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Abstract
In this paper, we focus on the problem of motion tracking in unknown environments using visual and inertial sensors.
We term this estimation task visual–inertial odometry (VIO), in analogy to the well-known visual-odometry problem. We
present a detailed study of extended Kalman filter (EKF)-based VIO algorithms, by comparing both their theoretical
properties and empirical performance. We show that an EKF formulation where the state vector comprises a sliding win-
dow of poses (the multi-state-constraint Kalman filter (MSCKF)) attains better accuracy, consistency, and computational
efficiency than the simultaneous localization and mapping (SLAM) formulation of the EKF, in which the state vector
contains the current pose and the features seen by the camera. Moreover, we prove that both types of EKF approaches are
inconsistent, due to the way in which Jacobians are computed. Specifically, we show that the observability properties of
the EKF’s linearized system models do not match those of the underlying system, which causes the filters to underestimate
the uncertainty in the state estimates. Based on our analysis, we propose a novel, real-time EKF-based VIO algorithm,
which achieves consistent estimation by (i) ensuring the correct observability properties of its linearized system model,
and (ii) performing online estimation of the camera-to-inertial measurement unit (IMU) calibration parameters. This
algorithm, which we term MSCKF 2.0, is shown to achieve accuracy and consistency higher than even an iterative,
sliding-window fixed-lag smoother, in both Monte Carlo simulations and real-world testing.

Keywords
vision-aided inertial navigation, visual-inertial odometry, extended Kalman filter consistency, visual-inertial SLAM

1. Introduction

This paper addresses the problem of tracking a vehicle’s
egomotion in GPS-denied environments, using an inertial
measurement unit (IMU) and a monocular camera. Our
focus is on estimating the pose of a vehicle moving in an
unknown environment. Therefore, we do not assume that a
feature map is available in advance, as in map-based local-
ization methods e.g., (Wu et al., 2005; Trawny et al., 2007).
Moreover, we do not aim at building such a map. Our goal
is to estimate the vehicle trajectory only, using the inertial
measurements and the observations of naturally occurring
features. This task is similar to the well-known visual-
odometry (VO) problem (Nister et al., 2004), with the added
characteristic that an IMU is available. We thus term the
approach visual–inertial odometry (VIO). VIO methods
have attracted significant research interest, because they can
either be used as stand-alone pose-tracking methods, or as
part of larger localization systems. For instance, VIO esti-
mates can be integrated with a loop-closure detection mod-
ule to provide long-term, bounded-uncertainty localization
(Mourikis and Roumeliotis, 2008; Jones and Soatto, 2011).

A key requirement for VIO algorithms is that their com-
putational complexity remains bounded, both as a function
of time and as a function of the size of the trajectory. Most
present-day algorithms in this class are either extended
Kalman filter (EKF)-based methods (Mourikis and Roume-
liotis, 2007; Jones and Soatto, 2011; Kelly and Sukhatme,
2011), or methods utilizing iterative minimization over a
window of states (Konolige and Agrawal, 2008; Dong-Si
and Mourikis, 2011; Konolige et al., 2011). The latter are
generally considered to be more accurate, as they employ
re-linearization at each iteration to better deal with non-
linearities. However, the need for multiple iterations also
incurs a high computational cost, compared to EKF-based
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methods. Ideally, one would like to obtain accuracy similar
to, or better than, that of iterative-minimization algorithms,
but at the computational cost of an EKF algorithm. In this
paper, we show how this can be achieved. Specifically, we
carry out an in-depth analysis of EKF-based VIO, based
on which we develop a novel real-time EKF algorithm.
Our results show that this algorithm is more accurate than
both existing EKF alternatives and iterative-minimization
VIO.

As a starting point for our analysis, we compare the
performance of two families of EKF-based VIO estima-
tors: simultaneous localization and mapping (SLAM) and
sliding-window algorithms. In the former class of meth-
ods, the filter state vector contains the current IMU pose
as well as the features visible by the camera (Pinies et al.,
2007; Jones and Soatto, 2011; Kleinert and Schleith, 2010),
while in the latter the state vector contains only a sliding
window of poses, and the feature measurements are used
to apply probabilistic constraints between them (Diel et al.,
2005; Mourikis and Roumeliotis, 2007). Out of this sec-
ond class of methods, we focus on the multi-state-constraint
Kalman filter (MSCKF) algorithm (Mourikis and Roumeli-
otis, 2007), which we show to be the maximum a posteriori
(MAP) estimator up to linearization.

In this paper we show, through extensive Monte Carlo
simulations emulating real-world datasets, that the MSCKF
algorithm outperforms EKF-SLAM methods by a wide
margin, in terms of accuracy, consistency, and computa-
tional efficiency. We attribute this primarily to the fact that
the MSCKF makes no Gaussianity assumptions on the pdf
of the features’ positions, something that is required in
EKF-SLAM. Having shown the advantages of the MSCKF
over EKF-SLAM methods, we then focus on analyz-
ing and further improving its performance. Specifically,
our approach relies on improving the consistency of the
MSCKF, which, in turn, also improves the accuracy of the
estimates. As defined in (Bar-Shalom et al., 2001, Section
5.4), a recursive estimator is consistent when the estimation
errors are zero-mean and have covariance matrix equal to
that reported by the estimator.

We identify and address two key causes of inconsistency
in the MSCKF. The first cause is related to a fundamental
shortcoming of the EKF: we prove that, due to the way the
EKF Jacobians are computed, even though the IMU’s rota-
tion about gravity (the yaw) is not observable in VIO (see,
e.g., (Jones and Soatto, 2011; Kelly and Sukhatme, 2011;
Martinelli, 2012)), it appears to be observable in the lin-
earized system model used by the MSCKF, and the same
occurs in EKF-SLAM. Thus, the estimator erroneously
believes it has more information than it actually does, and
reports a covariance matrix for the state that underestimates
the actual one. The second cause of inconsistency is that,
in most practical cases, the extrinsic calibration parameters
(rotation and translation) between the camera and IMU are
only known with finite precision. If (as is common prac-
tice) these parameters are assumed to be perfectly known,

the unmodeled uncertainty will result in under-reporting of
the state estimates’ covariance.

To improve the consistency of the MSCKF, we address
the two problems identified above. First, we show that a
modification in the way in which the filter Jacobians are
computed can restore the appropriate observability proper-
ties for the filter’s linearized system model. We note that, as
part of this modification, we derive a closed-form expres-
sion for the IMU’s error-state transition matrix. This expres-
sion can be used in any case in which an IMU is used for
estimation (e.g. not only in VIO, but also in GPS-aided
INS), and to the best of our knowledge this is the first
time such an expression has been proposed. In addition,
to address the uncertainty in the knowledge of the camera-
to-IMU transformation, we include these parameters in the
MSCKF’s state vector, so that they can be estimated online,
along with the IMU state.

We term the modified MSCKF algorithm, which ensures
the correct observability properties of its linearized sys-
tem model and performs online calibration of the camera-
to-IMU transformation, MSCKF 2.0. Our simulation and
experimental results demonstrate that this novel algorithm
shows substantial improvement in consistency compared to
all of the existing EKF alternatives. Moreover, the algo-
rithm outperforms the alternatives in terms of accuracy,
since a more accurate representation of the uncertainty
results in better state updates. More importantly, however,
our results show that the MSCKF 2.0 obtains higher con-
sistency and accuracy even than a comparable algorithm
that uses sliding-window iterative minimization, which has
much higher computational cost. This indicates that hav-
ing a linearized system model with appropriate observ-
ability properties may be more important than using re-
linearization to better approximate the nonlinear measure-
ment models.

2. Related work

The simplest (and most computationally efficient)
approaches to VIO are loosely coupled, i.e. methods that
process the IMU and image measurements separately.
For instance, some methods first process the images for
computing relative motion estimates between consecu-
tive poses, and subsequently fuse these with the inertial
measurements (Roumeliotis et al., 2002; Diel et al., 2005;
Tardif et al., 2010; Weiss and Siegwart, 2011; Ma et al.,
2012). Alternatively, IMU measurements can be processed
separately for extracting rotation estimates, and fused in
an image-based estimation algorithm (Oskiper et al., 2007;
Konolige et al., 2011; Brockers et al., 2012). Separately
processing the two sources of information leads to a
reduction in computational cost, and as a result loosely
coupled methods are typically suited for systems with very
limited resources, such as MAVs (Brockers et al., 2012).
However, this comes at the expense of information loss:
for instance, using feature measurements for egomotion
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estimation between pairs of images ignores the correlations
between consecutive timesteps (Mourikis et al., 2007), and
processing IMU measurements separately does not allow
for optimal estimation of sensor biases.

In this work, we are therefore interested in tightly cou-
pled methods, which directly fuse the visual and inertial
data, thus achieving higher precision. As mentioned pre-
viously, these are either based on iterative minimization
over a sliding window of states, or are EKF formulations.1

The former methods (e.g., (Oskiper et al., 2007; Konolige
and Agrawal, 2008; Dong-Si and Mourikis, 2011; Kono-
lige et al., 2011; Lupton and Sukkarieh, 2012)), essentially
implement bundle adjustment in a sliding window of states
(Engels et al., 2006) with the addition of IMU measure-
ments. The need for multiple iterations during minimiza-
tion results in increased computational cost, however. In
this paper, we show that a properly designed EKF esti-
mator can attain performance higher than that of iterative
minimization, at only a fraction of the computation.

To fuse the visual and inertial measurements, the most
commonly used tightly-coupled EKF estimator is EKF-
based SLAM, in which the current camera pose and fea-
ture positions are jointly estimated (Kim and Sukkarieh,
2007; Pinies et al., 2007; Jones and Soatto, 2011; Kleinert
and Schleith, 2010; Kelly and Sukhatme, 2011). To keep
the computational cost bounded in EKF-SLAM algorithms,
features that move out of the camera’s field of view must be
removed from the state vector (Munguia and Grau, 2007).
One disadvantage of EKF-SLAM is its computational com-
plexity, cubic in the number of features in the state vec-
tor. When many features are visible (the common situation
in images of natural scenes), EKF-SLAM’s runtime can
be unacceptably high (in fact, higher than that of iterative
minimization in certain cases (Strasdat et al., 2010)).

To address this problem, the MSCKF algorithm was pro-
posed as an alternative EKF-based VIO method (Mourikis
and Roumeliotis, 2007; Shkurti et al., 2011). In contrast
to EKF-SLAM, the MSCKF maintains a sliding window
of poses in its state vector, and uses the feature measure-
ments to impose constraints on these poses. This results in
a computational complexity that is linear in the number of
features, and thus the MSCKF is faster than EKF-SLAM.
In this paper, we compare the MSCKF’s accuracy and con-
sistency to those of EKF-SLAM methods, and show that the
MSCKF outperforms EKF-SLAM in these respects as well.

A key contribution of this work is the analysis and
improvement of the consistency of EKF-based vision-
aided inertial navigation. Past work on the consistency
of 3D vision-based localization has primarily focused
on the parameterization of feature positions. (Civera
et al., 2008) showed that the Cartesian-coordinate (XYZ)
parametrization results in severely non-Gaussian probabil-
ity density functions (pdfs) for the features, and degrades
accuracy and consistency. Therefore, an inverse-depth fea-
ture parametrization was proposed, which is better suited
for the camera measurement model, and results in improved
performance. Sola (2010) proposed an anchored homoge-
neous feature parametrization that was shown to further

improve the filter’s consistency. In our work, we compare all
of the above parameterizations in VIO and show that, while
the parameterization of (Sola, 2010) yields superior results
to the alternatives, its performance is still worse than that of
the MSCKF algorithm.

