Lucas-Kanade Tracker

Contents
I Proim = 1
[LLI__Outline of the exercisel e 1
L2 Prowided codel. e 2
L3 Conventlons|« . . o o o e e e e 2
2 Part 1: Warping images| 2
3 Part 2: Recovering a simple warp with brute force| 2
[4 Part 3: Recovering the warp with KLT) 3
[Part 4: Applying KLT to KIT]| 6
[6 Part 5: Outlier rejection with the bidirectional error 6
N cal E e v

In this exercise, we will replace the crude matching method from exercise 3 with a Lucas-Kanade
Tracker.

1 Preliminaries

1.1 Outline of the exercise

As seen in today’s lecture, a Lukas-Kanade Tracker (KL’IED can be used to track the position of a
point accross frames. In this exercise, we will implement KLT from scratch. We will start with a

Lfor some reason the names are inverted in the acronym

Figure 1: Tracking 50 keypoints with the KLT implementation of this exercise. See
https://youtu.be/iaRPafeG9zw| for a video. In this exercise, we apply KLT to downsampled im-
ages, since implementing the coarse-fine estimation is outside of the scope of this exercise.

https://youtu.be/iaRPafeG9zw

Robotics and Perception Group,
University of Zurich. 3 PART 2: RECOVERING A SIMPLE WARP WITH BRUTE FORCE

well-defined problem where we warp an input image ourselves and see whether KLT can recover the
warp. Then, we will apply our KLT to the KITTI sequence and see how it improves on the matching
from exercise 3.

1.2 Provided code

As usual, main.m contains one section for each part of the exercise which you can run individually
with Ctrl+Enter . Functions to be implemented are provided as documented stubs and are called
in main.m.

1.3 Conventions

We depart from the notation used in class only slightly, to better distinguish between the image in
which the template is defined (reference image) and the coefficients of the patch of the template.
We call the reference image Ir and the patch coefficients

T:{.’f‘.’f: _’T-f—Af er[—TT,TT]X[—’I‘TJ’T}CZXZ} (1)

where we call Zr the patch center and r¢ the patch radius, consistently with previous exercises.

Throughout the exercise, you will need to pay attention to indexing! Confusion can ensue
because we formulate most things as (x,y), but matrix, and in particular image elements are accessed
with (row, column), which corresponds to (y,x)!

2 Part 1: Warping images

Given an image I(z,y), we say I(W (z,y,p)) is the image I warped by the warp W which is itself
parametrized with the parameters p. We define the warp with a 2 x 3 matrix W such that

xT

P1 P3 DPs
Wi(x,y,p) =W , W= . 2
(9.7 g{ L’2 2 pﬁ} @)

As seen in class, this is called an affine warp, and generalizes translation, rigid and similarity warps,
which are each a special case of the affine warp. In order to get a better understanding of KLT and
facilitate debugging, we will manually warp an image with W. Unfortunately, it is not very intuitive
to directly manipulate the coefficients of W. Let us instead provide an interface which allows us
to get a similarity warp parametrized by the translation (Axz, Ay), a rotation angle « and the scale
change A. Write the function getSimWarp which returns W such that

cos(a) —sin(a)| |x Az
W) = M) oo][22, 3)

Then, write the function warpImage which warps the input image given W. Note that W (z, y, p)
is likely not to return integer coefficients. You can for now return I(|W (z,y,p)|), later this will need
to be changed to bilinear interpolation to increase robustness of KLT. Also, note that W (x,y, p)
could land outside the image dimensions. In that case just return an intensity of 0. If all goes well,
you should obtain the results as in Figure [2]

3 Part 2: Recovering a simple warp with brute force
An essential part of the KLT implementation will be extracting warped patches:

IW(T,p)) := {I(W(z,y,9)) V(x,y) € T}, (4)

see for the definition of the patch T. However, there is a slight issue with the current way in
which we apply warps. As you can see in Figure [2] rotation and scaling are applied in the top left
corner. This makes sense, since that is the origin. But it is also problematic, since for the warping

