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Much like KLT, bundle adjustment is a nonlinear optimization. In the previous exercise, we
implemented the full optimization from scratch. In this exercise, we will simplify this task by
outsourcing gradient calculation and descent to Matlab using the lsqnonlin command.

1 Preliminaries

1.1 Outline of the exercise

Every time a known landmark is observed, the image point of the observation provides information
which could be used to re�ne both the landmark position estimate and the pose estimates of all frames
that observed it. Incorporating this information in real time is hard, so we have not attempted this
in any previous exercises or the suggested VO pipeline. In this exercise we will still not quite solve
the problem of real-time incorporation, but we will see how all observations can be used to re�ne the
trajectory estimate and the map o�-line, i.e., once all data has been collected. This is typically done
with an algorithm called Bundle Adjustment (BA). In BA (whose name derives from bundles of light

being adjusted), trajectory and map estimate are re�ned in a way that minimizes the reprojection
error, that is, the distance between where a landmark is observed on an image and where it should
be observed according to the estimated geometry. BA is a special case of non-linear least-squares
(NLLS) optimization.

In this exercise, we will see how BA can be formulated as a NLLS problem, and solve it using
Matlab's lsqnonlin function. NLLS optimization is a tool that can be applied to a wide variety
of problems - any major programming language should also have a library for this. This exercise
should give you a lot of insight into how BA works, and should on the other hand make you familiar
with lsqnonlin (or your programming language's equivalent), which is a handy tool for many other
problems. Incidentally, it can be used (and we will use it) in the evaluation of BA. To evaluate
the e�ectiveness of BA, we compare the adjusted estimate with the ground truth. However, ground
truth and estimate vary in scale due to the unknown scale in monocular vision. Furthermore, any
rotational error at the beginning of the estimate can rotate the estimated trajectory with respect to
the ground truth. Thus, to evaluate how much the estimate resembles ground truth, we will �rst
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Figure 1: The �rst 150 frames of KITTI 00 describe an L-shaped trajectory with a long �rst segment
and a right turn followed by a shorter segment. Here we can see that our reference VO exhibits scale
drift, as the �rst part of the aligned estimate is longer than the ground truth while the second part
is shorter. Even though we limit our bundle adjustment to 20 iterations, we can see how it improves
the accuracy of the estimate, by reducing and straightening the �rst part and enlarging the second.
See the attached animated gif for an even better illustration of this.

align the estimate to the ground truth, which can also be achieved using NLLS optimization. Thus,
the outline of the exercise is as follows:

First, we implement estimate-to-ground-truth alignment, since this is an easy non-linear least-
squares problem. Then, we will apply lsqnonlin in its simplest form to a small BA problem, and
see how this already reaches the computation limits of a typical laptop. We will then see how we can
exploit knowledge of the problem to increase the e�ciency of lsqnonlin. Finally, we will apply our
optimized BA to a larger problem and see how it improves the accuracy of the trajectory estimate.

1.2 Provided code

As usual, we provide you with skeletal Matlab code (main.m) with a section for each part of the
exercise. Your job will be to implement the code that does the actual logic. We also provide the
functions stubs with some comments about the input and output formats, so if these are not clear
from this PDF, they should be clear from the function stubs. As usual, you do not need to reproduce

the reference outputs exactly. Note that you will be using code from previous exercises - you may
use your own code, but it's probably less hassle if you use our reference implementations.

1.3 Conventions

Pose transformations between frames A and B are denoted with rotation matrix and translation
vector RAB and tAB such that the origin of B expressed in A is at tAB and the (x, y, z) unit vectors
of frame B expressed in frame A are the columns of RAB . With this, a point pB expressed in B can
be expressed in A as follows:

pA = RAB · pB + tAB . (1)

The inverse transformation is given by RBA = RTAB and tBA = −RTAB · tAB . W denotes the world
or global frame and C the camera frame. The camera looks in positive z direction, x points to the
right and y down in the image. For trajectory alignment there are two �world frames�: The frame
in which the estimated trajectory is expressed, and the frame in which the ground truth lives. We
call these V (for visual odometry) and G, respectively. Also, a prime (′) will indicate ground truth
variables (points, poses).

