
A Benchmark Comparison of Monocular Visual-Inertial Odometry
Algorithms for Flying Robots

Jeffrey Delmerico and Davide Scaramuzza

Abstract— Flying robots require a combination of accuracy
and low latency in their state estimation in order to achieve
stable and robust flight. However, due to the power and payload
constraints of aerial platforms, state estimation algorithms must
provide these qualities under the computational constraints of
embedded hardware. Cameras and inertial measurement units
(IMUs) satisfy these power and payload constraints, so visual-
inertial odometry (VIO) algorithms are popular choices for
state estimation in these scenarios, in addition to their ability
to operate without external localization from motion capture or
global positioning systems. It is not clear from existing results
in the literature, however, which VIO algorithms perform well
under the accuracy, latency, and computational constraints
of a flying robot with onboard state estimation. This paper
evaluates an array of publicly-available VIO pipelines (MSCKF,
OKVIS, ROVIO, VINS-Mono, SVO+MSF, and SVO+GTSAM)
on different hardware configurations, including several single-
board computer systems that are typically found on flying
robots. The evaluation considers the pose estimation accuracy,
per-frame processing time, and CPU and memory load while
processing the EuRoC datasets, which contain six degree
of freedom (6DoF) trajectories typical of flying robots. We
present our complete results as a benchmark for the research
community.

I. INTRODUCTION

Visual-inertial odometry (VIO) is currently applied to
state estimation problems in a variety of domains, including
autonomous vehicles, virtual and augmented reality, and
flying robots. The field has reached a level of maturity
such that many commercial products now utilize proprietary
VIO algorithms, and there are several open-source software
packages available that offer off-the-shelf visual pipelines
that can be deployed on an end-user’s system of choice.

The current research literature offers some comparative
results on the performance of the popular VIO algorithms,
but these typically consider only a subset of the existing
algorithms, and almost always analyze their performance
when running on powerful desktop or laptop computers with
abundant computational resources. However, the physical
constraints of flying robots limit the onboard computing
power that is available, and thus these results do not ac-
curately represent the performance of these algorithms for
flying robot state estimation.

The motivation of this paper is to address this deficiency
by performing a comprehensive evaluation of publicly-
available VIO algorithms on hardware configurations that are

This research was supported by the National Centre of Competence in
Research (NCCR) Robotics, through the Swiss National Science Foundation,
the SNSF-ERC Starting Grant, and the DARPA FLA program.

The authors are with the Robotics and Perception Group, Dep. of
Informatics, University of Zurich , and Dep. of Neuroinformatics, University
of Zurich and ETH Zurich, Switzerland—http://rpg.ifi.uzh.ch.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

C
P

U
U

sa
ge

%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50
M

em
or

y
U

sa
ge

%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RMSE [m]

0
50

100
150
200
250
300
350

P
ro

c.
T

im
e

[m
s]

svomsf

msckf

okvis

rovio

vinsmono

vinsmonolc

svogtsam

Laptop

Intel NUC

Up Board

ODROID

Fig. 1: Scatter plots showing algorithm efficiency, as measured by CPU
utilization, memory usage, and per-frame processing time, versus RMS error.
Each marker has a color representing its algorithm, shape representing its
hardware platform, and a size that is proportional to the standard deviation
of the error, summarized over all successful sequences in the EuRoC dataset.

typical of flying robot systems. We restrict the scope of this
study to monocular VIO pipelines, since that is the minimal
setup necessary for reliable state estimation, and is a popular
choice for flying robots due to its low weight and power
consumption, with respect to other sensor configurations. In
particular, we consider the following pipelines:

• MSCKF - an extended Kalman Filter (EKF) orginally
proposed in [1], but with many subsequent variations.



• OKVIS [2] - a keyframe- and optimization-based sliding
window estimator using landmark reprojection errors.

• ROVIO [3] - an extended Kalman Filter with tracking
of both 3D landmarks and image patch features.

• VINS-Mono [4] - a nonlinear-optimization-based slid-
ing window estimator using pre-integrated IMU factors.

• SVO [5]+MSF [6] - a loosely-coupled configuration of a
visual odometry pose estimator and an extended Kalman
Filter for fusing the visual pose estimate with the inertial
sensor data, as proposed in [7].

• SVO+GTSAM [8] - a lightweight visual odometry
frontend with a full-smoothing backend provided by
iSAM2 [9]

We do not consider non-inertial visual simultaneous local-
ization and mapping (SLAM) systems, for example ORB-
SLAM [10] and LSD-SLAM [11]. While these methods
could potentially also be used for flying robot state estima-
tion, we focus this benchmark on visual-inertial methods.
In principle, one could pair one of these visual front ends
with a Kalman Filter such as MSF [6] or with a pose graph
optimization backend like iSAM2 [9] in order to incorporate
inertial measurements, but such integrated systems are not
publicly available.