Robotics and Perception Group,
University of Zurich. 4 PART 3: RECOVERING THE WARP WITH KLT

Reference image Translation

Figure 2: Results for the different image warps in part 1.

of any image patch not in the top left of the image, rotation and translation are now coupled. This
is tedious to think about, but also problematic for the optimization process. In order to avoid this
problem, we re-define I(W (T, p)) such that the origin of the warp is now at the center of the image
patch Zr:

I(W(T,p)) = {I(Zr + W(AZ,p)), AZE [—rp,rr]> C 7%}, (5)

where T, Z7 and AZ express the image patch, see[ll Implement the function getWarpedPatch, which
returns I(W (T, p)). As in the previous part, you can for now return I(|W(T,p)]|), but Parts 4 and
5 will not really work well with that. For those parts, you should use bilinear interpolation. You can
copy bilinear interpolation from the reference solution of undistortImage in exercise 1.

We can now implement a first, simple, brute force tracker, as seen in the first part of the lecture.
The goal of tracking is to find a warp W which minimizes the sum of square difference (SSD) E
between the template and a warped patch from the image in which the template is supposed to be
tracked:

E(W) =Y (I(W(T,W)) — Ir(T))? (6)

Because the warp is also performed on the patch domain 7', we can simply extract how the center

point Z7 has moved from W : AZp = [pg, pg]T. Implement trackBruteForce, which recovers
translation-only warp by trying out different values for (ps, ps) and selects the one with the lowest
such SSD:

. 1
argmin E(W'(ps,ps)), W' = 0 ps) (7)
0 1 Pe
where the range of (ps,ps) to try is itself defined as a patch D with parameters (xp,yp) = (7, yr)
but a different radius rp. For the given test cases, the plots should look like in Figure 3] main.m
gives you feedback on what the recovered (ps, pg) should be.

4 Part 3: Recovering the warp with KLT

As discussed in the lecture, brute force tracking works well, but has the disadvantage that it has
a large space of possible W to explore. In the previous part, this space was mitigated to two
dimensions by only using two parameters for W. But the size of the space grows exponentially with
the parameters, and a general affine warp has six parameters!

Thankfully, it turns out that EF(W) is mostly smooth and locally convex around the optimal
solution F(W™*). This is illustrated for (ps,pg) aka (Ax, Ay) on the right side of Figure This
local convexity suggests that we can use gradient descent to find W*, assuming that we start with
an initial guess that is suffiently close to W*. KLT uses the Gauss-Newton method for gradient
descent. As seen in class, this is first formulated as finding an increment Ap to that initial guess p’
that minimizes the error E:

Robotics and Perception Group,
University of Zurich. 4 PART 3: RECOVERING THE WARP WITH KLT

Figure 3: Template and SSDS for Part 2.

E = Y (I(W(T. 5+ A7) — InlT))? 0
BAR =minE & 57 SV + AR) - In(D) =0 o)

If we wanted to solve this directly, we would need to find a differentiable expression for I(W (T, p +
Ap)). You are welcome to try, but you will find that this requires a pixel-wise case distinction. This
would require much more computation than just finding p with the above brute force method. The
Gauss-Newton algorithm avoids this problem by linearizing around p, that is, making the assumption
I(W(T,p+ Ap)) ~ I(W(T,p)) + %Aﬁ (first-order Taylor approximation). Using this approxima-
tion will result in an error, but solving the approximation iteratively should converge to the local
minimurrﬂ With this approximation, @D becomes

0
OAp
which we can now derive with respect to Ap. For simplicity of expression, let us use vector calculus.
We define the column vectors €, 7,7z which are the vectorizations of the expression inside the square

root in (10),7(W(T,p)) and Ir(T), respectively. Each coefficient of these vectors then corresponds
to a pixel of the patch T and we have:

S UW(T,) + %Aﬁ— a(T))? =0 (10)

o . -
+8—;,Ap—zR: (11)

e€=1

Recall that a central component of vector calculus is the Jacobian matrix %ﬂé, which expresses the

—

derivative of a function f(Z): R™ — R™ as follows:

Oh Ofh
of | o

oz | ¢ . : (12)
T o Ofm
Oxq T Ox .,

Note that %g is (m x n). It is conveniently defined such that f(¥) = A% = %ﬂé = A.
So, with , we can rewrite as:
0 5. =
To_ G 1
8Aﬁ6 €=0 (13)

2See Newton’s method for finding the root (zero-crossing) of one-dimensional functions for some intuitive under-
standing.