1.4 Data format

Unless otherwise stated, collections of vectors are stored as matrices, with the vectors in the columns.
For parts 2 and 3, the trajectory and map are represented with two column vectors, hidden_state
and observations:

hidden_state =
[
τT1 , ..., τ

T
n , P

T
1 , ..., P

T
m

]T
(2)

observations =
[
n,m,OT1 , ..., O

T
n

]T
(3)
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Oi =
[
ki, p

T
i,1, ..., p

T
i,ki , li,1, ..., li,ki

]T
, (4)

where τi is the twist vector (see Section 2) representing the camera pose TWC of the i-th frame, Pi
the 3D position of the i-th landmark, n the number of frames, m the number of landmarks, ki the
number of landmarks observed in the i-th frame, pi the 2D position of the keypoint corresponding to
the i-th observed landmark (in (row, col) and not (x, y) of the image - you might need to �ip this)
and li the index of the corresponding landmark. For example, pi,j describes the observation of the
landmark with position Pli,j in the image of the frame described by τi.

2 Part 1: Trajectory alignment

In the �rst part, we apply non-linear least-squares (NLLS) optimization to align the original trajec-
tory estimate to the ground truth. This is a problem that can actually be solved in closed form,
but we will solve it with NLLS for practice. NLLS optimization solves the following problem (looks
familiar? See previous exercise.):

x? = argmin
x

e(x)Te(x) = argmin
x

∑
i

ei(x)
2 (5)

where e(x) is a vector containing error terms ei(x) as coe�cients. In the situation where some model
parametrized by x (hidden state) needs to be inferred from observations Y, and we can model what
Y should be given x, (5) can be used by setting

e(x) = f(x)−Y =

f1(x)− Y1f2(x)− Y2
...

 (6)

where for each observation Yi, the model function fi(x) describes what that observation should
be according to the model parametrized by x. For aligning the trajectory estimated by the VO,

p
(i)
V , to the ground truth trajectory, p

′(i)
G , we assume that there is some similarity transformation

SGV =

[
sGV ·RGV tGV

0 1

]
such that

[
p
′(i)
G

1

]
∼ SGV

[
p
(i)
V

1

]
or p

′(i)
G ∼ sGV ·RGV p(i)

V + tGV (7)

Note that SGV is similar to what we have previously used for 3D transformations, except that it
additionally contains a scale factor sGV which models a change in scale. If the VO estimate were
perfect, an SGV would exist that would solve (7) exactly. However, since the estimate is faulty, we look

for SGV which minimizes the di�erence between p
′(i)
G and SGV p

(i)
V (henceforth a shorthand for the top

three rows of SGV

[
p
(i)
V

1

]
). In particular, we can use (5) and (6) with Y = (p

′(1)T
G ,p

′(2)T
G , ...,p

′(n)T
G )T

and f(x) = (SGV p
(1)T
V , ..., SGV p

(n)T
V )T . Note that each point in the trajectory will have three

coe�cients in e, one for each dimension in 3D.
We will now solve this using lsqnonlin. lsqnonlin takes as arguments an initial guess for

the model parameters x, in form of a vector, and the error function e(x). It will then tweak x
using sophisticated gradient descent algorithms until e(x)Te(x) reaches a (local!) minimum. To
use this for trajectory alignment, we need to express parameters describing SGV as a vector. Since
SGV needs to satisfy constraints to be valid (e.g. RGV needs to be a valid rotation matrix), we
cannot simply reshape it to a vector and pass it to lsqnonlin, since lsqnonlin might violate these
constraints. Instead, we should choose a minimal representation that makes it impossible to violate
these constraints. This can be done in a couple of ways, and we choose to represent rotation and
translation with a twist vector, after separating scale. To convert between a homogeneous matrix[
R t
0 1

]
and twist vector τ , we provide the functions HomogMatrix2twist and twist2HomogMatrix.

Then, we can set x =

[
τGV
sGV

]
. With this, conversion from x to SGV should be straightforward. The
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Figure 2: Original estimate and estimate aligned to ground truth.

inverse can be e.g. achieved by looking at the determinant of the top left 3 × 3 block of SGV , but

won't actually be necessary in this exercise. For the initial guess, you can set x =

[
τ(I4×4)

1

]
.

Complete the function alignEstimateToGroundTruth to return the aligned SGV p
(i)
V , given p

′(i)
G

and p
(i)
V . In your call to lsqnonlin, set the option Display to iter. You should get the results as

shown in Fig. 2 and a �nal squared error of around 3000m2.