Our experiments were conducted on the EuRoC Micro
Aerial Vehicle datasets [12]. These sequences contain syn-
chronized stereo camera and IMU data that was captured
from a flying robot executing 6DoF motions in several indoor
environments, with accurate ground truth provided by laser
or motion capture tracking, depending on the sequence.
These datasets have been used in many of the existing partial
comparative results for VIO performance, and are currently
the most extensive public set of image and IMU sequences
for evaluating flying robot motion estimation algorithms.

One dimension that is not explored in this paper is a full
design-space exploration for parameter optimization, which
can have a dramatic effect on algorithm performance. While
this could potentially be accomplished within a framework
like SLAMBench [13] for dense RGB-D SLAM, currently
no such framework for VIO algorithms exists. We have
instead engaged the authors of each algorithm in order to
utilize an optimal manual tuning of parameters, such that
the performance is indicative of what could be obtained in a
field deployment of a flying robot, where an offline search
for optimal parameters for the environment is not possible.

Our goal is to provide a thorough benchmark of VIO
pipelines on flying-robot-specific trajectories and hardware,
in order to provide a reference for researchers on visual
inertial odometry methods, as well as readers who require
an off-the-shelf state estimation solution that is appropriate
for their flying platform. Figure 1 summarizes the results of
our evaluation in terms of the trade-off between accuracy
and efficiency for all combinations of VIO algorithm and
hardware platform.

A. Related Work

Within the current research literature, there is no bench-
mark study that satisfies our proposed goals. While compre-

hensive visual state estimation comparisons exist [14], they
focus on only non-inertial methods and purely visual SLAM
systems. Similarly, several benchmark datasets have been
used for comparative studies of visual odometry algorithms,
but these are either vision-only (e.g. TUM RGB-D [15],
TUM monoVO [16], ICL-NUIM [17]), or contain non-6DoF
trajectories (e.g. KITTI [18], Málaga [19]).

Since we focus on visual-inertial methods on flying robots,
we can instead consider the existing results that are relevant
to this problem. Among the methods evaluated in this paper,
the recently proposed VINS-Mono pipeline [4] compares
to OKVIS, but only on a few of the EuRoC datasets. In
[2], OKVIS was compared to a non-public implementation
of MSCKF [1] on non-public datasets. ROVIO [3] was
evaluated with flying experiments, but was not compared
to any other VIO methods. The visual odometry system
that serves as the frontend for two of the methods con-
sidered in this paper, SVO [5], has been evaluated on the
EuRoC datasets [12], but only compares to other non-
inertial methods. The experiments in [8] compare the SVO +
GTSAM system to OKVIS and a non-public implementation
of MSCKF, but only on non-public datasets without flying-
robot-like motions.

A number of other approaches to visual-inertial odometry
have been proposed [20], [21], [22], [23], [24], [25], [26], but
these do not offer publicly-available implementations. All of
these are evaluated on some of the EuRoC datasets, but none
contain a comprehensive comparison to other algorithms.

Many non-inertial visual odometry methods have been
tested on the EuRoC datasets [12], including ORB-SLAM2
and LSD-SLAM [10], DSO [27], and a combined feature
and direct approach [28]. However, these results are also
incomplete, utilizing only a subset of the EuRoC datasets.

Most important, however, is that no existing work con-
siders the additional dimension of computational constraints
in their evaluation, instead only testing on full-featured
computers or a single embedded system. This paper seeks
to investigate the performance of VIO algorithms in real-
world conditions by exploring this dimension and testing on
a variety of hardware types that represent the computational
resources available on a typical flying robot.

B. Contributions

This paper makes the following contributions:
• a comprehensive evaluation of publicly-available

monocular visual-inertial odometry algorithms;
• comparative results for the performance of these algo-

rithms on multiple embedded hardware platforms when
processing 6DoF trajectories.

II. VISUAL-INERTIAL ODOMETRY ALGORITHMS

We next briefly summarize the primary features of the
VIO algorithms represented in this benchmark. While these
different approaches are not an exhaustive enumeration of the
algorithms that have been proposed in the literature, the set of
publicly-available implementations does cover the spectrum
of approaches reasonably well, consisting of both loosely



and tightly coupled approaches, filtering and optimization-
based algorithms, as well as several different variations on
representing features and error terms.

A. MSCKF

The Multi-state constraint Kalman filter forms the basis
of many modern, proprietary VIO systems, but until recently
no sufficient, publicly available implementation existed. The
original MSCKF algorithm in [1] proposed a measurement
model that expressed the geometric constraints between all
of the camera poses that observed a particular image feature,
without the need to maintain an estimate of the 3D feature
position in the state. The extended Kalman filter backend
in [29] implements this formulation of the MSCKF for
event-based camera inputs, but has been adapted to feature
tracks from standard cameras. At the time of publication
of this paper, this MSCKF implementation will be publicly
available.1.

