
The Perspective-n-Point (PnP) problem

Contents

1 Preliminaries 1
1.1 Outline of the exercise . 1
1.2 Description of the input data . 1
1.3 Notations and coordinate systems . 2

2 Implementing DLT 2
2.1 Reminder: The DLT algorithm. 2

2.1.1 Derivation of the linear system of equations to solve 2
2.1.2 Solving the over-determined system of equations 3
2.1.3 Extracting R,t from M̃ with the correct scale 4

2.2 Implementation of DLT . 4

3 Numerical Exercise 6

The goal of this laboratory session is to implement the Direct Linear Transform (DLT) algorithm
to estimate the pose of a camera, given a set of 2D-3D correspondences.

1 Preliminaries

1.1 Outline of the exercise

You will be given a dataset of images, with a set of 2D-3D correspondences for each image, as well
as the camera matrix K. Your goal will be to implement the DLT algorithm described during the
course to estimate the camera pose [R|t] for each image.

1.2 Description of the input data

The data/ folder contains the inputs that you will need to complete these exercises.

• images_undistorted/ contains images that have been processed to compensate for lens
distortion (using the function undistortImage from the previous exercise). This allows you to
completely ignore the e�ect of lens distortion when solving the PnP problem.

• K.txt contains the camera matrix

• p_W_corners.txt contains the positions of the n reference 3D points (illustrated in Figure
1), given in the world coordinate system (de�ned below), in centimeters. n = 12 in this exercise.

• detected_corners.txt contains m lines (where m is the number of images). Each line i gives
the 2D coordinates pi = (ui, vi) of the projections of the reference 3D points in the undistorted
image i given as a tuple: (u1, v1, ..., un, vn).

1

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

1.3 Notations and coordinate systems

In this exercise, we use the following conventions:

• PA denotes that the point P is expressed in the coordinate frame A.

• BTA denotes the transformation that maps points in frame A to frame B, such that:

PB = BTAPA

The reference (or world) coordinate system, denoted W , is right-handed, and illustrated in Figure 1.

0

-0.05

-0.1
0.25

-0.15

0.15

0.2

0.15

0.1

-0.2

0.1

0.05

0.05

-0.25

0

-0.05

-0.3

-0.1
-0.35

-0.15-0.4

-0.2

X

Y

Z

Figure 1: Left: 3D world points P i
w and the camera pose in space. Right: Image from a camera with

the corresponding 2D projections pi marked in blue.

2 Implementing DLT

In this section, you will implement the DLT algorithm to determine the camera pose for each image
in the dataset, using the 2D-3D correspondences provided for each image.

The DLT algorithm is described in the lecture slides. We �rst brie�y remind here how it works
(and de�ne the notations that we use).

2.1 Reminder: The DLT algorithm.

2.1.1 Derivation of the linear system of equations to solve

As opposed to the lecture slides where the camera calibration matrix K was not given (and therefore
had to be estimated jointly with the camera pose R, t), in this exercise K is given. We brie�y derive
here a slightly modi�ed version of the DLT algorithm presented in the course that takes into account
the fact that K is known.

Our goal is to compute R, t that satisfy the perspective projection equation:

ũṽ
w̃

 = λ

uv
1

 = K[R|t]

Xw

Yw
Zw

1

Multiplying each side by K−1 on the left, we get:

λK−1

uv
1

 = [R|t]

Xw

Yw
Zw

1

2

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

where we can identify [x, y, 1]T = K−1[u, v, 1]T as being the normalized coordinates (sometimes also
called calibrated coordinates) corresponding to pixel (u, v). Denoting M̃ = [R|t] the projection matrix
(for normalized coordinates), the problem amounts to �nding M̃ and the scale factors λi that satisfy:

λip̃i = M̃Pi

for every 2D-3D correspondence i = 1, . . . , n, where p̃i =

xiyi
1

 and Pi =

Xi

w

Y i
w

Zi
w

1

 are respectively the

ith corresponding 2D and 3D points.
However, as it was shown in the lecture, by considering ratios of pairs of equations (such as