Hint: lsqnonlin needs a function that depends only on x, but e(x) also depends on p
′(i)
G and

p
(i)
V . We suggest that you �rst write a function alignmentError that expresses e(x,p

′(i)
G ,p

(i)
V ), then

bind the input arguments p
′(i)
G and p

(i)
V to the given values. In Matlab this can be done by writ-

ing, in the body of alignEstimateToGroundTruth: error_function = @(x) alignmentError(x,

pp_G_C, p_V_C); . Then, error_function can be passed as �rst argument to lsqnonlin.

3 Part 2: Small bundle adjustment

Now that you have applied lsqnonlin to a simple problem, let us apply it to bundle adjustment
(BA). BA �ts the formulation in equations (5) and (6). In BA, x represents the frame poses and
landmark positions, Y the 2D coordinates of each landmark observation in each image, and f(x) the
2D coordinates that should be observed according to the model de�ned by x. As we will see, a naive
implementation of bundle adjustment with lsqnonlin is rather ine�cient, and so we only start with
the �rst four frames. For your convenience, we have pre-packaged the problem data in a way that is
appropriate for lsqnonlin, see Section 1.4.

Implement runBA, where, given x and O, you formulate Y and f(x) in a way that minimizes,
for each observation of each landmark, the distance between the projection of the 3D landmark onto
the image plane and the actual observation of that landmark (the so-called reprojection error).
Limit lsqnonlin to 20 iterations. With this small problem (four frames only), it is hard to notice
improvement with respect to the initial estimate. Our output is shown in Fig. 3. Essentially, as
long as something has changed in your map without destroying it, you are probably �ne. We will
evaluate the BA performance in the �nal part of this exercise.

Some hints:

• It is normal if this function executes in a couple of minutes. We will see how to make it more
e�cient in the next part.

• There are plenty of sources for bugs in this exercise. We strongly encourage you to make debug
plots. For instance, you should verify that landmark observations and projections are always
very close to each other (this is of course already the case in the output given by the VO -
bundle adjustment is about making these distances even smaller).

• You should have Y =
[
pT1,1, ..., p

T
1,k1

, ..., pTn,1, ..., p
T
n,kn

]T
. In particular, each landmark observa-

tion will have two coe�cients in e(x), one for each dimension in 2D.

• To get some feedback during execution we recommend to also here set the lsqnonlin option
Display to iter.
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Figure 3: The outcome of running bundle adjustment on the �rst four frames.

• Same as in the previous part of the exercise, we recommend to write an error function which
takes both hidden and observed state, and then bind the observed state to the values provided
as input to your function (O).

4 Part 3: Determining the Jacobian pattern

As you should see, even with as simple a map as one with only four frames, our naive implementation
of bundle adjustment (BA) with lsqnonlin takes a lot of time. This is because Matlab spends a lot
of time numerically �guring out the Jacobian

J =


∂e1
∂x1

∂e1
∂x2

...
∂e2
∂x1

∂e2
∂x2

...
. . .

 (8)

which is needed to calculate the gradient, and thus the direction in which lsqnonlin will change x
in order to decrease the error most e�ectively. Essentially, Matlab takes every single coe�cient of x
and slightly changes it to see what happens to every coe�cient of e (numerical di�erentiation1).
Thus, lsqnonlin (and other libraries for NLLS optimization) can be signi�cantly accelerated by
providing them with an expression for the Jacobian2. Since the Jacobian is quite challenging to
de�ne in our case (especially since our model involves rotations) we will not provide a Jacobian
function to lsqnonlin in this exercise. What we can do, however, is tell it which coe�cients of the
Jacobian are zero. A Jacobian coe�cient Jij is nonzero only if the i-th coe�cient of e(x) is a�ected
by the j-th coe�cient of x ( ∂ei∂xj

6= 0). In our case, coe�cients of e correspond to reprojection errors

while coe�cients of x correspond to camera poses and landmark positions. But as you can imagine,
not every camera pose and landmark will a�ect every reprojection error. In fact, a single reprojection
error depends only on the pose of the camera which observes it and the corresponding landmark!
So, we can signi�cantly reduce the numerical di�erentiation e�ort of lsqnonlin by telling it which
coe�cients of the Jacobian to skip.

In runBA, create a pattern matrix M with Mij = 1 if the i-th coe�cient of e(x) is a�ected by the
j-th coe�cient of x and = 0 otherwise. Then, pass M to lsqnonlin with the option JacobPattern.

