.

- (a) Derive the filter $G_{xx,c}$ using central differences (i.e. one pixel on either side of the current pixel)
- (b) Derive the filter $G_{xx,f}$ using forward differences (i.e. using only information to the right side of the current pixel)