B. OKVIS

Open Keyframe-based Visual-Inertial SLAM (OKVIS) [2]
utilizes non-linear optimization on a sliding window of
keyframe poses. The cost function is formulated with a
combination of weighted reprojection errors for visual land-
marks and weighted inertial error terms. The frontend uses a
multi-scale Harris corner detector [30] to find features, and
then computes BRISK descriptors [31] on them in order to
perform data association between frames. Keyframes older
than the sliding window are marginalized out of the states
being estimated. OKVIS uses Google’s ceres solver [32]
to perform non-linear optimization. It should be noted that
OKVIS is not optimized for monocular VIO, and in [2] it
shows superior performance using a stereo configuration. The
software is available in a ROS-compatible package.2

C. ROVIO

Robust Visual Inertial Odometry (ROVIO) [3] is a visual-
inertial state estimator based on an extended Kalman Filter
(EKF), which proposed several novelties. In addition to
FAST corner features [33], whose 3D positions are param-
eterized with robot-centric bearing vectors and distances,
multi-level patches are extracted from the image stream
around these features. The patch features are tracked, warped
based on IMU-predicted motion, and the photometric er-
rors are used in the update step as innovation terms. Un-
like OKVIS, ROVIO was developed as a monocular VIO
pipeline, which should be noted when considering the results
presented in Sec. III. The pipeline is available as an open-
source software package.3

D. VINS-Mono

VINS-Mono [4] is a non-linear optimization-based slid-
ing window estimator, tracking robust corner features [34],
similar to OKVIS. However, VINS-Mono introduces several

1https://github.com/daniilidis-group/msckf_mono
2https://github.com/ethz-asl/okvis_ros
3https://github.com/ethz-asl/rovio

new features to this class of estimation framework. The
authors propose a loosely-coupled sensor fusion initialization
procedure to bootstrap the estimator from arbitrary initial
states. IMU measurements are pre-integrated before being
used in the optimization, and a tightly-coupled procedure for
relocalization is proposed. VINS-Mono additionally features
modules to perform 4DoF pose graph optimization and loop
closure. Although we do not explicitly consider full SLAM
systems, due to the tight integration of the loop closure
module in VINS-Mono, we evaluate the performance of
the algorithm both with and without this module activated
(referred to in the experiments as vinsmonolc and vinsmono,
respectively). The software is available in both a ROS-
compatible PC version and an iOS implementation for state
estimation on mobile devices.4

E. SVO+MSF

Multi-Sensor Fusion (MSF) [6] is a general EKF frame-
work for fusing data from different sensors in a state
estimate. Semi-Direct Visual Odometry (SVO) [5] is a
computationally lightweight visual odometry algorithm that
aligns images by tracking FAST corner [33] features and
minimizing the photometric error of patches around them.
This sparse alignment is then jointly optimized with the scene
structure by minimizing the reprojection error of the features
in a nonlinear least-squares optimization. The pose estimated
from the vision-only SVO is provided to MSF as the output
of a generic pose sensor, where it is then fused with the IMU
data, as proposed in [7]. Due to the loose coupling of this
setup, the scale of the pose must be at least approximately
correct, requiring some bootstrapping from either manual
initialization, or another sensor for estimating distance (e.g.
a laser range sensor). Both MSF5 and SVO6 are publicly
available, and communicate through a ROS interface. This
system is referred to in the experiments as svomsf.

F. SVO+GTSAM

The same visual odometry frontend as in the SVO+MSF
system has also been paired with a full-smoothing back-
end performing online factor graph optimization using
iSAM2 [9]. In [8], the authors present results using this
integrated system and propose the use of pre-integrated IMU
factors in the pose graph optimization. Both components
of this approach, SVO and the GTSAM 4.0 optimization
toolbox7 [35], are publicly available, however the integration
of these into a single system is not currently public. This
system is referred to in the experiments as svogtsam.

III. EXPERIMENTS

The goal of the experiments described in this section is
to evaluate the VIO pipelines from Sec. II in conditions that
emulate state estimation for a flying robot. To accomplish

4https://github.com/HKUST-Aerial-Robotics/
VINS-Mono

5https://github.com/ethz-asl/ethzasl_msf
6http://rpg.ifi.uzh.ch/svo2.html
7https://bitbucket.org/gtborg/gtsam/



7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
ra

n
s.

er
ro

r
[m

]

Laptop

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
ra

n
s.

er
ro

r
[m

]

Intel NUC

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
ra

n
s.

er
ro

r
[m

]

Up Board

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
ra

n
s.

er
ro

r
[m

]

ODROID

svomsf msckf okvis rovio vinsmono vinsmonolc svogtsam

Fig. 2: Boxplot summarizing the translation error statistics for the VIO pipelines on each platform-algorithm combination over all dataset sequences. Errors
were computed using the odometry metric from [18] over trajectory segments of lengths {7, 14, 21, 28, 35} m.