1https://en.wikipedia.org/wiki/Numerical_di�erentiation
2In fact, for some languages (for example C++) there is a thing �between� numerical di�erentiation and

having to provide the Jacobian called automatic di�erentiation. Check it out, it is a pretty cool idea:
https://en.wikipedia.org/wiki/Automatic_di�erentiation . It provides a nice compromise between the tediousness
of manually calculating the Jacobian and the slowness of numerical di�erentiation. Unfortunately, it is not available
in Matlab.

5

https://en.wikipedia.org/wiki/Numerical_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation


Robotics and Perception Group,
University of Zurich. 5 PART 4: LARGER BUNDLE ADJUSTMENT AND EVALUATION

Figure 4: The Jacobian pattern of the small bundle adjustment problem.

lsqnonlin will now estimate Jij only when Mij = 1, which in the case of BA massively speeds up
its execution. Hints:

• You can visualize M with the Matlab command spy. This should look like in Fig. 4.

• You don't need to do any math (apart from indexing) to determine whetherMij should be zero
or not. Just think about which parts in x a�ect the 2D position of the keypoint corresponding
to a given landmark in a given frame.

• Don't forget that each observation has two coe�cents in e.

• Important: You probably don't have enough RAM to represent M densely in Part 4. Instead,
use sparse. Your code will be even faster if you pre-allocate the memory forM using spalloc.
It is not hard to predict how many non-zero elements M will have.

5 Part 4: Larger bundle adjustment and evaluation

Now that we have accelerated bundle adjustment (BA), we can run it on a larger problem. Execute
the parts of main.m which run the BA function on the �rst 150 frames of KITTI (hidden_state,
observations). This will take a couple of minutes to calculate. The map visualization of before and
after BA should look like in the gif attached to the exercise. Finally, we can take the re�ned trajectory
estimate and align it to the ground truth. With the bundle-adjusted estimate, the �nal alignment
error should only be around 1500m2, and the plot which compares it to the pre-BA alignment should
look like in Fig. 1.
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6 Numerical Exercises

In the following, we will derive the �rst steps for the �Closed-form solution of visual-inertial structure
from motion� Martinelli et al., IJCV14. To stay consistent with the paper, we introduce the following
notation for the problem. A platform with a camera and an IMU moves in a 3D environment
relative to a global frame. Vectors in this global frame are written in lower-case letters, e.g. w(τ).
Furthermore, assume that the platform frame coincides with the camera frame, which we call local
frame. We will adopt upper-case letters to denote vectors in this frame, e.g. W t(τ) expressed in
the local frame at t. The rotation occurred during the time interval (t1, t2) is C

t1
t2 . Finally, C

t will
denote the rotation matrix between the global frame and the local frame at time t. Thus, we can
express a vector in the world frame w(τ) using the rotation matrix Ct as w(τ) = CtW t(τ).

1. In a �rst step, state the position of the platform r(t) expressed in the world frame at any
time t ∈ [Tin, Tfin] using a double integral. Assume that you have access to the correct
platform acceleration a(τ), the initial position r(Tin) and the initial velocity v(Tin), which are
all expressed in the global frame.

2. Rewrite the position of the platform r(t) by simplifying the double integral using integration
by parts.

3. In practice, the accelerometer does not provide the acceleration a(τ) in the global frame.
Instead, it provides a sensor measurment Aτ (τ) expressed in the local frame at time τ , which
includes the gravitation vector Gτ and a constant bias B. For this exercise, we omit the IMU
noise.
Based on this in�uences, state the sensor measurement of the IMU Aτ (τ) as a function of Gτ ,
B and Ainertial

τ (τ), which is the inertial acceleration of the platform expressed in the local
frame at time τ .

4. In a next step, state the position vector r(t) using Aτ (τ) as well as the platform rotation CτTin

between timestep Tin and τ . Simplify the resulting formula.

5. Is it possible to measure with an IMU sensor all variables needed for computing r(t)?

6. Since we are interested in combining a RGB camera with an IMU for VIO, let us now suppose
that N point-features are observed in the camera. Let us denote their position in the physical
world with pi, i = 1, ..., N . According to our notation,P i

t(t) will denote their position at time
t in the local frame at time t.
Write down the formula to convert the feature coordinates in the local P i

t(t) to the global
frame pi.

7. Finally, using the above equation, we can relate the location of one feature P i
Tin

(Tin) at

timestep Tin to the relative location P i
t(t) at timestep t. Both vectors are expressed in the

corresponding local frame. State the resulting formula.

By further reformulating the equation in subquestion 7, we obtain a linear system of equations, which
can be solved for the camera poses and the scale of the features.
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