Robotics and Perception Group,
University of Zurich. 4 PART 3: RECOVERING THE WARP WITH KLT

Let us derive with respect to Ap. Remember that € depends on Ap, so we need to apply the chain
rule:
o .
= Dgrg. 0
0Ap oe 0Ap
el'e = 2¢7

(14)

It is simple to show that (% . You should be able to show that with pen and paper by
writing out the coefficients of €7'¢ and then writing out the Jacobian a%* for these coefficients. As for
BBT%, it is simply 2717’ as can be seen from . So we now have:

—

o
2¢7 . — =0 15
oo (15)
Dividing by two and applying (AB)T = BT AT for later convenience, we get:
T =T —
az az i 87; - —
— =— (i+ =Ap—ir)=0 16

and can now proceed to solve for Ap, by taking it out from the product, moving the other terms to
the right side and eliminating the factor Ap'is multiplied with:

T - =T — T
oi -~ 0i - 0i 0i o - -
A G+ ZA5-Tr) =8 DA+ L G-Tr) = 1
——
H
-T T
HAp = % (ir—1) & Aﬁzﬂfl% (ir —9), (18)

where we have introduced H, the so-called Hessian. With this derivation, you should be able to write
the function trackKLT, which iteratively updates p' < p'+ Ap with the update rule we just derived.
Start with a p’ which corresponds to an identity warp. Note that % can be further decomposed

as seen in the class. Because i(p) = i(w),w = W, you can use the chain rule: 9% = 9% .90

op — 0w o
- - 2q1lAz 0 A 0 1 0
- 51 9 s - Yy
e] W (w.v.0) = [i, M{o Az 0 Ay 0 1
relative to Zr, see . Here, ;m,;y are nothing but the x- and y-gradients of the warped image
patch, vectorized. This all sounds good until you try to implement it and realize that you can’t
simply implement it as a matrix multiplication, because Az, Ay have different values for different

where Ax, Ay are the pixel coefficients

pixels, that is, different rows of [i,, 7,]. So, to construct g—;, you will need to multiply each row of

[;w Zy] with a numerically different %’Z‘;. Hints:
e Use getWarpedPatch to get I and Iy, then obtain i and ip by vectorizing the matrices.

e Similarly, it is convenient to obtain the patch gradients by convolving [first, and vectorizing the
patch later. For convenience, you can get the image gradients by convolving with [1 0 —1]
rather than with [1 —1]. Note that this convolution, if applied validly, will reduce the patch
size by one pixel on each side. To make sure that the gradient is defined on the full patch, use
as input to the convolutions an accordingly larger patch.

e A good first step when debugging is to check the whether the shapes of your intermediate
Y AN N
products make sense. For example, in (18] the shapes of matrices H 1, g—; ,(ir — %) should

be, respectively, (6 x 6), (6 x |T|), (|T| x 1), where |T| is the amount of pixels in the patch.

e You should be able to write down convenient intermediate products (try to avoid redundant
calculations!) from the above derivation. If you struggle, consult the lecture notes.

e For debugging and visualization, we recommend to plot Ig,I,(Ir — I), the warped image
gradients I, I, and the steepest descent images VI %—Vg, which you can obtain by reshaping

each column of gi into an image patch. See Figure 4| and |https://youtu.be/3g-zEHoVwvM]| for
how these look like in our implementation.

https://youtu.be/3g-zEHoVwvM

Robotics and Perception Group,
University of Zuriché PART 5: OUTLIER REJECTION WITH THE BIDIRECTIONAL ERROR

(W(T)), IR(T) and the difference

-20 0 20 40 60 80 100
warped gradients

10 +
20 1
30t

-20 0 20 40 60 80 100
steepest descent images

2000

-2000

50 100 150

Figure 4: Visualization of KLT gradient descent for the very first iteration. See https://youtu.be/3g-
zEHoVwvM] for the video.