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0
1
2
3
4
5
6

Y
aw

er
ro

r
[d

eg
]

Laptop

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0
1
2
3
4
5
6

Y
aw

er
ro

r
[d

eg
]

Intel NUC

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0
1
2
3
4
5
6

Y
aw

er
ro

r
[d

eg
]

Up Board

7.0 14.0 21.0 28.0 35.0

Distance traveled [m]

0
1
2
3
4
5
6

Y
aw

er
ro

r
[d

eg
]

ODROID

svomsf msckf okvis rovio vinsmono vinsmonolc svogtsam

Fig. 3: Boxplot summarizing the statistics for angular error in yaw for the VIO pipelines on each platform-algorithm combination over all dataset sequences.
Errors were computed using the odometry metric from [18] over trajectory segments of lengths {7, 14, 21, 28, 35} m.



Laptop Intel NUC Up Board ODROID

sv
om

sf

m
sc

kf

ok
vi

s

ro
vi

o

vi
ns

m
on

o

vi
ns

m
on

ol
c

sv
og

ts
am

sv
om

sf

m
sc

kf

ok
vi

s

ro
vi

o

vi
ns

m
on

o

vi
ns

m
on

ol
c

sv
og

ts
am

sv
om

sf

m
sc

kf

ok
vi

s

ro
vi

o

vi
ns

m
on

o

vi
ns

m
on

ol
c

sv
og

ts
am

sv
om

sf

m
sc

kf

ok
vi

s

ro
vi

o

vi
ns

m
on

o

vi
ns

m
on

ol
c

sv
og

ts
am

MH 01 0.14 0.42 0.16 0.21 0.27 0.07 0.05 0.22 0.43 0.16 0.21 0.27 0.07 0.08 0.29 0.48 0.20 × 0.20 0.18 0.12 0.22 0.47 0.15 0.36 0.13 × 0.15
MH 02 0.20 0.45 0.22 0.25 0.12 0.05 0.03 0.20 0.43 0.20 0.25 0.12 0.05 0.05 0.31 0.40 0.22 × 0.18 0.19 0.05 0.24 0.63 0.20 0.23 0.08 × 0.05
MH 03 0.48 0.23 0.24 0.25 0.13 0.08 0.12 0.60 0.25 0.24 0.25 0.13 0.05 0.12 0.66 0.45 0.37 × 0.17 0.09 0.10 0.52 0.47 × 0.58 0.58 × 0.12
MH 04 1.38 0.37 0.34 0.49 0.23 0.12 0.13 1.82 0.61 0.23 0.49 0.23 0.10 0.24 2.02 0.67 0.44 × 0.12 0.15 0.24 2.28 0.64 0.42 0.81 0.12 × ×
MH 05 0.51 0.48 0.47 0.52 0.35 0.09 0.16 0.93 0.48 0.56 0.52 0.34 0.11 0.16 0.87 0.48 × × 0.35 0.26 0.13 1.12 0.48 0.62 0.78 0.21 × 0.12

V1 01 0.40 0.34 0.09 0.10 0.07 0.04 0.07 0.39 0.29 0.09 0.10 0.07 0.04 0.12 0.36 0.25 0.13 × 0.05 0.05 0.08 0.43 0.21 0.09 0.15 0.11 × 0.07
V1 02 0.63 0.20 0.20 0.10 0.10 0.06 0.11 0.63 0.20 0.18 0.10 0.10 0.05 0.16 0.78 0.22 0.22 × 0.12 0.08 0.10 0.81 0.21 × 0.24 0.11 × 0.14
V1 03 × 0.67 0.24 0.14 0.13 0.11 × × 0.67 0.20 0.14 0.13 0.12 × × 0.63 0.30 × 0.10 0.08 × × 1.52 × 0.20 0.11 × ×

V2 01 0.20 0.10 0.13 0.12 0.08 0.06 0.07 0.17 0.11 0.12 0.12 0.08 0.06 0.08 0.33 0.17 0.18 × 0.08 0.05 0.13 0.15 0.25 0.11 0.15 0.08 × 0.15
V2 02 0.37 0.16 0.16 0.14 0.08 0.06 × 0.37 0.16 0.17 0.14 0.08 0.05 × 0.59 0.18 0.30 × 0.08 0.05 × 0.46 0.19 0.26 0.17 0.06 × ×
V2 03 × 1.13 0.29 0.14 0.21 0.09 × × 1.13 0.24 0.14 0.21 0.09 × × 1.86 0.38 × 0.17 0.09 × × 1.09 × 0.23 0.16 × ×