In this work, we take a different approach to exploring the
consistency properties of EKF-based VIO. Specifically, our
approach is motivated by recent work examining the rela-
tionship between the observability properties of the EKF’s
linearized system model and the filter’s consistency, in the
context of 2D SLAM (Huang et al., 2008, 2010). These
works showed that, due to the way in which Jacobians are
computed in the EKF, the robot’s orientation appears to be
observable in the linearized system model, while it is not in
the actual, nonlinear system. As a result of this mismatch,
the filter produces too small estimates for the uncertainty of
the orientation estimates, and becomes inconsistent.

Our analysis in Section 4 shows that the same problem
affects EKF-based VIO in 3D. This result first appeared
in an earlier conference version of this paper (Li and
Mourikis, 2012a). Moreover, similar results were inde-
pendently derived in subsequent papers by (Hesch et al.,
2012; Kottas et al., 2012). Compared with our earlier work,
we here additionally (i) compare the performance of the
MSCKF to EKF-SLAM based methods, (ii) show that
the same, erroneous observability properties affect EKF-
SLAM approaches, (iii) address the issue of inconsistency
caused by inaccurate knowledge of the camera-to-IMU cal-
ibration, and (iv) present additional, large-scale simulation
and experimental results.

3. EKF-based VIO

Consider a mobile platform, equipped with an IMU and a
camera, moving with respect to a global coordinate frame,
{G}. Our goal is to perform VIO, i.e. to track the posi-
tion and orientation of the platform using inertial mea-
surements and observations of naturally occurring point
features, whose positions are not known a priori. To this
end, we affix a coordinate frame {I} to the IMU, and track
the motion of this frame with respect to the global frame.
In what follows, we first describe the parameterization
we employ for the IMU state, and then discuss the two
alternative tightly-coupled EKF formulations for VIO, and
compare their performance.

3.1. IMU state parameterization

Following standard practice, the IMU state vector at time
step � is defined as the 16 × 1 vector:2

xI� =
[

I�
G q̄T pT

� vT
� bT

g�
bT

a�

]T
(1)

where I�
G q̄ is the unit quaternion (Trawny and Roumeliotis,

2005) representing the rotation from the global frame to the
IMU frame at time step �, Gp� and Gv� are the IMU position at St Petersburg State University on February 4, 2014ijr.sagepub.comDownloaded from 
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and velocity in the global frame, and bg�
and ba�

are the
gyroscope and accelerometer biases.

To define the IMU error state, we use the standard addi-
tive error for the position, velocity, and biases (e.g. Gp̃ =
Gp − Gp̂). For the orientation error, out of the several pos-
sible options that exist, the preferable ones are those that
(i) are local, so that singularities are avoided, and (ii) use
a minimal, three-dimensional representation of the orienta-
tion error. To obtain a local parameterization, we define the
orientation error based on the quaternion δq̄ that describes
the difference between the true and estimated orientation.
Specifically, we define

I
Gq̄ = I

G
ˆ̄q ⊗ δq̄ ⇒ δq̄ = I

G
ˆ̄q−1 ⊗ I

Gq̄ (2)

where ⊗ denotes quaternion multiplication. Intuitively, δq̄,
is the (small) rotation that is needed to bring the estimated
global frame to match the true one. To obtain a minimal rep-
resentation for this rotation, we note that δq̄ can be written
as

δq̄ =
[

1
2

Gθ̃√
1 − 1

4
Gθ̃

T
Gθ̃

]
�
[

1
2

Gθ̃

1

]
(3)

where Gθ̃ is a 3 × 1 vector describing the orientation errors
about the three axes. With the above error definition, the
IMU error state is defined as the 15 × 1 vector:

x̃I =
[

Gθ̃
T Gp̃T GṽT b̃

T
g b̃

T
a

]T
(4)

It is worth pointing out that our choice of the orientation-
error parameterization is guided by the analysis of (Li and
Mourikis, 2012a). That analysis showed that defining the
orientation error based on the difference between the true
and estimated global frame, as in (2)–(3), is preferable to
defining it as the difference between the true and estimated
IMU frame. Specifically, the latter choice (used, for exam-
ple, by (Mourikis and Roumeliotis, 2007)) causes undesir-
able terms to appear in the observability matrix of the EKF’s
linearized system model.

3.2. EKF-based SLAM

In EKF-SLAM algorithms, the filter state vector contains
the current IMU state, xI� , and a representation of the fea-
ture positions. Thus, the filter state vector at time-step � is
defined as

x� =
[
xT

I�
fT
1 · · · fT

n�

]T
(5)

where fi, i = 1, . . . , n� are the features included in the
state vector at time step �. These could be parameterized
in different ways. In this paper, we will consider the “tradi-
tional” XYZ coordinate parametrization, the inverse-depth
parametrization (Civera et al., 2008), and the anchored
homogeneous parametrization (Sola, 2010). These are the
most commonly used parameterizations in practice, and the

two latter ones specifically aim at increasing the filter’s
consistency and accuracy.

The EKF-SLAM equations are well known, and we
therefore only briefly describe them here, to introduce the
necessary notation. In standard practice, the IMU measure-
ments are used to propagate the IMU state. To describe the
way in which the errors in the propagated state estimate
depend on the estimation errors at the previous time step,
the EKF employs a linearized equation of the form:

x̃I�+1|� � �I� x̃I�|� + wd�
(6)

where �I is the IMU error-state transition matrix, and wd�

is a noise vector, with covariance matrix Qd�
. The filter’s

covariance matrix is also propagated according to:

P�+1|� =
[
�I�PII�|��

T
I�

+ Qd�
�I�PIF�|�

PT
IF�|��

T
I�

PFF�|�

]

where PII�|� is the covariance matrix of the IMU state, PFF�|�
is the covariance matrix of the features, and PIF�|� the cross-
covariance between them.

Assuming a calibrated perspective camera, the obser-
vation of feature i at time step � is described by the
equation:3

zi� = h( xI� , fi) +ni� =

⎡
⎢⎣

C� xfi
C� zfi
C� yfi
C� zfi

⎤
⎥⎦+ ni� (7)

where ni� is the measurement noise vector, modeled as zero-
mean Gaussian with covariance matrix σ 2I2, and the vector
C�pfi

= [C�xfi
C�yfi

C�zfi]
T is the position of the feature

with respect to the camera at time step �:

C�pfi
= C

I RI�
G R
(

Gpfi
− GpI�

)+ CpI (8)

with {C
I R, CpI} being the rotation and translation between

the camera and the IMU. In EKF-SLAM, the feature obser-
vations are used directly for updating the state estimates.
For this process, we employ the residual between the
actual and expected feature measurement, and its linearized
approximation:

ri� = zi� − h( x̂I�|�−1 , f̂i�|�−1 )

� Hi�

(
x̂�|�−1

)
x̃�|�−1 + ni� (9)

where Hi�( x̂�|�−1) is the Jacobian matrix of h with respect
to the filter state, evaluated at the state estimate x̂�|�−1.
This is a sparse matrix, containing non-zero blocks only at
the locations corresponding to the IMU state (position and
orientation) and the ith feature:

Hi�( x̂�|�−1) = [HIi�( x̂�|�−1) 0 · · · Hfi�( x̂�|�−1) · · · 0] (10)

Once ri� and Hi� have been computed, a Mahalanobis gating
test is performed, and if successful the standard EKF update
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equations are employed (Maybeck, 1982). Depending on
the particular feature parameterization used, the exact form
of the above Jacobians, as well as the “bookkeeping”
required in the filter, will be slightly different.

In VIO, we must ensure that the computational cost of
the algorithm remains bounded. To achieve this, features
are removed from the state vector immediately once they
leave the field of view of the camera. This of course means
that the filter cannot process feature re-observations that
occur when an area is re-visited. However, such “loop-
closure” events do not need to be handled by a VIO algo-
rithm: if desired, they can be handled by a separate algo-
rithm running in parallel, as done for example in (Mourikis
and Roumeliotis, 2008). In the “prototypical” VIO sce-
nario, where the camera keeps moving in new areas, the
EKF-SLAM algorithm described above will use all of the
available feature information.

3.3. MSCKF

In contrast to EKF-SLAM, the MSCKF is an EKF algo-
rithm that maintains in its state vector a sliding window of
poses, and uses feature observations to impose probabilistic
constraints between these poses (Mourikis and Roumelio-
tis, 2007). The state vector of the MSCKF at time step � is
defined as

x� =
[
xT

I�
πT

�−1 πT
�−2 · · · πT

�−N

]T
(11)

where π i = [Ii
Gq̄T Gp

T
i ]T, for i = � − N , . . . , � − 1, are the

IMU poses at the times the last N images were recorded.
During MSCKF propagation, the IMU measurements are

used to propagate the IMU state estimate and the filter
covariance matrix, similarly to EKF-SLAM. The difference
lies in the way the feature measurements are used. Specifi-
cally, every time a new image is recorded by the camera, the
MSCKF state and covariance are augmented with a copy of
the current IMU pose, and the image is processed to extract
and match features. Each feature is tracked until all of its
measurements become available (e.g. until it goes out of the
field of view), at which time an update is carried out using
all of the measurements simultaneously.

To present the update equations, we consider the case
where the feature fi, observed from the N poses in the
MSCKF state vector, is used for an update at time step
�. The first step of the process is to obtain an estimate of
the feature position, Gp̂fi

. To this end, we use all of the
feature’s measurements to estimate its position via Gauss–
Newton minimization (Mourikis and Roumeliotis, 2007).
Subsequently, we compute the residuals (for j = � −
N , . . . , � − 1):

rij = zij − h( π̂ j|�−1, Gp̂fi
) (12)

� Hπ ij ( π̂ j|�−1, Gp̂fi
) π̃ j|�−1 + Hfij ( π̂ j|�−1, Gp̂fi

) Gp̃fi

+ nij (13)

where π̃ j|�−1 and Gp̃fi
are the error of the current estimate

for the jth pose and the error in the feature position respec-
tively, and the matrices Hπ ij and Hfij are the corresponding
Jacobians, evaluated using π̂ j|�−1 and Gp̂fi

. At this point we
note that, in the EKF algorithm, to be able to employ a mea-
surement residual, r, for a filter update, we must be able to
write this residual in the form r � Hx̃ + n, where x̃ is the
error in the state estimate, and n is a noise vector that is
independent from x̃. The residual in (13) does not have this
form, as the feature position error Gp̃fi

is correlated to both
π̃ j|�−1 and nij (this is because Gp̂fi

is computed as a function
of π̂ j|�−1 and zij, j = � − N , . . . , � − 1). Therefore, in the
MSCKF we proceed to remove Gp̃fi

from the residual equa-
tions. For this purpose, we first form the vector containing
the N residuals from all of the feature’s measurements:

ri � Hπ i( x̂�|�−1, Gp̂fi
) x̃�|�−1 + Hfi( x̂�|�−1, Gp̂fi

) Gp̃fi
+ ni

(14)

where ri and ni are block vectors with elements rij and nij,
respectively, and Hπ i and Hfi are matrices with block rows
Hπ ij and Hfij . Subsequently, we define the residual vector

ro
i = VT

i ri, where Vi is a matrix whose columns form a
basis for the left nullspace of Hfi . From (14), we obtain

ro
i = VT

i ri � Ho
i ( x̂�|�−1, Gp̂fi

) x̃�|�−1 + no
i (15)

where Ho
i = VT

i Hπ i and no
i = VT

i ni. Note that the resid-
ual vector ro

i is now independent of the errors in the feature
coordinates, and thus can be used for an EKF update. It
should also be mentioned that, for efficiency, ro

i and Ho
i

are computed without explicitly forming Vi (Mourikis and
Roumeliotis, 2007).

