
Robotics and Perception Group,
University of Zurich. 1 NUMERICAL EXERCISES

1 Numerical Exercises
1. In the lecture you have seen the Jacobian which contains the derivatives of a vector-valued func-

tion w.r.t its variables. The cases presented in the lecture correspond to projective transforma-
tions (e.g. straight lines remain straight). However, for certain applications (e.g. cartography)
the transformations are non-projective.

Figure 1: Illustration of the stereographic projection

The most prominent non-projective projection (i.e. straight lines do not remain straight) is
the stereographic projection1 which has already been used by the ancient greeks for celestial
charts! This projection maps points on a sphere to a planar map. Hence it is widely used in
catography.

Given a sphere of radius R and a set of points (xs, ys, zs) on the sphere, the corresponding
points on a planar map (xp, yp) = f(xs, ys, zs) are given by

xp =
xs

1− zs
yp =

ys
1− zs

Derive the Jacobian J of the projection function f : R3 7→ R2 w.r.t. the vector xs = [xs, ys, zs].

Solution
The Jacobian has to be of size 2× 3 as there is two variables xp and yp that depend on three
variables. Taking the derivative of xp w.r.t. xs leads to

dxp
dxs

=
−1
z − 1

which is the top left element of the jacobian. The other elements are computed similarly. The
final jacobian is given by

J =

[
−1/(z − 1), 0 x/(z − 1)2

0 −1/(z − 1) y/(z − 1)2

]
2. Given a general bijective transformation (not neccessarily a projective transformation), what

can we say about its Jacobian?
Hint: think about: rank, determinant, invertibility, etc.

1 Solution
We consider continuously differentiable transformations as this type is typcially encountered
in computer vision.

A bijective function is invertible and this property also holds for the jacobian of the function.
Intuitively, if the function is bijective it can have zero gradient only at one point because
otherwise this would conflict with bijectiveness. If the Jabocian is invertible, it is guaranteed
to have full rank and a non-zero determinant.

1https://en.wikipedia.org/wiki/Stereographic_projection
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If the determinant is positive, the transformation preserves orientation whereas a negative
determinant corresponds to a reversal of orientation. Magnitude of the determinant describes
how much an area is scaled (det = 1 is no scaling). Looking at the determinant from the
previous subquestion we can see that the stereographic projection does not preserve area. You
all probably know that intuitively because Antarctica (on a map) is overly large.

3. The KLT-Tracker uses a Gauss-Newton Update step as shown in the lecture and we will study
the properties of this optimization method in this exercise.
In general, the Gauss-Newton method solves sum-of-least squares optimization problems of the
form

min
x∈Rn

1

2

m∑
i=1

(fi(x))
2 ⇐⇒ min

x∈Rn

1

2
||f(x)||2

For a function f : Rn 7→ R and a step-size λ an update step is given by

xn+1 = xn − λ
[
J(xn)

>J(xn)
]−1

J(xn)
>f(xn)

where J denotes the Jacobian of f(x).
Derive the above update step.
Hint: Use a first-order taylor expansion around the current point xn.
Solution Let g(x) denote the first-order taylor expansion of f(x) around the current xn.

g(x) = f(xn) +∇f(xn)>(x− xn)

With this, we can rewrite the optimization problem as

min
x∈Rn

1

2
||g(x)||2 = min

x∈Rn

1

2
||J(x− xn) + f(xn)||2

Note we consider the Jacobian J at the point xn.
Let’s look at the gradient of the function to be optimized.

∇1

2
||g(x)||2 = J> (J(x− xn) + f(xn))

Setting the gradient to zero (optimum!) and the solving for the optimal x yields

x = xn − (J>J)−1J>f(xn)

By introducing a step-size α to dampen the update step, the above expression directly leads
to the statement given in the question

xn+1 = xn − λ
[
J(xn)

>J(xn)
]−1

J(xn)
>f(xn)

4. Similar to before, we consider a Gauss-Newton update step. Show that the method has second-
order convergence in cases where the function f(x) is nearly linear.
Hint: Use a second-order taylor expansion and consider the Hessian at the current point xn.
Hint: What implications does ‘nearly linear’ have for the Hessian matrix?
Solution
If we consider a second-order taylor expansion around the point xn, we get

h(x) = f(xn) +∇f(xn)>(x− xn) +
1

2
(x− xn)>H(xn)(x− xn)

where H(xn) is the hessian matrix of the function f evaluated at point xn.
For functions that are nearly linear, the hessian matrix is close to zero, such that the second
order term has negligible influence. In such a case the Gauss-Newton update step is similar to
a Newton-Methods update step. Newtons method has second order convergence and hence for
functions with small hessians, the Gauss-Newton method also has quadratic convergence.
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