TABLE I: Absolute translation errors (RMSE) in meters for all trials. Errors have been computed after the estimated trajectories were aligned with the
ground-truth trajectory using the method in [36]. The top performing algorithm on each platform and dataset is highlighted in bold. Trials where VINS-Mono
with loop closure (vinsmonolc) achieves better accuracy than the best standard algorithm (without loop closure) are marked in blue.

this, we have selected a set of hardware platforms on which
to run the algorithms, which represent the spectrum of
computing resources that might be deployed on a flying
system. We also utilize the EuRoC dataset [12], which is
currently the most appropriate dataset for flying robot 6DoF
trajectories.

A. Hardware Platforms

The hardware platforms that we consider include a desktop
PC with a small form factor (Intel NUC), several single-
board embedded computers (Up Board, ODROID), and a
commodity laptop, which serves as a reference point for
performance of the other systems, as well as providing
a complete assessment of these algorithms on standard
hardware, which only exists in the literature in piecemeal.
We now briefly describe the technical specifications of the
hardware platforms that we consider.

1) Laptop: This system is a Lenovo ThinkPad W540,
a common mobile workstation. It has a quad-core Intel
Core i7-4810MQ CPU with multi-threading, operating at
2.80GHz, and 32 GB of RAM. Due to the large form
factor and high power requirements (nominally 47 W) of
this system, it is not feasible for deployment on a flying
robot, but is included here as a reference.

2) Intel NUC: The NUC is a small form factor desktop
PC, which can be adapted to serve as a single-board comput-
ing system for mobile robots. It has a dual-core Intel Core i7-
5557U CPU with multi-threading, operating at 3.10GHz, and
16 GB of RAM. The lower power requirements (28 W) and
smaller size (10 x 10 cm) make the NUC a feasible option
for embedded systems, while still providing comparable
computing power to a commodity laptop.

3) UP Board: A 64-bit embedded single-board computer
system, the UP Board contains a quad-core, single-threading
Intel Atom x5-Z8350 CPU operating at 1.44GHz, with 4 GB
of RAM. Its small size (8.5 x 5.6 cm), weight (78 g), and
power consumption (12 W) make it appealing as a 64-bit
embedded system for flying robots.

4) ODROID: The ODROID XU4 is an embedded PC
containing a hybrid processing unit. The Samsung Exynos
5422 system on a chip consists of a quad-core ARM A7 at
1.5 GHz and a quad-core ARM A15 at 2.0 GHz in ARM’s
big.LITTLE configuration, allowing thread scheduling on
one cluster of cores or the other, depending on CPU load. In
addition, the ODROID has 2GB of RAM and has a similar
form factor (8.3 x 5.8 cm) and power consumption (10 W)
to the UP Board, but a smaller mass (59 g). Unlike the other
systems, the ODROID uses a 32-bit architecture, but can
make use of the NEON SIMD instruction set, while the 64-
bit systems can use SSE instructions.

B. Datasets

The EuRoC MAV datasets [12] consist of eleven visual-
inertial sequences recorded onboard a micro-aerial vehicle
while it was manually piloted around three different indoor
environments. Within each environment, the sequences in-
crease qualitatively in difficulty with increasing sequence
number. For example, Machine Hall 01 is “easy”, while
Machine Hall 05 is a more challenging sequence in the
same environment, introducing things like faster motions,
poor illumination, etc.

The sensor data was captured from a Visual-Inertial Sen-
sor, which provides stereo WVGA monochrome images at
20 Hz, and temporally synchronized IMU data at 200 Hz.
We use only the left camera image and IMU. In the Machine
Hall sequences, ground truth positioning measurements were
provided by a Leica MS50 laser tracker, while in the Vicon
Room sequences they were provided by Vicon motion cap-
ture systems. The sequences, as well as the ground truth and
sensor calibration data are publicly available.8

C. Evaluation

Each hardware platform was set up with Ubuntu 16.04
and ROS Kinetic, with the exception of the ODROID when
running the OKVIS and VINS-Mono trials. Due to software

8http://projects.asl.ethz.ch/datasets/doku.php?
id=kmavvisualinertialdatasets



incompatibilities, these two sets of tests needed to be run
with Ubuntu 14.04 and ROS Indigo. Each VIO algorithm
was configured so that it would process the sensor data as it
was played back in real time, in order to simulate the live
stream of sensor data that a flying robot would have available
for estimating its state.