Once ro
i and Ho

i are computed, we proceed to carry out a
Mahalanobis gating test for the residual ro

i . Specifically, we
compute

γi =( ro
i )T
(
Ho

i P�|�−1( Ho
i )T +σ 2I

)−1
ro

i (16)

and compare it against a threshold given by the 95th per-
centile of the χ2 distribution with 2N − 3 degrees of free-
dom (2N−3 is the number of elements in the residual vector
ro

i ). If the feature passes the test, we proceed to use ro
i for

an EKF update, together with the residuals of all other fea-
tures that pass the gating test. After this update takes place,
we remove from the sliding window those poses whose fea-
tures have all been used for updates. An overview of the
MSCKF is given in Algorithm 1.

3.4. Comparison of the MSCKF and EKF-SLAM
approaches

We now compare the two VIO methods discussed in the pre-
ceding subsections. We start by noting that the MSCKF and
EKF-SLAM make use of the same measurement informa-
tion. Specifically, in Appendix B we prove that if the system
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Algorithm 1 Multi-state-constraint Kalman filter
(MSCKF)

Propagation: Propagate state vector and covariance
matrix using IMU readings.

Update: when a new image is recorded,

• State augmentation: augment the state vector and
state covariance matrix with the current IMU position
and orientation.

• Image processing: extract corner features and per-
form feature matching.

• Update: for each feature whose track is complete,
compute ro

i and Ho
i , and perform the Mahalanobis

test. Use all features that pass the test for an EKF
update.

• State management: remove from the state vector
those IMU states for which all associated features
have been processed.

model was linear-Gaussian, the MSCKF estimate for the
current IMU pose would be the optimal MAP estimate. In
the linear-Gaussian case, EKF-SLAM also yields the MAP
estimate, since the Kalman filter is a MAP estimator (Kay,
1993). Thus, if the system models were linear-Gaussian,
the EKF-SLAM and the MSCKF algorithms would yield
the same, optimal estimates for the IMU pose. The differ-
ences in their performance arise due to fact that the actual
measurement models are not linear, as discussed in what
follows.

To test the performance of the methods with the actual
nonlinear system models, we performed extensive Monte
Carlo simulations. To obtain realistic simulation envi-
ronments, we generated the simulation data based on
real-world datasets. For each dataset, we first generated the
platform angular velocity and linear acceleration by dif-
ferentiating the ground-truth estimates obtained by high-
precision GPS-INS during the actual experiment. Using this
angular velocity and linear acceleration, we subsequently
generated (i) the “ground truth” trajectory (position, veloc-
ity, orientation) by re-integration, and (ii) IMU measure-
ments corrupted with noises and biases with characteristics
identical to those of the actual sensors. In each Monte Carlo
run, different realizations of the sensor noises and biases
(which are modeled as white, zero-mean Gaussian noise
and Gaussian random walk processes, respectively) were
generated.

The feature tracks in the simulations were also generated
with statistical characteristics matching those of the actual
datasets. Specifically, by processing the images collected in
the actual dataset, we modeled the distributions of (i) the
number of features per image, (ii) the feature-track lengths,
and (iii) the feature distance to the camera, at different parts
of the trajectory. Then, in each simulation, feature tracks

were generated by randomly sampling from these distri-
butions, and the image measurements were corrupted by
white, Gaussian noise, with standard deviation of one pixel,
similarly to the actual data. In this way, the platform tra-
jectory as well as the IMU and camera measurements have
properties emulating those of a real dataset, which provides
for more realistic testing.

For the results presented here, we used a 13 minute,
5.5 km long dataset, as the basis for the simulation. The
dataset was collected with an ISIS IMU and a monoc-
ular camera, mounted on top of a vehicle driving in an
urban environment. In each image, 100 features were
tracked, on average, and the average track length was
4.5 frames (the feature-track distribution is similar to an
exponential one, with many features tracked over short
periods, and fewer features tracked longer). The algo-
rithms compared are (i) the MSCKF, (ii) EKF-SLAM with
inverse depth parametrization (IDP) (Civera et al., 2008),
(iii) EKF-SLAM with the anchored homogeneous feature
parametrization (AHP) (Sola, 2010), and (iv) EKF-SLAM
with the “traditional” XYZ feature parametrization (XYZ).
Our goal in these simulations is to examine both the accu-
racy and the consistency of the algorithms. Therefore, we
collected statistics for the average normalized estimation
error squared (NEES) for the IMU pose (position and orien-
tation), as well as the root mean squared error (RMSE) for
the IMU position and orientation. We note that for a consis-
tent estimator the average pose NEES should be six (equal
to the dimension of the pose error), while a larger NEES
value indicates inconsistency.

In all of the SLAM algorithms, we wait until κ obser-
vations of a feature are available, prior to initializing it in
the state vector. For this purpose, we maintain a sliding
window of κ poses in the state vector, and when a fea-
ture has been observed κ times, all of the measurements
of the feature are used concurrently to initialize the feature
and its covariance. In our tests, we used the values κ = 2,
κ = 4, and κ = 6. Even though for the IDP and AHP
approaches it is not necessary to use multiple observations
for initialization, our results show that this results in dra-
matically improved performance. We note that if a feature’s
track ends after fewer than κ observations, its measure-
ments are processed with the MSCKF measurement model
instead. In this way no measurements are discarded, and all
the algorithms compared use the same feature observations
for fairness.

Figure 1 shows the average NEES for the IMU pose, as
well as the RMSE for the IMU position and orientation,
averaged over 50 Monte Carlo trials. This plot corresponds
to the case κ = 4 for the SLAM methods. Moreover, Table 1
provides the average NEES and RMSE values for all of the
algorithms, and with different values of κ for the SLAM
methods. Several interesting conclusions can be drawn from
these results. The most important one is that the MSCKF
algorithm outperforms all three EKF-SLAM VIO formu-
lations, both in terms of accuracy (smaller RMSE) and in
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Fig. 1. The average NEES of the IMU pose and RMSE of the IMU position and orientation. The different lines correspond to the
MSCKF (red solid line), the AHP (green dashed line), the IDP (black dashed-dotted line), and the XYZ (blue dotted line). Note that due
to their large values, the curves for some of the EKF-SLAM methods are not fully visible. Table 1 presents the statistics for all curves.

Table 1. Simulation results: Performance metrics (IMU pose NEES, orientation RMSE, and position RMSE) for the MSCKF and the
three EKF-SLAM algorithms with varying number of observations used for initialization. The values are averages over all Monte Carlo
trials and all time steps (κ).

κ = 2 κ = 4 κ = 6

Algorithm Position Orientation NEES Position Orientation NEES Position Orientation NEES
RMSE (m) RMSE (◦) RMSE (m) RMSE (◦) RMSE (m) RMSE (◦)

XYZ N/A N/A N/A 78.447 5.609 4.9 × 103 53.469 3.974 1.3 × 103

IDP 69.502 3.731 2205.101 26.193 1.916 268.141 22.878 1.803 167.261
AHP 67.061 4.795 273.247 52.355 4.531 129.602 36.858 3.129 48.236

Position Orientation NEES
RMSE (m) RMSE (◦)

MSCKF 14.401 1.102 7.741

terms of consistency (NEES closer to six). This is a result
that we have consistently observed in all our tests, and that
we attribute to two main reasons:

• First, all EKF-SLAM algorithms assume that the errors
of the IMU state and feature positions are jointly Gaus-
sian at each time step. However, due to the nonlinearity

of the camera measurement model, this is not a good
approximation, particularly for the XYZ parameteriza-
tion (Civera et al., 2008). By intelligently choosing the
feature parameterization, as AHP and IDP do, the accu-
racy and consistency of EKF-SLAM can be improved,
as shown in these results. However, these algorithms
still perform significantly worse than the MSCKF. Since
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in the MSCKF the features are never included in the
state vector, no assumptions on the feature errors’ pdf
are needed, thus avoiding a major source of inaccuracy.

• In EKF-SLAM, feature measurements are linearized
and processed at each time step. By contrast, the
MSCKF employs a “delayed linearization” approach:
it processes each feature only when all of its measure-
ments become available. This means that more accurate
feature estimates are used in computing Jacobians, lead-
ing to more precise calculation of the Kalman gain and
state corrections, and ultimately better accuracy.

Examining the different EKF-SLAM methods, we see
that in accordance with previous results (Civera et al., 2008;
Sola, 2010), the performance of the AHP and IDP parame-
terizations is significantly better than that of the XYZ param-
eterization. It should be mentioned that, for the XYZ param-
eterization, initializing features after only two observations
is extremely unreliable: the estimator always fails, which
does not allow us to obtain reliable statistics. This failure is
characterized by a sequence of timesteps in which the filter
corrections are very large (and erroneous), after which all
residuals fail the Mahalanobis test, no filter updates occur,
and the estimation errors increase rapidly. In fact, even if
more observations are used for feature initialization, the
XYZ parameterization still remains unreliable: for instance,
when κ = 4, the EKF-SLAM with XYZ parametrization
fails in 4% of the trials, if far-away features are discarded,
and in approximately 70% of the trials if all features are
kept. In the statistics reported in Table 1, only successful tri-
als are used, to provide more meaningful statistics. Note that
no failures were observed in the IDP SLAM, AHP SLAM,
or MSCKF algorithms.

Moreover, we can observe that the use of more mea-
surements for feature initialization (larger κ) leads to better
performance, for all EKF-SLAM algorithms. The improve-
ment as κ increases occurs because with more measure-
ments, a better initial estimate for the feature is obtained,
and thus the filter Jacobians become more accurate and the
feature pdf closer to a Gaussian. Moreover, as κ increases,
more features are in fact processed with the MSCKF mea-
surement model, as a larger percentage of features is seen
fewer than κ times. In this test, for example, when κ = 6
more than 50% of features are processed by the MSCKF
update equations. Thus, as κ increases the EKF-SLAM
algorithms essentially become “hybrids” between MSCKF
and EKF-SLAM (Williams et al., 2011; Li and Mourikis,
2012b), and their performance approaches that of the pure
MSCKF method.

In addition to the algorithms’ estimation performance, it
is also important to examine the computational efficiency
of the different methods. For the tests performed above,
the MSCKF’s average runtime was 0.93 ms per update,
while for the EKF-SLAM methods the average runtime was
1.54 ms for XYZ, 3.28 ms for IDP, and 4.45 ms for AHP,
when κ = 2 (measured on a Core i7 processor at 2.66
GHz, with a single-threaded C++ implementation). These

observed runtimes agree with the theoretical computational
complexity of the algorithms: the MSCKF’s computational
cost per time step is linear in the number of features, as
opposed to cubic for EKF-SLAM. Thus, we can conclude
that due to the higher accuracy, consistency, robustness,
and computational efficiency, the MSCKF is preferable to
EKF-SLAM algorithms for VIO applications.