ũi

w̃i
=

m̃T
1 ·Pi

m̃2·Pi
), the scale factors λi are cancelled, i.e. removed from the equations and the problem

reduces to �nding M̃ alone. The scale factors can be recovered, if desired, once M̃ is known. It is
shown in the lecture that M̃ can be recovered by solving the following homogeneous system of linear
equations for the unknown [12× 1] matrix M̃ :

Q · M̃ = 0 (1)

where

Q =

X1

w Y 1
w Z1

w 1 0 0 0 0 −x1X1
w −x1Y 1

w −x1Z1
w −x1

0 0 0 0 X1
w Y 1

w Z1
w 1 −y1X1

w −y1Y 1
w −y1Z1

w −y1
· · · · · · · · ·

Xn
w Y n

w Zn
w 1 0 0 0 0 −xnXn

w −xnY n
w −xnZn

w −xn
0 0 0 0 Xn

w Y n
w Zn

w 1 −ynXn
w −ynY n

w −ynZn
w −yn

can be built from the known 2D-3D point correspondences and

M̃ =
[
m̃11 m̃12 m̃13 m̃14 m̃21 m̃22 m̃23 m̃24 m̃31 m̃32 m̃33 m̃34

]T
is an unknown projection matrix which we wish to recover. Hint: You may use Matlab's function
kron to build Q (although that is not strictly necessary). Note that M̃ here is a [12 × 1] vector
obtained by unrolling the matrix: m̃11 m̃12 m̃13 m̃14

m̃21 m̃22 m̃23 m̃24

m̃31 m̃32 m̃33 m̃34

in a row-wise fashion, i.e. by unrolling it row by row. Keep that in mind when you later convert M̃
back to a [3× 4] matrix, since Matlab usually reshapes matrices in a column-wise fashion.

2.1.2 Solving the over-determined system of equations

SinceQ should have rank 11, and each 2D-3D point correspondence provides 2 independent equations,
at least 6 point correspondences (in general position, thus avoiding degenerate con�gurations, such
as all 3D points lying on a plane) are needed. In this exercise, n = 12 point correspondences are
provided, thus the system of equations is over-determined. The trivial solution M̃ = 0 is obviously of
no interest for us. We can further observe that if M̃ is a solution of (1), then α · M̃ is also a solution
(for any scalar α; thus we will recover the projection matrix M̃ up to an unknown scale factor). So,
we look for a solution that minimizes ||Q · M̃ || subject to the constraint ||M̃ || = 1. This can be done
using the Singular Value Decomposition (SVD) of Q: Q = USV T where U ,V are unitary matrices
and S is diagonal.

It can be shown that the solution of this problem is the eigenvector corresponding to the smallest
eigenvalue of QTQ, which simply corresponds to that the last column of V if S has its diagonal
entries sorted in descending order. The svd function from Matlab provides such a guarantee.

3

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

2.1.3 Extracting R,t from M̃ with the correct scale

Enforcing detR = 1 After solving the linear system (1), you will need to convert back the [12× 1]
vector M̃ to its corresponding [3× 4] projection matrix M̃ = [R|t]. Make sure that the z component
of the recovered translation: tz = m̃34 is positive. If that is not the case, you will need to multiply
M̃ by −1. This is to ensure that the rotation matrix R that will be extracted from M̃ is a proper
rotation matrix with determinant +1.

Extracting a rotation matrix from R When we solved the system of linear equations (1), we
did not impose any constraint on R to ensure it is actually a rotation matrix (i.e. we have no
guarantee that R ∈ SO(3), the space of rotation matrices). This means what we actually estimated
is an approximation R̄. In this step, we will extract a true rotation matrix R̃ ∈ SO(3) from our
current estimate R. To do that, we will compute the matrix R̃ ∈ SO(3) which is the closest to R (in
the sense of the Frobenius norm). This is known as the Orthogonal Procrustes Problem. R̃ can be
obtained by �rst decomposing R using the SVD: R = UΣV T , and then forcing all the eigenvalues to
be 1 as follows: R̃ = UIV T = UV T .