The authors of each algorithm provided recommended
parameter settings, which were maintained across all trials.
Although tuning parameters specifically for each sequence
may improve performance, the goal of this comparison is to
provide an assessment of the suitability of these algorithms
and hardware platforms for use in general flying robot op-
erations. The following exceptions to this general execution
policy were either recommended by the algorithm authors or
necessitated by computational constraints:
OKVIS On the Up Board and ODROID, in order to achieve

real time performance, the maximum number of key-
points was reduced from 400 to 200, the keyframe
window was reduced from 5 to 3, and the number of
imu linked frames was reduced from 3 to 2.

ROVIO On the ODROID, the number of features was re-
duced from 25 to 10 in order to run successfully in real
time. On the Up Board, no combination of parameters
was found such that the filter converged successfully,
even after attempts to reduce the computational load.

VINS-Mono The maximum number of tracked features was
reduced from 150 to 100 in order to run in real time
on the Up Board and ODROID. No parameter combi-
nation was successful in running VINS-Mono with loop
closure activated on the ODROID.

SVO+MSF Due to the unobservability of visual scale in
monocular visual odometry, it was necessary to boot-
strap SVO with the correct scale by providing the
ground truth poses during initialization. Once initial-
ized, the poses then provided by SVO to MSF are of a
scale consistent with the inertial measurements.

Additionally, compiler settings were set to the maximum
level of optimization recommended by the algorithm authors,
including application of SSE and NEON SIMD instructions
wherever possible.

During each trial, the pose estimate was recorded after
each state update from an input image. The time to process
each image update, from receiving the image to updating the
pose, was also recorded. The CPU and memory utilization
were also sampled at a rate of 1 Hz during execution,
measuring the total computational load in percentage of a
single core, and percentage of total RAM allocated. If a VIO
pipeline failed to initialize on a trial, it was restarted, and the
first successful trial was taken.

For each trial, we performed sim3 trajectory alignment
to the ground truth according to the method from [36] and
then computed the RMSE position error over the aligned
trajectory. These results are shown in Table I, with the best
performing algorithm highlighted in bold for each platform
and sequence.

We also computed the odometric error using the metric
in [18]. Differently from RMSE, using this metric, statistics

about the accuracy of an algorithm are collected by aligning
each estimated pose with its corresponding ground truth pose
and then measuring the error in the estimate a fixed distance
farther along the trajectory. In Figs. 2 and 3, we show
statistics for the translation and yaw error accumulated over
trajectory segments of lengths {7, 14, 21, 28, 35} m9 over all
sequences for each platform-algorithm combination.

We similarly collect all of the CPU load, memory utiliza-
tion, and time per frame measurements over all successful
trials, and show them in Figs. 4, 5, and 6, respectively.
These box and whisker plots show a box for the middle two
quartiles, a line through the box for the median, and whiskers
for the upper and lower quartiles.

IV. DISCUSSION

An additional representation of the results in Sec. III is
shown in Fig. 1. These scatter plots show the CPU usage,
memory usage, and processing time per frame vs. RMSE,
where each marker summarizes the performance of one
algorithm on one hardware platform, over all of the EuRoC
datasets. The markers are coded in color and shape by their
algorithm and hardware platform, respectively, and illustrate
the trade-offs between error and computational resources.

As the oldest algorithm considered in this evaluation,
MSCKF still achieves competitive performance in some
aspects of the benchmark. The algorithm was successful
in completing all of the sequences on all of the hardware
platforms, and the accuracy was consistent regardless of the
platform. In addition to robustness, it generally provided
modest resource usage and low per-frame processing time.
However, most of the modern algorithms are able to achieve
higher overall accuracy with a manageable increase in re-
source requirements.

OKVIS demonstrated accurate performance across all of
the hardware platforms, including the embedded systems, de-
spite low update rates there due to long per-frame processing
times. This indicates that the underlying algorithm is robust,
but the tolerance of low frame rate may be due in part to the
low-speed trajectories in the EuRoC dataset.

While ROVIO exhibited tightly bounded and consistent
resource usage, as well as accurate performance on all of
the dataset sequences, it failed to run on the Up Board. On
the other hardware platforms, the performance was accurate
and consistent, suggesting good robustness to challenging
trajectories, given a sufficiently powerful computer.

The performance of VINS-Mono was the most consis-
tently accurate and robust across all of the hardware plat-
forms. Enabling loop closure further improved the results,
although this was not possible with the constrained compu-
tation available on the ODROID. This superior performance
comes at the cost of a potentially prohibitive level of resource
usage. In deploying this algorithm for state estimation on
a flying robot, the user must consider the computational
resources that will remain for navigation, control, and other
perception applications.

9These evaluation distances were chosen based on the length of the
shortest trajectory in the dataset, Vicon Room 2, at 36 m.