4. EKF consistency and relation to
observability

In Table 1 we can see that the average IMU-pose NEES for
the MSCKF in the simulation tests is 7.741, i.e. above the
theoretically expected value of six for a consistent estima-
tor. Moreover, Figure 1 shows that the NEES is gradually
increasing over time, reaching an average of 10.6 in the last
100 s. These results show that MSCKF becomes inconsis-
tent, albeit much less so than EKF-SLAM methods. This
inconsistency can become significant in long trajectories,
as demonstrated in the results of Section 8.2. In the remain-
der of the paper we focus on explaining the cause of the
inconsistency, and proposing a solution to it, by examining
the linearized system’s observability properties.

To illustrate the main idea of our approach, consider a
physical system described by general nonlinear models:

ẋ = f ( x, u) +w (17)

z = h( x) +n (18)

where x is the system state, u is the control input, z are the
measurements, and finally w and n are noise processes. To
track the state vector x on a digital computer, discretization
of the continuous-time system model is necessary. Further-
more, when an EKF is used for estimation, the filter equa-
tions (e.g. covariance propagation and update, gain com-
putation) rely on a linearized version of the discrete-time
model, which has the general form:

x̃�+1 � ��x̃� + w� (19)

r̃� � H�x̃� + n� (20)

where �� and H� denote the error-state transition matrix
and the measurement Jacobian matrix, respectively. Since
the EKF equations are derived based on the linearized sys-
tem model in (19)–(20), the observability properties of this
model play a crucial role in determining the performance
of the estimator. Ideally, one would like these properties to
match those of the actual, nonlinear system in (17)–(18): if
a certain quantity is unobservable in the actual system, its
error should also be unobservable in the linearized model.
If this is not the case, “fictitious” information about this
quantity will be accumulated by the EKF, which will lead
to inconsistency.

The observability properties of the nonlinear system
in visual–inertial navigation have recently been studied
in (Jones and Soatto, 2011; Kelly and Sukhatme, 2011;
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Martinelli, 2012). Based on the analysis of these papers,
it is now known that when a camera/IMU system moves in
a general trajectory, in an environment with a known grav-
itational acceleration but no known features, four degrees
of freedom are unobservable: (i) the three corresponding to
the global position, and (ii) one corresponding to the rota-
tion about the gravity vector (i.e. the yaw). In Section 6,
we analyze the observability properties of the linearized
system model employed in EKF-based VIO, by study-
ing the nullspace of the observability matrix associated
with (19)–(20):

O �

⎡
⎢⎢⎢⎣

Hk

Hk+1�k
...

Hk+m�k+m−1 · · ·�k

⎤
⎥⎥⎥⎦ (21)

The nullspace of O describes the directions of the state
space for which no information is provided by the measure-
ments in the time interval [k, k + m], i.e., the unobservable
directions. For the linearized system to have observability
properties analogous to the actual, nonlinear system, this
nullspace should be of dimension four, and should con-
tain the vectors corresponding to global translation and to
rotation about gravity. However, our key result, proven in
Section 6, is that this is not the case when the MSCKF (or
an EKF-SLAM method) is employed for VIO. Specifically,
due to the way in which the Jacobians are computed in the
EKF, the global orientation appears to be observable in the
linearized model, while it is not in the actual system. As a
result of this mismatch, the filter produces too small val-
ues for the state covariance matrix (i.e. the filter becomes
inconsistent), and this in turn degrades accuracy.

Note that, to study the nullspace of the matrix O in (21)
for the VIO system, we must have an expression for the
error-state transition matrix ��, for � = k, . . . , k + m − 1.
In turn, this requires an expression for the IMU’s error-
state transition matrix, defined in (6). Therefore, before
proceeding with the observability analysis, we must derive
an expression for this matrix. This is the focus of the next
section.

5. Computing the IMU error-state transition
matrix

Most existing methods for computing �I stem from
the integration of the differential equation �̇I (t, t�) =
F(t) �I (t, t�), where F(t) is the Jacobian of the continuous-
time system model of the IMU motion (Trawny and Roume-
liotis, 2005). For instance, (Mourikis and Roumeliotis, 2007
and Tardif et al., 2010) employ Runge–Kutta numerical
integration, (Weiss and Siegwart, 2011; Weiss et al, 2012)
use a closed-form, approximate solution to the differential
equation, while several algorithms (especially in the GPS-
aided inertial navigation community) employ the simple
approximation �I � I + F�t that is equivalent to using

one-step Euler integration (e.g. (Foxlin, 2005; Farrell, 2008;
Zachariah and Jansson, 2010; Lupton and Sukkarieh, 2012;
Vu et al., 2012)). All of these methods for computing �I

have the disadvantage that, being numerical in nature, they
are not amenable to theoretical analysis. More importantly,
however, when �I is computed numerically and/or approx-
imately, we have no guarantees about its properties. As a
result, if �I is computed in this fashion, we cannot guar-
antee that the observability matrix of the linearized VIO
system (21) will have the desirable nullspace properties, a
prerequisite for consistent estimation.

In what follows, we describe how the IMU error-state
transition matrix can be computed in closed form, as a func-
tion of the state estimates. To this end, we first examine
what motion information we can infer from the IMU data,
and how this information can be used for state propaga-
tion. This will enable us to derive an expression for �I that
holds independently of the particular method used to inte-
grate the IMU signals. We note that the expression derived
here can be employed in any estimation problem that uses
IMU measurements for state propagation (e.g. GPS-aided
inertial navigation, vision-aided inertial navigation, etc.).

5.1. What information do the IMU measurements
provide?

The IMU’s gyroscopes and accelerometers give sampled
measurements of the following continuous-time signals:

ωm(t) = Iω(t) +bg(t) +nr(t) (22)

am(t) = I
GR(t)

(
Ga(t) −g

)+ ba(t) +na(t) (23)

where Iω(t) and Ga(t) denote the IMU angular rate and
linear acceleration, respectively, nr(t) and na(t) are white
Gaussian noise processes, and g is the gravity vector
expressed in the global frame.

Equation (22) shows that the IMU gyroscopes provide
measurements of the rotational velocity, expressed in the
IMU frame. Using these measurements, we can only infer
the relative rotation of the IMU between two time instants.
Moreover, (23) shows that the IMU accelerometers mea-
sure specific force, which includes both the body and grav-
itational acceleration, expressed in the local frame. These
signals provide us with information about the velocity
change expressed in the local IMU frame, and must be
“gravity-compensated” before use for state propagation.
In what follows, we momentarily assume that we have
access to the continuous-time signals ωm(t) and am(t) in the
time interval [t�, t�+1] (corresponding to the transition from
timestep � to � + 1), and show how these signals can be
used for state propagation. The effects of the discrete-time
sampling of the IMU’s signals are discussed in Section 5.2.

5.1.1. Gyroscope measurements The orientation of the
IMU frame at time t�+1 with respect to the IMU frame at t�
(i.e., the relative rotation) can be computed by integrating
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a differential equation, whose form depends on the selected
representation of orientation. In the unit-quaternion repre-
sentation, the relative rotation of the IMU between t� and
t�+1 is described by

I�+1
I�

q̄. To compute an estimate of
I�+1
I�

q̄
using ωm( t), we first obtain the estimated rotational veloc-
ity in [t�, t�+1] as ω̂( t) = ωm( t) −b̂g( t), and then integrate
the differential equation:

It
I�

˙̄̂q = 1

2

[−�ω̂( t) ×� ω̂( t)
−ω̂( t)T 0

]
It
I�

ˆ̄q, t ∈ [t�, t�+1] (24)

with initial condition I�
I�

ˆ̄q = [0 0 0 1]T. The relative

orientation estimate
I�+1
I�

ˆ̄q, computed from the above differ-
ential equation, can be employed for propagating the IMU
global orientation estimate as follows:

I�+1
G

ˆ̄q = I�+1
I�

ˆ̄q ⊗ I�
G

ˆ̄q (25)

5.1.2. Accelerometer measurements Using am( t) and an
estimate of the accelerometer bias, we can obtain an esti-
mate of the IMU’s acceleration in the global frame as
(see (23)):

Gâ( t) = G
I R̂(t) ( am(t) −b̂a(t) ) +g (26)

Integrating this signal twice in the time interval [t�, t�+1]
gives the velocity and position propagation equations:

Gv̂�+1 = Gv̂� +
∫ t�+1

t�

Gâ( τ ) dτ

= Gv̂� +
∫ t�+1

t�

G
Iτ R̂( am( τ ) −b̂a( τ )) dτ + g�t (27)

= Gv̂� + G
I�

R̂ ŝ� + g�t (28)

and

Gp̂�+1 = Gp̂� +
∫ t�+1

t�

Gv̂(τ ) dτ

= Gp̂� + Gv̂��t + G
I�

R̂ ŷ� + 1

2
g�t2 (29)

where �t = t�+1 − t�, G
I�

R̂ = G
I R̂( t�), and

ŝ� =
∫ t�+1

t�

I�
Iτ R̂( am( τ ) −b̂a( τ )) dτ (30)

ŷ� =
∫ t�+1

t�

∫ s

t�

I�
Iτ R̂( am( τ ) −b̂a( τ )) dτ ds (31)

Note that the terms ŝ� and ŷ� depend only on the values of
am( t) and ωm( t) in the time interval [t�, t�+1], as well as on
the IMU biases. These terms express the information pro-
vided by the IMU about the change in the IMU velocity and
position in [t�, t�+1]. As shown in (28) and (29), to use ŝ� and
ŷ� to propagate the global velocity and position estimates,
we must express them in the global frame (via the rotation
matrix G

I�
R̂), and account for the gravitational acceleration.

We note that Lupton and Sukkarieh (2012) showed how
the IMU measurements can be “pre-integrated”, so that they
can be used even without an initial guess for the state.
While Lupton and Sukkarieh (2012) followed a reasoning
similar to that presented here, we here go one step further,
and use this analysis to obtain a closed-form expression for
the error-state transition matrix.

5.2. Discrete-time IMU propagation

To derive Equations (24)–(25) and (28)–(31), it was
assumed that the signals ωm( t) and am( t) were available in
the entire interval [t�, t�+1]. In practice, however, the IMU
provides samples of am( t) and ωm( t) at the discrete times
t� and t�+1. To use these measurements for state propa-
gation, it is necessary to employ additional assumptions
about the time evolution of am( t) and ωm( t) between the
two times for which samples are available. For instance,
we can assume that these signals remain constant for the
entire period (equal to their values at either t� or t�+1), or
that they change linearly between the sampled values. These
assumptions will introduce approximations, which will be
small if the sample rate is sufficiently high. We stress, how-
ever, that some approximation is unavoidable, since turning
a continuous-time signal to a sampled one leads to loss of
information.4

In what follows, we describe the integration approach fol-
lowed in our implementation. In our work the IMU biases
are modeled as random-walk processes, i.e. we model the
continuous-time evolution of the biases by ḃg( t) = nwg( t)
and ḃg( t) = nwa( t), where nwg and nwa are zero-mean white
Gaussian noise processes, with covariance matrices Qwg

and Qwa. Therefore, during propagation the bias estimates
remain constant: b̂g�+1

= b̂g�
and b̂a�+1 = b̂a�

. To propagate
the IMU pose in time, at time t�+1 we use the IMU samples
recorded at t� and t�+1 and assume that the signals ωm( t)
and am( t) change linearly between these two time instants.
With this assumption, we numerically integrate (24) using
fourth-order Runge–Kutta to obtain

I�+1
I�

ˆ̄q, and propagate the
IMU orientation using (25). For the position and velocity,
we employ Equations (28) and (29), where the quantities
ŝ� and ŷ� are computed using Simpson integration of (30)
and (31).