Recovering the scale of the projection matrix M̃ As explained above, by solving the system
of linear equations above we can only compute M̃ , up to a scale. Thus the true projection matrix
must be M̃ = [R̃|t̃] = [αR|αt] , where α is an unknown scale factor and [R|t] are the values computed
from DLT. In the previous step, we have computed the nearest (true) rotation matrix R̃ from the
given matrix R, which can be used to improve our estimate of the projection matrix: M̃ = [R̃|αt] .
The projection of R on SO(3) implicitly recovered the unknown scale factor α by ensuring that R is
an orthogonal matrix. We can take advantage of this to explicitly estimate α from R̃ = αR. The α

which comes closest to solving this is: α = ||R̃||
||R|| where ||A|| is any matrix norm of A - which can be

computed in Matlab using the command norm(A).

Wrapping up Finally, the �nal projection matrix can be recovered as: M̃ = [R̃|αt].

2.2 Implementation of DLT

• Write a function M = estimatePoseDLT(p, P, K) that implements the steps of the DLT al-
gorithm as described above, to solve for the projection matrix M̃ = [R|t], given the n 2D-3D
point correspondences pi and Pi. Pay a particular attention to the fact that the matrix
Q is built using the calibrated coordinates p̃i and not directly the pixel coordinates
pi. After you have computed the [12× 1] matrix M̃ , you will need to reshape it into a [3× 4]
matrix. You can use the reshape function from Matlab to achieve this. Pay attention, how-
ever, that this function works column-wise and not row-wise, so will need to �rst reshape M̃
to a [4× 3] matrix and then take its transpose. Check that the resulting rotation R is a valid
rotation matrix (i.e. detR = 1 and RTR = I).

• Write a function [p_reprojected] = reprojectPoints(P, M, K) that reprojects the 3D
points Pi in the current image using the estimated projection matrix M̃ and camera ma-
trix K. Check that the reprojected points p′i fall close to the points pi. The output should look
like Figure 2.

• Write a function that estimates the camera pose (using your implementation of DLT) for each
image in the dataset, and create an animation which shows the motion of the camera. You may
use the provided function plotTrajectory3D and the utility function rotMatrix2Quat. You
can use a framerate of 30 frames per second. Warning: the function plotTrajectory3D expects
to be given the transformation [WRC |W tC] that maps points from the camera coordinate
frame to the world coordinate frame. In this exercise, you actually estimated its inverse:
M̃ = [CRC |CtC]. Do not forget to inverse M̃ to get the correct transformation matrix before
feeding it into plotTrajectory3D. Finally, the units (for the translational part and the
3D points) should be meters (whereas you worked with centimeters throughout
this exercise). Do not forget to convert to meters before calling the function.

4

https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

Original points
Reprojected points

Figure 2: Original 2D points pi and reprojected points p′i using the estimated R,t

5

Robotics and Perception Group,
University of Zurich. 3 NUMERICAL EXERCISE

3 Numerical Exercise

1. Explain the Dolly-Zoom E�ect.

2. What is the condition on the elements of a projective transformation H such that parallel lines
remain parallel?

3. Write the projective transformation H that corresponds to doubling the focal length.

4. Consider a single camera C with the following intrinsic parameters:

• f the focal length [m]

• kx and ky the resolution in [pixelsm] of the camera in x and y direction

• cx and cy in [pixels] as the x and y coordinates of the camera central point

and the following extrinsic parameters:

• R the rotation matrix of the camera to the world coordinate system, and

• t the translation vector between the optical center of the camera and the center of the
world coordinate system.

In homogeneous coordinates the projection p̂ of a point p onto the image plane is then computed
as

p̂ = MP = K[R|t]p

with the camera calibration matrix K

K =

fkx 0 cx
0 fky cy
0 0 1

• Which parameters can be calibrated given a planar calibration pattern?

• How can they be estimated?

• Which parameters cannot be calibrated? How can this problem be tackled?

5. Discuss the use of regular squares and regular circles as calibration patterns.

• Which points would you use as calibration points?

• How would you detect them?

• Which approach is more accurate?

6

	Preliminaries
	Outline of the exercise
	Description of the input data
	Notations and coordinate systems

	Implementing DLT
	Reminder: The DLT algorithm.
	Derivation of the linear system of equations to solve
	Solving the over-determined system of equations
	Extracting R,t from with the correct scale

	Implementation of DLT

	Numerical Exercise