0
50

100
150
200
250
300
350

C
P

U
U

sa
ge

%
Laptop

0
50

100
150
200
250
300
350

C
P

U
U

sa
ge

%

Intel NUC

0
50

100
150
200
250
300
350

C
P

U
U

sa
ge

%

Up Board

0
50

100
150
200
250
300
350

C
P

U
U

sa
ge

%

ODROID
svomsf

msckf

okvis

rovio

vinsmono

vinsmonolc

svogtsam

Fig. 4: CPU utilization statistics summarizing performance on all successful sequences for each platform-algorithm combination. Usage is represented as
a percentage of a single CPU core on the given platform.

0
10
20
30
40
50
60
70
80

M
em

or
y

U
sa

ge
%

Laptop

0
10
20
30
40
50
60
70
80

M
em

or
y

U
sa

ge
%

Intel NUC

0
10
20
30
40
50
60
70
80

M
em

or
y

U
sa

ge
%

Up Board

0
10
20
30
40
50
60
70
80

M
em

or
y

U
sa

ge
%

ODROID
svomsf

msckf

okvis

rovio

vinsmono

vinsmonolc

svogtsam

Fig. 5: Memory utilization statistics summarizing performance on all successful sequences for each platform-algorithm combination. Usage is represented
as a percentage of the available RAM on the given platform.

0
50

100
150
200
250
300
350
400

P
ro

c.
T

im
e

[m
s]

Laptop

0
50

100
150
200
250
300
350
400

P
ro

c.
T

im
e

[m
s]

Intel NUC

0
50

100
150
200
250
300
350
400

P
ro

c.
T

im
e

[m
s]

Up Board

0
50

100
150
200
250
300
350
400

P
ro

c.
T

im
e

[m
s]

ODROID
svomsf

msckf

okvis

rovio

vinsmono

vinsmonolc

svogtsam

Fig. 6: Statistics for per-frame processing time, summarizing performance on all successful sequences for each platform-algorithm combination. Times
were measured from the arrival of an input image until the state update for that image was completed, in milliseconds.

The only loosely-coupled pipeline considered here,
SVO+MSF provides the highest level of computational effi-
ciency, but with the corresponding lowest level of accuracy.
This algorithm also required manual initialization in order
to correctly estimate the scale of its pose, unlike the tightly-
coupled approaches that estimate the scale directly in the
state. However, for many flying robot applications, the level
of accuracy that is possible with this configuration may be
sufficient.

SVO+GTSAM produces the most accurate trajectories for
many of the platform-dataset combinations, when consider-
ing the algorithms without explicit loop closing. It is able
to accomplish this with relatively high CPU utilization, and
high memory utilization, but with a consistently low frame
processing time due to the decoupled frontend and backend.
However, this approach is not as robust as other methods.
One reason for this is that poorly triangulated visual features
in the pose graph can cause numerical instabilities, causing
the backend to fail. Consequently, despite some appealing
properties for state estimation, this approach may not be

appropriate for deployment on a flying robot.
The improvement in CPU utilization from the laptop to

the NUC indicates that some of the algorithms, namely
SVO+MSF, SVO+GTSAM, and VINS-Mono, are sensitive
to CPU clock speed. If the algorithms run primarily in one
compute-intensive thread, then a performance boost can be
achieved by increasing clock speed. Further evidence for
the importance of CPU clock speed is provided by the
failure of ROVIO on the Up Board. Even with reduced
parameter settings, the filter diverged quickly on all trials on
this platform, suggesting that the update rate was too slow
with the low clock rate of the Up Board’s CPU, despite its
otherwise sufficient computing resources.

These results indicate a few conclusions regarding the
choice of state estimation algorithm for a flying robot system
with an embedded single-board computer. Given a computa-
tionally constrained hardware platform like the Up Board or
ODROID, SVO+MSF gives the most efficient performance,
although it makes a significant sacrifice in overall accuracy,
as well as robustness on challenging trajectories. If the



resource budget permits allocation of a significantly higher
portion of computation to state estimation, then VINS-Mono
(with loop closure if possible) provides the highest level of
accuracy and robustness across all of the hardware platforms
and sequences. A good compromise between these two
extremes is ROVIO, which can provide better accuracy than
SVO+MSF and much lower resource utilization than VINS-
Mono. However, this comes with the caveat that it was not
possible to run ROVIO on the Up Board, so the algorithm is
more sensitive to per-frame processing time than the others.

V. CONCLUSION

In this work, we have conducted a survey of the state
estimation performance of publicly-available visual-inertial
odometry algorithms on hardware platforms with a range of
computational resources. In evaluating these algorithms, our
goal was to benchmark their performance on hardware and
trajectories that are representative of state estimation for a
flying robot with limited onboard computing power.