5.3. Computing �I�

We now turn our attention to computing the IMU error-state
transition matrix shown in (6), which can be done by direct
linearization of the state-propagation equations (25), (28),
and (29). For clarity, we here show the derivation of �I�
omitting the IMU biases, while the full result for the case
where the biases are included in the state vector is shown
in Appendix A. Starting with the orientation error, we note
that the orientation-error definition in Equations (2)–(3)
satisfies

I
GR � I

GR̂ ( I3 − �Gθ̃×�) (32)
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Moreover, the estimated rotation in the time interval
[t�, t�+1] is corrupted by an error due to the inaccuracy of
the gyroscope measurements as well as the assumptions
employed during integration. We define this error based on
the expression

I�+1
I�

q̄ = I�+1
I�

ˆ̄q ⊗ δq̄�t, from which we obtain

I�+1
I�

R � I�+1
I�

R̂ ( I − �θ̃�t×�) (33)

where θ̃�� is a 3 × 1 error vector. Substituting (33)
and (32) into the expression relating the true rotation
matrices,

I�+1
G R = I�+1

I�
R I�

G R, and removing second-order
terms, we obtain the following linearized expression for the
orientation-error propagation:

Gθ̃ �+1 � Gθ̃ � + R̂
T
� θ̃�t (34)

where we used the shorthand notation I�
G R̂ = R̂�. For the

velocity error, we linearize (28) using (32), to obtain the
linearized error-propagation equation:

Gṽ�+1 � −�R̂
T
� ŝ�×�Gθ̃ � + Gṽ� + R̂

T
� s̃� (35)

The term s̃� = s� − ŝ� is the error in ŝ�, which depends
only on the IMU measurement noise and the assumptions
employed during integration. Similarly, for the position we
obtain

Gp̃�+1 � −�R̂
T
� ŷ�×�Gθ̃ � + Gṽ��t + Gp̃� + R̂

T
� ỹ� (36)

where ỹ� = y� − ŷ�. By combining (34), (35) and (36), we
can now write⎡
⎣Gθ̃ �+1

Gp̃�+1
Gṽ�+1

⎤
⎦

︸ ︷︷ ︸
x̃I�+1

=

⎡
⎢⎣ I3 03 03

−�R̂
T
� ŷ�×� I3 �tI3

−�R̂
T
� ŝ�×� 03 I3

⎤
⎥⎦

︸ ︷︷ ︸
�I�

⎡
⎣Gθ̃ �

Gp̃�
Gṽ�

⎤
⎦

︸ ︷︷ ︸
x̃I�

+

⎡
⎢⎣R̂

T
� θ̃�t

R̂
T
� ỹ�

R̂
T
� s̃�

⎤
⎥⎦

︸ ︷︷ ︸
wd�

(37)

It is important to note that the above expression for �I�
has an intuitive explanation. We see that: (i) the diagonal
block elements are all identity matrices, which shows that
the errors in the IMU state at time t� “carry over” to the next
time step, as expected; (ii) the velocity error, multiplied by
�t, affects the position error at time t�+1; and (iii) the ori-
entation error at time t� is multiplied by the “lever-arms”

R̂
T
� ŷ� and R̂

T
� ŝ�, causing accumulation of errors in position

and velocity. To write the state transition matrix as a func-
tion of the state estimates, we solve (28) and (29) for ŝ� and
ŷ�, respectively, and substitute in (37) to obtain

�I� ( x̂I�+1 , x̂I�) =
⎡
⎣ I3 03 03

�pq( x̂I�+1 , x̂I�) I3 �tI3

�vq( x̂I�+1 , x̂I� ) 03 I3

⎤
⎦ (38)

�pq( x̂I�+1 , x̂I� )

= −�( Gp̂�+1 − Gp̂� − Gv̂��t − 1

2
g�t2) ×�

�vq( x̂I�+1 , x̂I�) = −�( Gv̂�+1 − Gv̂� − g�t) ×�

We stress that this matrix is a closed-form function of the
state estimates only. Thus, it can be employed regardless of
the way in which the integration of (24), (30) and (31) is
carried out.

Note that in different implementations of IMU propa-
gation, the form of the equations being integrated may be
different from those shown above (for example, for velocity
propagation one may choose to numerically compute the
integral in (27), instead of breaking it into two terms as
in (28)). However, this does not change the nature of the
information provided by the IMU measurements, and thus
does not (in fact, should not) change the way in which the
errors in a state estimate propagate to future estimates. This
way is described by the matrix in (38), as discussed above.

6. Observability properties of the MSCKF
system model

We now employ the closed-form expression for �I� derived
in the preceding section to analyze the observability proper-
ties of the MSCKF’s system model. To simplify the presen-
tation, we here carry out the analysis for the case where the
IMU biases are not included in the estimated state vector.
These biases are known to be observable (Jones and Soatto,
2011), and thus their inclusion would not change the key
result of this analysis, which is the erroneous decrease in
the dimension of the nullspace of the observability matrix.5

The fact that the analysis also holds for the case where the
biases are included in the state vector is demonstrated by
the results presented in Sections 8 and 9. In the estimators
used in all our simulations and experiments the biases are
included in the state vector, as described in Section 3.1.

A direct analysis of the observability properties of the
MSCKF’s linearized system model is cumbersome, due to
the form of the MSCKF equations (see, e.g., (15)). To sim-
plify the analysis, we make use of the result of Appendix
B, which shows that given a linear (or, equivalently, a lin-
earized) model, the EKF-SLAM and MSCKF measurement
equations are equivalent. This means that we can study the
observability of the MSCKF’s linearized model by studying
the EKF-SLAM linearized model, but using the MSCKF’s
linearization points. Note that the MSCKF and EKF-SLAM
linearize the measurements using different state estimates:
in the MSCKF, a single estimate for each feature is used
for computing all the Jacobians involving this feature (see
(14)), in contrast to EKF-SLAM, where the current estimate
is used at each iteration. The details of the observability
analysis follow.

We consider an EKF-SLAM state vector containing the
IMU orientation, position, and velocity, as well as the
positions of the landmarks observed in the time interval
[k, k + m]. For this state vector, the error-state transition
matrix (using the MSCKF’s linearization point) at time step
� is given by

��( x̂I�+1|� , x̂I�|�) =
[
�I� ( x̂I�+1|� , x̂I�|� ) 0

0 I3M×3M

]
(39)
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where M is the number of landmarks. Turning to the fea-
ture measurements, we note that if feature i is processed
at time step αi + 1, then in the MSCKF the corresponding
Jacobians are evaluated with the state estimates computed
using all measurements up to αi, and the feature position
estimate Gp̂fi

computed via triangulation. Thus, the mea-
surement Jacobian we use in our analysis becomes (see (10)
and (13)):

Hi�( π̂ �|αi ,
Gp̂fi

)

= [HIi�( π̂ �|αi ,
Gp̂fi

)0 · · · Hfi� ( π̂ �|αi ,
Gp̂fi

) · · · 0] (40)

where the Jacobians of (7) with respect to the IMU pose and
the feature position are given by

Hfi�( π̂ �|αi ,
Gp̂fi

) = Ji�( π̂ �|αi ,
Gp̂fi

) C
I R R̂�|αi (41)

HIi�( π̂ �|αi ,
Gp̂fi

) = Hfi�( π̂ �|αi ,
Gp̂fi

)[�(Gp̂fi
− Gp̂�|αi

)×� −I3 03
]

Ji�( π̂ �|αi ,
Gp̂fi

) = 1
C� ẑfi

⎡
⎢⎣1 0

−C� x̂fi
C� ẑfi

0 1
−C� ŷfi
C� ẑfi

⎤
⎥⎦ (42)

with [C� x̂fi
C� ŷfi

C� ẑfi]
T being the estimate of the feature

position with respect to the camera:⎡
⎣C� x̂fi

C� ŷfi
C� ẑfi

⎤
⎦ = C

I R R̂�|αi

(
Gp̂fi

−Gp̂�|αi

)+CpI (43)

By substitution of (39) and (40) in (21), we can therefore
study the observability properties of the linearized system
model of the MSCKF. Before doing that, however, it is inter-
esting to first examine what the observability matrix would
look like in the “ideal” case where the true state estimates
were used in computing all Jacobians.

6.0.1. “Ideal” observability matrix To derive the “ideal”
observability matrix, we evaluate the state transition matrix
as �( xI�+1 , xI�) (see (39)), and evaluate the Jacobian matrix
in (40) using the true states. Substituting these matrices
in (21) yields the following result for the block row of the
observability matrix corresponding to the observation of
feature i at time step �:

Ǒi� = M̌i�

[
�̌i� −I3 −�t�I3 03 · · · I3 · · · 03

]
(44)

M̌i� = J̌i�
C
I R R� (45)

�̌i� = ⌊(
Gpfi

− Gpk − Gvk�t� − 1

2
g�t2

�

)× ⌋
(46)

In the above equations, �t� denotes the time interval
between time steps k and �, and we have used the symbol

“ˇ” to denote a matrix computed using the true state values.
At this point, if we define the matrix N as

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 g
I3 −�Gpk×�g
03 −�Gvk×�g
I3 −�Gpf1

×�g
I3 −�Gpf2

×�g
...

...
I3 −�GpfN

×�g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

it is easy to verify that Ǒi� · N = 02×4. Since this holds for
any i and any � (i.e. for all block rows of the observabil-
ity matrix), we conclude that Ǒ · N = 0. In addition, the
four columns of N are linearly independent, which means
that they form a basis for the nullspace of the observability
matrix Ǒ (in (Li and Mourikis, 2011), we proved that no
additional basis vectors can be found for the nullspace).

In other words, the above shows that the observability
matrix, when all Jacobians are computed using the true
states, has a nullspace of dimension four. Examining the
physical interpretation of the basis, we see that the first
three vectors correspond to global translation of the state
vector, while the last column corresponds to rotations about
gravity (i.e. the yaw) (Li and Mourikis, 2011). Thus, if we
were able to evaluate all of the Jacobians using the true
state estimates, the observability properties of the linearized
system model would match those of the nonlinear system,
as desired.