5 Part 4: Applying KLT to KITTI

You should now be able to run the next section, in which we take the keypoint tracker and apply it
to the KITTT dataset. This will work much better if you have implemented bilinear interpolation in
getWarpedPatch. Note that we have downsampled the images by a factor of 4. This ensures that
a sufficient amount of them are tracked; with a higher resolution, the motion of too many points
is outside of the convergence basin of KLT. As you should see, some points are still not correctly
tracked. Next, we will implement a simple method to discard points which are not correctly tracked.

6 Part 5: Outlier rejection with the bidirectional error

The bidirectional error check is a simple test to verify that a point is consistently tracked. Let us
define the result of tracking a point 7 from image I; to image I; ;1 with KLT as

Uit (Fp) = Fp + m . (19)
Pe
Then, the bidirectional error test verifies that when we try to track the point back to I;, we are close
to Zp again:
Ui (U (@) — Fr < A (20)

Implement trackKLTRobustly which encapsulates \I/:H'l (Z7) and also indicates whether the tracking
has passed the bidirectional error test. Then, when you run the corresponding section of main.m,
you should get something like in Figure [1] and https://youtu.be/iaRPafeG9zw| .

https://youtu.be/3g-zEHoVwvM
https://youtu.be/3g-zEHoVwvM
https://youtu.be/iaRPafeG9zw

Robotics and Perception Group,
University of Zurich. 7 NUMERICAL EXERCISES

7

Numerical Exercises

. In the lecture you have seen the Jacobian which contains the derivatives of a vector-valued func-

tion w.r.t its variables. The cases presented in the lecture correspond to projective transforma-
tions (e.g. straight lines remain straight). However, for certain applications (e.g. cartography)
the transformations are non-projective.

/w
¢ >

' > P P

Figure 5: Illustration of the stereographic projection

The most prominent non-projective projection (i.e. straight lines do not remain straight) is
the stereographic projectionﬂ which has already been used by the ancient greeks for celestial
charts! This projection maps points on a sphere to a planar map. Hence it is widely used in
catography.

Given a sphere of radius R and a set of points (xs,ys,2s) on the sphere, the corresponding
points on a planar map (zp,yp) = f(xs, ys, 2s) are given by

Ls

€T =
Pl — 2z,

Ys
11—z

Yp =

Derive the Jacobian J of the projection function f : R? + R? w.r.t. the vector x5 = [z, ¥s, 2s)-

. Given a general bijective transformation (not neccessarily a projective transformation), what

can we say about its Jacobian?
Hint: think about: rank, determinant, invertibility, etc.

. The KLT-Tracker uses a Gauss-Newton Update step as shown in the lecture and we will study

the properties of this optimization method in this exercise.

In general, the Gauss-Newton method solves sum-of-least squares optimization problems of the

form
m

1 1
min 5 2 (hle))” = min S/ @IF

For a function f:R™ — R and a step-size A an update step is given by
-1
Tptl = Tp — A [J(mn)TJ(xn)] J(xp) " f(z)

where J denotes the Jacobian of f(z).

Derive the above update step.
Hint: Use a first-order taylor expansion around the current point x.,.

. Similar to before, we consider a Gauss-Newton update step. Show that the method has second-

order convergence in cases where the function f(z) is nearly linear.
Hint: Use a second-order taylor expansion and consider the Hessian at the current point x.,.
Hint: What implications does ‘nearly linear’ have for the Hessian matriz?

Shttps://en.wikipedia.org/wiki/Stereographic_projection

https://en.wikipedia.org/wiki/Stereographic_projection

	Preliminaries
	Outline of the exercise
	Provided code
	Conventions

	Part 1: Warping images
	Part 2: Recovering a simple warp with brute force
	Part 3: Recovering the warp with KLT
	Part 4: Applying KLT to KITTI
	Part 5: Outlier rejection with the bidirectional error
	Numerical Exercises