The results presented in Sec. III suggest that, as the reader
may expect, there is no free lunch in visual state estimation.
Accuracy and robustness can be improved with additional
computation, but on systems with limited resources, finding
the right balance between the competing requirements can
be challenging. We hope that the results and conclusions
presented in this paper may help members of the research
community in finding appropriate compromises for their
flying robot systems.

ACKNOWLEDGEMENT

Thanks to Stefan Leutenegger, Michael Bloesch, and Tong
Qin for their help in tuning OKVIS, ROVIO, and VINS-
Mono, respectively. Special thanks to Kenneth Chaney, Alex
Zhu, and Kostas Daniilidis for their assistance with the
MSCKF code and experiments.

REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in ICRA, 2007.

[2] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial SLAM using nonlinear optimization,”
Int. J. Robot. Research, vol. 34, no. 3, pp. 314–334, 2015.

[3] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct EKF-based approach,” in IROS, 2015.

[4] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and ver-
satile monocular visual-inertial state estimator,” arXiv preprint
arXiv:1708.03852, 2017.

[5] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“SVO: Semidirect visual odometry for monocular and multicamera
systems,” IEEE Trans. Robot., vol. 33, no. 2, pp. 249–265, 2017.

[6] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to MAV
navigation,” in IROS, 2013.

[7] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense 3D
mapping with a quadrotor MAV,” J. Field Robot., vol. 33, no. 4, pp.
431–450, 2016.

[8] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Trans.
Robot., vol. 33, no. 1, pp. 1–21, 2017.

[9] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Int. J. Robot. Research, vol. 31, pp. 217–236, Feb. 2012.

[10] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans.
Robot., vol. 33, no. 5, pp. 1255–1262, 2017.

[11] J. Engel, J. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in ECCV, 2014.

[12] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
Int. J. Robot. Research, vol. 35, pp. 1157–1163, 2015.

[13] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly,
A. J. Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham,
and S. Furber, “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM,” in ICRA, 2015.

[14] A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S. Jagtap,
M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M. O’Kane, and
I. Rekleitis, “Experimental comparison of open source vision-based
state estimation algorithms,” in ISER, 2017.

[15] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IROS,
2012.

[16] J. Engel, V. Usenko, and D. Cremers, “A photometrically cali-
brated benchmark for monocular visual odometry,” arXiv preprint
arXiv:1607.02555, 2016.

[17] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in ICRA,
2014.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in CVPR, 2012.

[19] J.-L. Blanco, F.-A. Moreno, and J. Gonzalez-Jimenez, “The Málaga
Urban Dataset: High-rate stereo and lidars in a realistic urban sce-
nario,” Int. J. Robot. Research, vol. 33, no. 2, pp. 207–214, 2014.

[20] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 796–803,
2017.

[21] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “VINet:
Visual-inertial odometry as a sequence-to-sequence learning problem,”
in AAAI, 2017.

[22] M. K. Paul, K. Wu, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis,
“A comparative analysis of tightly-coupled monocular, binocular, and
stereo VINS,” in ICRA, 2017.

[23] Y. Song, S. Nuske, and S. Scherer, “A multi-sensor fusion MAV state
estimation from long-range stereo, IMU, GPS and barometric sensors,”
Sensors, vol. 17, no. 1, 2017.

[24] A. Solin, S. Cortes, E. Rahtu, and J. Kannala, “PIVO: Probabilis-
tic inertial-visual odometry for occlusion-robust navigation,” arXiv
preprint arXiv:1708.00894, 2017.

[25] S. Houben, J. Quenzel, N. Krombach, and S. Behnke, “Efficient multi-
camera visual-inertial slam for micro aerial vehicles,” in IROS, 2016.

[26] K. Eckenhoff, P. Geneva, and G. Huang, “Direct visual-inertial navi-
gation with analytical preintegration,” in ICRA, 2017.

[27] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Trans. Pattern Anal. Machine Intell., vol. PP, no. 99, pp. 1–1, 2017.

[28] N. Krombach, D. Droeschel, and S. Behnke, “Combining feature-
based and direct methods for semi-dense real-time stereo visual
odometry,” in Int. Conf. Intell. Auton. Sys., 2017, pp. 855–868.

[29] A. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial
odometry,” in CVPR, 2017.

[30] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Proc. Alvey Vision Conf., 1988, pp. 147–151.

[31] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in ICCV, 2011.

[32] A. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[33] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 32, no. 1, pp. 105–119, Jan. 2010.

[34] J. Shi and C. Tomasi, “Good features to track,” in CVPR, 1994.
[35] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”

Georgia Institute of Technology, Tech. Rep. GT-RIM-CP&R-2012-
002, Sep. 2012.

[36] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 13, no. 4, 1991.