6.0.2. MSCKF observability matrix Using Equations (39)
and (40) in (21), the block row of the observability matrix
O corresponding to the observation of feature i at time step
� becomes

Oi� = Mi�

[
�i�+��i� −I3 −�t�I3 03 · · · I3 · · · 03

]
(48)

where

Mi� = Ji�( x̂�|αi ,
Gp̂fi

) C
I R R̂�|αi (49)

�i� = ⌊(
Gp̂fi

− Gp̂k|k − Gv̂k|k�t� − 1

2
g�t2

�

)× ⌋
(50)

��i� = �Gp̂�|�−1 − Gp̂�|αi
×� +

�−1∑
j=k+1

( Ej
p +

j∑
s=k+1

Es
v�t) (51)

with

Ej
p = �Gp̂j|j−1 − Gp̂j|j×� (52)

Ej
v = �Gv̂j|j−1 − Gv̂j|j×� (53)

By comparing (48)–(51) with (44)–(46) we see that the
structure of the observability matrix in both cases is similar.
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The key difference is that when the Jacobians are evaluated
using the state estimates instead of the true states, the “dis-
turbance” term ��i� appears. While ��i� is quite complex,
we can observe that it contains terms that depend on the
corrections (e.g. Gp̂j|j − Gp̂j|j−1, Gv̂j|j − Gv̂j|j−1) that the filter
applies at different time steps. Since these corrections are
random, the term ��i� is a random one, and this “destroys”
the special structure of the observability matrix. As a result,
the property Oi� · N = 0 does not hold.

It can be shown that the nullspace of O (i.e. the unob-
servable subspace) is now of dimension only three (Li
and Mourikis, 2011). This nullspace is spanned by the
first three column vectors (the first block column) of N
in (47), which means that the global yaw erroneously
appears to be observable. As a result, the MSCKF under-
estimates the uncertainty of the yaw. Since the yaw uncer-
tainty affects the uncertainty of other state variables (e.g.
the position), eventually the uncertainty of all states will be
underestimated, and the estimator will be inconsistent. This
helps to explain the results observed in the NEES plot of
Figure 1.

It is important to point out that the incorrect observabil-
ity properties of the linearized system model do not affect
only the MSCKF algorithm. In Appendix C the observabil-
ity matrix of the linearized model of EKF-SLAM is shown.
This matrix has a nullspace of dimension three as well,
similarly to the MSCKF. In fact, for the EKF-SLAM meth-
ods, the “disturbance” term appearing in the observability
matrix contains additional terms due to the corrections in
the feature position estimates. Such terms do not appear in
the MSCKF, which uses only one estimate for each feature
in all Jacobians.

7. MSCKF 2.0

In the preceding section, we proved that the linearized sys-
tem model employed by the MSCKF has incorrect observ-
ability properties, causing inconsistency. In this section, we
propose a simple solution to this problem. Moreover, we
propose an extension of the basic MSCKF algorithm, which
serves to improve the algorithm’s performance in real-world
scenarios. Specifically, in our analysis to this point it was
assumed that the IMU-to-camera transformation (position
and orientation) is perfectly known. In practice, this is typi-
cally not the case: while an estimate for the transformation
may be known from a CAD plot or manual measurements,
this is typically inexact. For example, the coordinate frames
of the sensors are typically not perfectly aligned with the
sensor housing, which makes manual measurements less
useful. If the transformation is assumed to be perfectly
known, even though the available estimates are not exact,
both the consistency and the accuracy of the filter will dete-
riorate. To address this issue, we propose to include the
camera-to-IMU transformation in the estimated state vector
of the MSCKF.

7.1. Enforcing correct dimension of the
unobservable subspace

As shown in Section 6, the fact that in the MSCKF different
estimates of the same states are used for computing Jaco-
bians leads to an infusion of “fictitious” information about
the yaw. Specifically, the use of different estimates for the
IMU position and velocity results in non-zero values for the
disturbance terms ��i� (see (51)), which change the dimen-
sion of the nullspace of the observability matrix. To remove
these ��i� terms, a simple solution is to ensure that only
one estimate of each IMU position and velocity is used in
all Jacobians involving it. A causal approach to achieve this
is to always use the first available estimate for each state.
Specifically, we compute the filter Jacobians as follows:

• Compute the IMU error-state transition matrix at time-
step � as

��
I�

( x̂I�+1|� , x̂I�|�−1 ) (54)

• Calculate measurement Jacobians as

H�
fi�

= Ji�( x̂�|αi ,
Gp̂fi

) C
I R R̂�|αi (55)

H�
Ii�

= H�
fi�

[ �(Gp̂fi
− Gp̂�|�−1

)×� −I3 03
]

(56)

As a result of the above changes, only the “propagated” esti-
mates for the position and velocity (e.g. Gp̂�|�−1 and Gv̂�|�−1)
are used in computing Jacobians. It is easy to show that with
this change, the observability matrix regains the correct
nullspace dimension, and thus the infusion of “fictitious”
information for the yaw is avoided. We stress that we allow
the state estimates to be updated normally; the only change
we make to the MSCKF equations is that we do not use
the updated estimates of the position and velocity in com-
puting Jacobians. This change, which incurs no additional
computational cost, substantially improves performance, as
shown in the simulation and experimental results presented
in Sections 8 and 9.

The idea of using the first estimates of all states to ensure
the correct observability properties of the linearized system
model can also be employed for EKF-SLAM VIO. In this
case, in addition to the IMU position and velocity estimates,
we must also use the same (first) estimate of each fea-
ture when computing all Jacobians involving it. As shown
in Section 8, the resulting EKF-SLAM algorithms outper-
form the standard ones, yet cannot reach the accuracy or
consistency of the MSCKF 2.0.

7.2. Camera-to-IMU calibration

To estimate the camera-to-IMU transformation in the
MSCKF, we include the transformation parameters in the
filter state vector. Specifically, we augment the IMU state
by adding the pose of the camera with respect to the IMU,
πCI = {C

I q̄, CpI}:

x�
I =

[
I
Gq̄

T GpT GvT bT
g aT

a
C
I q̄T CpT

I

]T
(57)
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where we have used the symbol “�” to distinguish this state
vector from the original IMU state in (1). During propa-
gation, the estimates for the camera-to-IMU parameters as
well as their covariance remain unchanged. For the updates,
only minimal modifications of the MSCKF equations are
required to account for the inclusion of πCI in the state vec-
tor. Specifically, the linearized residual equations (13) for
each feature measurement now become:

rij = zij − h( π̂ j|�−1, π̂CI�|�−1 , f̂i) (58)

� Hijπ̃ j|�−1 + HCij π̃CI�|�−1 + Hfij f̃i + nij (59)

for j = � − N , . . . , � − 1, where HCij is the Jacobian of the
measurement with respect to the camera–IMU pose:

HCij = Ji�

[
C
I R̂�|�−1�R̂�|�−1( Gp̂fi

− Gp̂�|�−1) ×� I3
]

The equations (59) can still be stacked to obtain an equation
analogous to (14), as the error π̃CI�|�−1 is now a part of the
state vector. Thus, the MSCKF’s method of removing the
feature error to create a residual suitable for an EKF update
(see (15)) can be applied with no further changes.

Estimating the camera-to-IMU transformation in the
MSCKF framework offers two key advantages over alter-
native EKF-based algorithms for the same task: First, it
can operate in unknown environments, with no a priori
known features (in contrast to methods such as those of
(Mirzaei and Roumeliotis, 2008 and Kelly et al., 2008)).
Second, since it is based on the MSCKF, it shares all of
the advantages of the MSCKF over SLAM-based meth-
ods (e.g., (Jones and Soatto, 2011; Kelly and Sukhatme,
2011)), as outlined in Section 3.4. For instance, its compu-
tational cost is significantly lower, and it is less sensitive to
the nonlinear nature of the estimation problem. Moreover,
based on the analysis of (Jones and Soatto, 2011; Kelly and
Sukhatme, 2011), we know that the camera-to-IMU trans-
formation is observable for general trajectories. Thus, by
including it in the MSCKF state vector, we do not run the
risk of introducing additional variables that may become
“erroneously observable”. We term the algorithm that uses
the first estimates of each state in computing Jacobians and
includes the IMU-to-camera calibration parameters in the
state vector MSCKF 2.0.

8. Simulation results

In this section we present simulation results that illus-
trate the analysis presented in the preceding sections, and
demonstrate the performance of the MSCKF 2.0 algorithm
compared to alternatives. All of the simulation data is gen-
erated based on real-world datasets, as explained in Sec-
tion 3.4, and all of the results reported are averages over 50
Monte Carlo trials.

Fig. 2. Simulation results: the average position and orientation
RMSE over 50 Monte-Carlo trials. The algorithms compared are
the MSCKF (blue dash-dotted line), the “ideal" MSCKF (red line
with x-marks), the MSCKF 2.0 (black line with squares), the m-
XYZ SLAM (green solid line), the m-IDP SLAM (cyan dashed
line), and the m-AHP SLAM (magenta line with “plus”-marks).

8.1. Comparison with EKF-based SLAM

We first compare the performance of the MSCKF and
MSCKF 2.0 algorithms with EKF-SLAM based methods
for VIO. For the results presented here, the camera-to-
IMU calibration parameters are assumed to be known with-
out uncertainty. In the results presented in Section 3.4,
it was shown that the original MSCKF algorithm outper-
forms the standard EKF-SLAM algorithms using either the
XYZ, IDP, or AHP feature parameterizations. We thus here
focus on comparing the performance of the MSCKF-based
algorithms to that of the “modified” EKF-SLAM versions,
where the first estimate of each state is used in computing
Jacobians to ensure the correct rank of the linearized sys-
tem’s observability matrix. These modified algorithms are
identified as m-XYZ, m-IDP, and m-AHP. In addition, in
this simulation we include an “ideal" MSCKF algorithm, in
which the true IMU states and feature positions are used
for computing all of the filter Jacobians. This algorithm
(which is only realizable in a simulation environment), can
serve as a benchmark of performance for the MSCKF-
based methods. For the results presented here, exactly the
same simulation data as in Section 3.4 are used, to facilitate
comparison.

Figure 2 shows the average IMU pose NEES as well
as the IMU position and orientation RMSE over time, for
the three MSCKF-based methods, as well as for the three
EKF-SLAM methods (with κ = 4 for the SLAM methods).
Moreover, Table 2 provides average NEES and RMSE val-
ues for all of the algorithms (this table includes the results
of Section 3.4 for easier comparison).

We can conclude that all of the “modified” algorithms,
which use the first estimates of each state in Jacobian com-
putation, outperform their counterparts that use the stan-
dard approach for Jacobian computation. Not only are these
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Table 2. Average RMSE and NEES results for all the EKF-based VIO algorithms tested in the simulations.

κ = 2 κ = 4 κ = 6

Algorithm Position Orientation NEES Position Orientation NEES Position Orientation NEES
RMSE (m) RMSE (◦) RMSE (m) RMSE (◦) RMSE (m) RMSE (◦)

XYZ N/A N/A N/A 78.447 5.609 4.9 × 103 53.469 3.974 1.3 × 103

IDP 69.502 3.731 2205.101 26.193 1.916 268.141 22.878 1.803 167.261
AHP 67.061 4.795 273.247 52.355 4.531 129.602 36.858 3.129 48.236
m-XYZ 60.564 3.160 116.721 19.297 1.512 9.185 12.477 1.238 7.385
m-IDP 40.912 2.057 57.346 18.144 1.400 8.600 15.498 1.211 7.156
m-AHP 38.288 2.311 38.932 18.010 1.385 8.357 15.494 1.205 7.160

Position Orientation NEES
RMSE (m) RMSE (◦)

MSCKF 14.401 1.102 7.741
MSCKF 2.0 12.840 1.008 5.890
“Ideal” 12.720 1.001 5.816
MSCKF

algorithms more consistent (i.e. they have smaller NEES),
but also more accurate (i.e. smaller RMSE). These results
show that enforcing the correct observability properties of
the linearized system is crucially important for the perfor-
mance of all EKF-based VIO methods, and validate the
analysis of Section 6. Despite the improvement that the
modified EKF-SLAM algorithms offer, however, they are
all less accurate than all of the MSCKF-based methods.
This shows the advantages of the MSCKF approach to pro-
cessing the feature measurements, which copes better with
nonlinearities by not making Gaussian assumptions about
the feature pdfs.

Additionally, we can observe that the performance of the
MSCKF 2.0 algorithm is almost indistinguishable from that
of the “ideal" MSCKF, both in terms of accuracy and con-
sistency. This indicates that, as long as the correct observ-
ability properties are ensured, using slightly less accurate
linearization points in computing the Jacobians does not
significantly degrade the estimation performance. Based on
the simulation results (and given that the “ideal” MSCKF is
not realizable), we can conclude that the MSCKF 2.0 is the
preferred VIO method among the EKF-based approaches
considered.

8.2. Comparison with iterative-optimization
methods

We next compare the performance of the MSCKF-
based algorithms to that of an iterative-minimization-based
method. Specifically, we use an information-form fixed-
lag smoother (FLS), based on the work of Sibley et al.
(2010) for comparison. This is a sliding-window bundle
adjustment method that marginalizes older states to main-
tain a constant computational cost. The FLS is essen-
tially the counterpart of the MSCKF within the class of
iterative-minimization methods, which allows for a mean-
ingful comparison. In our implementation, the sliding win-
dow contains a number of IMU poses as well as the features

observed in these poses. The IMU measurements are used
to provide the “process-model” information between the
poses of the window, while the feature observations pro-
vide the “sensor-model” information (see Section 2.1 of
(Sibley at al. 2010)). Every time a new image is recorded,
Gauss–Newton minimization is employed to update the
state estimates in the sliding window, and subsequently
the oldest pose, and features that are no longer observed,
are marginalized out. All of the methods tested (MSCKF,
“ideal” MSCKF, MSCKF 2.0, and FLS) use a sliding
window of the same length.

For these tests we employ a much longer dataset as our
basis for generating simulated data. Specifically, we use
the Cheddar Gorge dataset (Simpson et al., 2011), which
involves a 29 km long trajectory, collected in 56 minutes
of driving. For this dataset an Xsens IMU provided mea-
surements at 100 Hz, and images were available at 20 Hz.
In each image, 240 features were tracked on average, and
the average track length was 4.1 frames (note that this is
due to the fact that a very large percentage of features are
tracked for short periods in this dataset, which involves a
fast-moving vehicle).

Before examining the averaged results of all the Monte
Carlo trials, it is interesting to examine the results of esti-
mation for the rotation about gravity (the yaw) in a single
trial. Figure 3 shows the estimation errors in the yaw for the
four algorithms, as well as the ±3σ envelopes computed
using the reported covariance of each method (these are
the reported 99.7% confidence regions). The most impor-
tant observation here is that the reported standard devia-
tion for both the MSCKF and the FLS fluctuates about a
constant value, as if the yaw was observable. By contrast,
in the “ideal” MSCKF and the MSCKF 2.0 algorithms, the
standard deviation of the yaw increases over time, as theo-
retically expected, given that the yaw is unobservable. This
figure clearly demonstrates the importance of the observ-
ability properties of the linearized system: when these do
not match the properties of the underlying nonlinear
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Fig. 3. IMU yaw errors and ±3σ bounds in one representative
trial of the Cheddar Gorge simulation. The yaw error for the
MSCKF (dotted line – red), the “ideal" MSCKF (solid line –
dark green), the MSCKF 2.0 (dashed line – cyan), and the FLS
(dashdotted line – light green). The ±3σ bounds for the MSCKF
(circles – magenta), the “ideal" MSCKF (diamonds – yellow), the
MSCKF 2.0 (squares – blue), and the FLS (triangles – black).

system, the estimation results (e.g. reported uncertainty)
exhibit fundamentally incorrect characteristics. We note
here that the FLS also suffers from the same inconsistency
problem, even though it employs iterative re-linearization,
as shown in (Dong-Si and Mourikis, 2011).

The three subplots in Figure 4 show the average NEES
for the IMU pose, as well as the RMSE for the IMU ori-
entation and position, averaged over 50 Monte Carlo tri-
als. Table 3 lists the average NEES and RMSE values for
the four algorithms. First, we note that the performance of
the MSCKF 2.0 is similar to that of the “ideal” MSCKF,
and that both algorithms clearly outperform the standard
MSCKF. These results once again show that by enforcing
the correct observability properties, the filter’s performance
can be significantly improved. In addition, in this simula-
tion environment, we see that the performance difference
between the standard MSCKF and the MSCKF 2.0 is more
pronounced than before. This is due to the fact that the
Cheddar Gorge dataset is significantly longer (both in tra-
jectory length and duration). As a result, more “spurious"
information about the yaw is accumulated, due to the incor-
rect observability properties of the filter’s linearized model.
In turn, this causes a larger degradation in the estimates of
the standard MSCKF.

More importantly though, we see that the MSCKF 2.0
(as well as the “ideal” MSCKF) attains substantially bet-
ter accuracy and consistency even than the iterative FLS
method. This occurs even though the latter uses approxi-
mately five times more computation time. The performance
difference between the MSCKF 2.0 and the FLS demon-
strates that (at least in the case examined here) having
a linearized system model with appropriate observability
properties is more important than using re-linearization to
better approximate the nonlinear measurement models.

Fig. 4. Average NEES and RMSE over 50 Monte Carlo trials
of the Cheddar Gorge simulation. The dotted green line corre-
sponds to the MSCKF, the black line with squares to the “ideal"
MSCKF, the red line with x-marks to the MSCKF 2.0, and the
blue dashdotted line to the FLS.

Table 3. Average NEES and RMSE for Figure 4.

Position Orientation NEES
RMSE (m) RMSE◦

FLS 133.4 2.83 50.97
MSCKF 146.2 3.40 51.72
MSCKF 2.0 97.7 2.21 6.53
“Ideal” MSCKF 100.2 2.35 6.45

8.3. Performance of the online camera-to-IMU
calibration

To test the performance of the online camera-to-IMU cali-
bration, we conducted a second Monte Carlo simulation test
based on the Cheddar Gorge dataset. In each Monte Carlo
trial, the camera-to-IMU translation and orientation were
set equal to known nominal values with the addition of ran-
dom errors δp and δθ , respectively. In each trial, δp and δθ

were randomly drawn from zero-mean Gaussian distribu-
tions with standard deviations equal to σp = 0.01 m and
σθ = 0.5◦ along each axis, respectively. This setup mod-
els the scenario in which the transformation parameters are
approximately, but not exactly, known (e.g. through manual
measurement).

In this simulation, we compared the performance of four
algorithms: (i) the MSCKF 2.0 algorithm with the online
calibration enabled; (ii) the MSCKF 2.0 algorithm with the
online calibration disabled, and assuming the camera-to-
IMU transformation is equal to its nominal value. This will
help to demonstrate the effect of incorrect transformation
estimates on the estimator’s accuracy and consistency. (iii)
the m-AHP algorithm, with online camera-to-IMU calibra-
tion implemented (out of all of the EKF-SLAM algorithms
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Fig. 5. Trajectory estimates plotted on a map of Canyon Crest, Riverside, CA. The initial vehicle position is shown by a green circle,
and the end position by a red circle. The black solid line corresponds to the ground truth, the green dash-dotted to the MSCKF, the red
dashed line to the MSCKF 2.0, and the blue dotted line to the FLS.

considered, the m-AHP is the one with the best perfor-
mance, and thus is the “best-case scenario” for online cal-
ibration in the SLAM framework); and, finally, (iv) we ran
the MSCKF 2.0 algorithm with perfectly known calibration,
as a benchmark of performance (we term this the “precise”
scenario).

Table 4 shows the results of Monte Carlo trials, listing
separately the RMSE errors along the three axes (the x-
and y-axes are parallel to the ground, while the z-axis is
parallel to gravity). Three key observations can be made
here. First, we observe that when the camera calibration is
falsely assumed to be known (calibration “off”), the filter’s
accuracy and consistency are severely degraded, particu-
larly along the z-axis. This happens even though the errors
of the calibration parameters are relatively small in these
simulations. Second, we can observe that the accuracy of
the IMU pose estimates computed when the calibration is
performed online with the MSCKF 2.0 is almost identi-
cal to the accuracy that is achieved with a priori perfectly
known calibration. This is practically significant, as it indi-
cates that more sophisticated (and time-consuming) calibra-
tion processes involving specialized equipment may not be
required for most applications. Third, by comparing the per-
formance of m-AHP to MSCKF 2.0, we observe that the
SLAM-based approach attains lower accuracy and consis-
tency for the IMU pose, as well as lower precision for the
camera-to-IMU calibration. This result, which agrees with
those of Section 8.1, demonstrates the advantage of per-
forming the camera-to-IMU calibration in the MSCKF 2.0
framework.

9. Real-world experiment

We next describe the results of a real-world experiment,
during which an IMU/camera platform was mounted on top

of a car and driven on the streets of Riverside, CA. The sen-
sors consisted of an Xsens MTi-G unit, and a PointGrey
Bumblebee2 stereo pair (only a single camera’s images
are used). The IMU provided measurements at 100 Hz,
while the camera images were stored at 20 Hz. For position
ground truth we used a GPS–INS estimate of the trajectory.
For feature extraction the Shi-Tomasi algorithm was used
(Shi and Tomasi, 1994), and matching was carried out by
normalized cross-correlation. On average, approximately
290 features were tracked per image. The experiment lasted
about 37 minutes, during which the vehicle drove approxi-
mately 21.5 km. Some sample images from the experiment
are shown in Figure 7.

Figure 5 shows the ground truth trajectory on a map of
the area where the vehicle drove, as well as the estimates
computed by three algorithms: the MSCKF, the FLS, and
the proposed MSCKF 2.0. These are the three most accurate
estimators tested, and we only present their results for clar-
ity. Figure 6 plots the estimation error as well as the reported
standard deviation of the yaw and the x–y position for the
three algorithms. Similarly to what was observed in Fig-
ure 3, we see that the MSCKF 2.0 (plots on the left) offers
a better characterization of the actual uncertainty. By con-
trast, the uncertainties of both the yaw and the IMU position
are underestimated by the MSCKF and the FLS (plots on
the right). The estimation errors for these algorithms are
also significantly larger than those of the MSCKF 2.0. The
elevation (altitude) estimates of the MSCKF 2.0 are also
more accurate, having worst-case errors of 26 m, com-
pared with 27 m for the MSCKF and 33 m for the FLS.
The largest position error for the MSCKF 2.0 algorithm is
approximately 58 m, which corresponds to only 0.28% of
the travelled distance. In contrast, the trajectory estimates
reported by the MSCKF and the FLS are much less accu-
rate, with largest position errors of about 230 m and 202 m,
respectively.
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Table 4. Performance of the online camera–IMU calibration.

Transformation Imprecise precise

Estimator

on on off N/ACalibration

m-AHP MSCKF 2.0

IMU pose RMSE

x (m) 86.2 59.6 59.6 59.0
y (m) 113.2 80.3 84.9 79.9
z (m) 6.4 5.5 117.0 2.5
roll (◦) 0.11 0.10 0.15 0.10
pitch (◦) 0.12 0.11 0.15 0.10
yaw (◦) 3.27 2.26 2.26 2.25

IMU pose NEES 8.24 7.45 2591 7.02

Calibration RMSE
position (m) 0.03 0.03 N/A N/A
orientation (◦) 0.07 0.05 N/A N/A
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Fig. 6. Estimation errors for the three approaches. The left plots are the results for the MSCKF 2.0, and the right plots for the MSCKF
and FLS.

Fig. 7. Sample images recorded during the experiment.
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Fig. 8. Orientation estimates of the camera expressed in the IMU
frame. Note that the estimation uses a quaternion representation,
and the results are transformed to roll–pitch–yaw for visualization
purposes only.

Since the precise IMU-to-camera parameters were not
perfectly known, they were estimated online by the MSCKF
2.0 algorithm, using manual measurements for initializa-
tion. Figure 8 shows the orientation estimates between
the IMU and the camera, where the roll, pitch, and yaw
angles describe the camera orientation expressed in the
IMU frame. The final standard deviation of the orientation
estimates is [0.008◦ 0.008◦ 0.039◦] about the three axes,
while for the position we obtain [0.008 0.008 0.005] m,
showing the high accuracy attainable by the online camera-
to-IMU calibration process.

As a final remark, we note that in this experiment, the
average processing time per update of the MSCKF 2.0
(including image processing and estimation) is 10 ms mea-
sured on a Core i7 processor at 2.66 GHz, with a single-
threaded C++ implementation. Since the image period is
50 ms, the algorithm’s performance is comfortably within
the requirements for real-time operation.

10. Conclusion

In this paper, we have presented a detailed analysis of
the properties and performance of different EKF-based
VIO algorithms. We showed that the MSCKF algorithm
attains better accuracy and consistency than EKF-based
SLAM due to its less strict probabilistic assumptions and
delayed linearization. In addition, we performed a rig-
orous study of the consistency properties of EKF-based
VIO algorithms, and showed that the filters’ linearized sys-
tem models have incorrect observability properties, which
result in inconsistency. To address this problem, we devel-
oped the MSCKF 2.0 algorithm, which uses a novel
closed-form expression for the IMU error-state transition
matrix and fixed linearization states to ensure the appro-
priate observability properties. Moveover, the MSCKF 2.0

algorithm is capable of performing online camera-to-IMU
calibration. Extensive Monte Carlo simulations and real-
world experimental testing provide strong validation of
our theoretical analysis, and demonstrate that the proposed
MSCKF 2.0 algorithm is capable of performing long-term,
high-precision, consistent VIO in real time. In fact, the
MSCKF 2.0 algorithm is shown to outperform even an
iterative-minimization-based FLS, an algorithm with sub-
stantially higher computational requirements.

Funding

This work was supported by the National Science Foundation
(grant number IIS-1117957), the UC Riverside Bourns College
of Engineering, and the Hellman Family Foundation.

Notes

1. Note that hybrid approaches have also appeared (e.g. Mourikis
and Roumeliotis, 2008), which use the estimates of the EKF
as initial guesses for iterative minimization. Moreover, hybrid
schemes that maintain both an EKF and a minimization-based
estimator for robustness and/or efficiency have been proposed
(Brockers et al., 2012; Weiss et al., 2012).

2. Throughout this paper, the preceding superscript (e.g. G in
Gp�) denotes the frame of reference with respect to which
quantities are expressed. A

BR is the rotation matrix rotating

vectors from frame {B} to {A}, A
Bq̄ is the unit quaternion cor-

responding to the rotation matrix A
BR, �c×� denotes the skew

symmetric matrix corresponding to vector c, 0 and I are the
zero and identity matrices, respectively, â and ã represent
the estimate and error of the estimate of a variable a respec-
tively, and âi|j is the estimate of variable a at time step i given
measurements up to time step j.

3. We note that throughout this paper, we focus on the
monocular-camera case, which is the more challenging one.
However, our theoretical analysis and the MSCKF 2.0 algo-
rithm are equally applicable to the case where a stereo pair is
used for visual sensing.

4. Note that, if the signals are known to be band-limited, more
advanced signal-reconstruction methods can be employed.
However, this requires additional assumptions about the
motion characteristics and/or the sensor, which are not always
appropriate.

5. If we include in the state additional quantities that are
known to be observable, this will augment the observabil-
ity matrix (21) with additional, linearly independent, columns
and will not affect the dimension of the nullspace of O.
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Appendix A

If the biases are included, the IMU error-state transition
matrix is given by

�Ik =

⎡
⎢⎢⎢⎢⎣

I3 03 03 �qbg 03

�pq I3 �tI3 �pbg �pa

�vq 03 I3 �vbg �va

03 03 03 I3 03

03 03 03 03 I3

⎤
⎥⎥⎥⎥⎦ (60)

where

�qbg =−R̂
T
�

∫ t�+1

t�

I�
Iτ R̂ dτ
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∫ t�+1

t�

∫ w

t�

�( G ˙̂vτ − g) ×�R̂
T
�

∫ τ
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I�
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R̂ ds dτ dw

�pa =−R̂
T
�

∫ t�+1
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∫ τ

t�

I�
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R̂ ds dτ

�vbg =
∫ t�+1

t�

�( G ˙̂vτ − g) ×�R̂
T
�

∫ τ

t�

I�
Is

R̂ ds dτ

�va =−R̂
T
�

∫ t�+1

t�

I�
Iτ R̂ dτ (61)

The detailed derivation of this result is provided in (Li and
Mourikis, 2011).

Appendix B

We here prove that, in a linear-Gaussian system, the state
estimate and covariance matrix computed by the MSCKF
is the MAP estimate for the IMU pose. Since EKF-SLAM
is also a MAP estimator, this means that the MSCKF and
EKF-SLAM would be identical in a linear-Gaussian sys-
tem. Due to limited space, we here provide an outline of
the main steps of the proof, and the full details are provided
in (Li and Mourikis, 2011).

Let us consider the following linear system:

xi =�ixi−1 + wi−1 (62)

zij =Hxij xi + Hfij pfj
+ nij (63)

where xi, i = 0 . . . N are the IMU states, pfj
, j = 1 . . . M

are the feature positions, wi and nij are zero-mean white
Gaussian noise processes with covariance matrices Qi and
σ 2I2, respectively, and �i, Hxij , and Hfij are known matri-
ces. We denote the vector containing all of the IMU states
as x = [

xT
0 xT

1 · · · xT
N

]T
, the vector containing all of

the feature positions as f = [
fT
1 fT

2 · · · fT
M

]T
, and the

vector containing all measurements as
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z = Hxx + Hff + n

where Hx and Hf, are matrices with block rows Hxij and
Hfij , respectively.

Using the prior estimate for the first state, x̂0, as well as
the state propagation equation, we can obtain an estimate
for x, which we denote by x̂s, along with its covariance
matrix Ps. This estimate uses all of the information from
the prior and the state propagation model. The MAP esti-
mate for the entire state vector, which uses all the available
information (prior, propagation model, and measurements)
is given by [

x̂MAP

f̂MAP

]
= �−1

[
P−1

s x̂s + 1
σ 2 HT

x z
1
σ 2 HT

f z

]

where � is the information matrix:

� =
[

P−1
s + 1

σ 2 HT
x Hx

1
σ 2 HT

x Hf
1
σ 2 HT

f Hx
1
σ 2 HT

f Hf

]

and �−1 is the covariance matrix of the MAP estimate.
Using the standard properties of the inversion of a parti-
tioned matrix, we can show that the estimate x̂MAP and its
covariance matrix equal

x̂MAP =PMAP

(
P−1

s x̂s + 1

σ 2
HT

x

(
I − Hf

(
HT

f Hf
)−1

HT
f

)
z

)

PMAP =
(

P−1
s + 1

σ 2
HT

x

(
I − Hf

(
HT

f Hf
)−1

HT
f

)
Hx

)−1

On the other hand, in the MSCKF algorithm, if we use the
IMU measurements to propagate the state estimates, and
then employ the camera measurements for an update, the
update is performed based on the residual:

ro
.= VT( z − HT

x x̂s) = (
VTHx

)
x̃s + no (64)

where V is a matrix whose columns form an orthonor-
mal basis for the left nullspace of Hf, and no is a noise
vector with covariance matrix σ 2I. Using the Kalman
filter equations, the state and covariance update can be
written as

x̂MSC = x̂s + Kro (65)

PMSC =
(

P−1
s + 1

σ 2

(
VTHx

)T (
VTHx

))−1

(66)

where K is the Kalman gain, which can be written as (May-
beck, 1979):

K = 1

σ 2
PMSC

(
VTHx

)T
(67)

Our goal is to show that x̂MSC = x̂MAP, and
PMSC = PMAP. To this end, we note that the matrix
I − Hf

(
HT

f Hf
)−1

HT
f is the orthogonal projector onto the

left nullspace of Hf, and thus I − Hf
(
HT

f Hf
)−1

HT
f = VVT

(Meyer, 2000). Using this result, the equality PMSC = PMAP

follows immediately, and we can also write

x̂MAP = PMSC

(
P−1

s x̂s + 1

σ 2
HT

x VVTz

)
(68)

Substitution of (64) and (67) in (65) yields

x̂MSC = x̂s + 1

σ 2
PMSC

(
VTHx

)T
VT( z − HT

x x̂s)

=PMSC

((
P−1

MSC− 1

σ 2
HT

x VVTHT
x

)
x̂s + 1

σ 2
HT

x VVTz

)

Showing that the last equation is equal to (68) follows
immediately by use of (66).

Appendix C

In EKF-based SLAM, the current feature estimates are used
for computing the measurement Jacobians at each time step.
Thus, we have

HIi� = Ji�
C
I R R̂�|�−1

[�(Gp̂fi|�−1
− Gp̂�|�−1

)×� −I3 03
]

Hfi� = Ji�
C
I R R̂�|�−1 (69)

where the matrix Ji� is evaluated using the estimate:

C� p̂fi|�−1
= C

I R R̂�|�−1
(

Gp̂fi|�−1
−Gp̂�|�−1

)+CpI (70)

Using these Jacobians, we obtain the block row of the
observability matrix corresponding to the observation of
feature i at time-step �. This matrix has the same structure
as (48), with

�i� = ⌊
Gp̂fi|�−1

− Gp̂k|k − Gv̂k|k�t� − 1

2
g�t2

� × ⌋
��i� =

�−1∑
j=k+1

(
Ej

p +
j∑

s=k+1

Es
v�t

)
+ ⌊

�Gpfi
× ⌋

(71)

Mi�= Ji�
C
I R R̂�|�

�Gpfi
= �Gp̂fi|�−1

− Gp̂fi|k−1
×� (72)

Ej
p = �Gp̂j|j−1 − Gp̂j|j×� (73)

Ej
v = �Gv̂j|j−1 − Gv̂j|j×� (74)

Similarly to the MSCKF, the observability matrix of EKF-
based SLAM also contains a disturbance term ��i�, which
decreases the dimension of the unobservable subspace.
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