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Range-Visual-Inertial Odometry: Scale
Observability Without Excitation

Jeff Delaune, David S. Bayard and Roland Brockers

Abstract—Traveling at constant velocity is the most efficient
trajectory for most robotics applications. Unfortunately without
accelerometer excitation, monocular Visual-Inertial Odometry
(VIO) cannot observe scale and suffers severe error drift. This
was the main motivation for incorporating a 1D laser range
finder in the navigation system for NASA’s Ingenuity Mars
Helicopter. However, Ingenuity’s simplified approach was limited
to flat terrains. The current paper introduces a novel range
measurement update model based on using facet constraints.
The resulting range-VIO approach is no longer limited to flat
scenes, but extends to any arbitrary structure for generic robotic
applications. An important theoretical result shows that scale
is no longer in the right nullspace of the observability matrix
for zero or constant acceleration motion. In practical terms,
this means that scale becomes observable under constant-velocity
motion, which enables simple and robust autonomous operations
over arbitrary terrain. Due to the small range finder footprint,
range-VIO retains the minimal size, weight, and power attributes
of VIO, with similar runtime. The benefits are evaluated on real
flight data representative of common aerial robotics scenarios.
Robustness is demonstrated using indoor stress data and full-
state ground truth. We release our software framework, called
xVIO, as open source.

Index Terms—Visual-Inertial SLAM, Aerial Systems: Percep-
tion and Autonomy, Observability, Inertial Excitation, Mars
Helicopter.

I. INTRODUCTION

MONOCULAR Visual-Inertial Odometry (VIO) is a pop-
ular approach in robotics to obtain accurate metric

state estimates close to a scene, or in GPS-denied conditions.
Indeed, a camera and an Inertial Measurement Unit (IMU)
form a minimal sensor suite in terms of size, weight and power,
which is readily available on most robots.

However, monocular VIO can only observe the motion scale
when the acceleration is not constant. This leads to severe error
drift under zero or constant-velocity trajectories, which are
very common in robotics. This problem is critical problem for
applications which must rely on accurate VIO scale estimates
for control. Our work is motivated by Mars helicopters [1],
[2], but it is applicable to planetary, military, and urban robots
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in general; as well as indoor or underground traverses along
a straight corridor or tunnel.

Our novel range-visual-inertial odometry algorithm can ob-
serve scale even under zero or constant-acceleration trajec-
tories. It uses a 1D Laser Range Finder (LRF) that keeps
the sensor suite lightweight, while efficiently leveraging VIO
sparse structure estimates. Our main contributions are:

• a range measurement model which prevents VIO scale
drift and adapts to any scene structure,

• a linearized range-VIO observability analysis, showing
scale is observable without excitation,

• outdoor demonstration on a realistic dataset,
• indoor stress case analysis with full-state ground truth,
• an open-source C++ implementation.

In [1], a range-VIO method was presented that navigates
over relatively flat terrain while supporting a stable motion-
less hover needed for demonstrating NASA’s Ingenuity Mars
Helicopter. The current paper extends these range-VIO results
with a new method that makes scale observable for 3D terrain
without requiring any inertial excitation. This generalization
addresses an important need in the field of robotics as well
as for future Mars helicopters. The current paper is a journal
extension of a previous conference paper [2], which focused
specifically on the Mars helicopter application. This included
a real-time demonstration with candidate spaceflight hardware
operating over Mars-like terrain. The conference paper treat-
ment was non-theoretical and focused on obtaining proof-of-
concept empirical results. The current journal paper derives
and analyzes its theoretical observability properties. The error
drift reduction is evaluated on urban aerial robotics data,
which is significantly more complex and 3D than a Mars
environment. The robustness of the facet-scene assumption is
demonstrated with an indoor stress test supported by a full-
state ground truth comparison. Finally, we make the source
code publicly available1.

We refer to monocular VIO as VIO in the rest of this
paper. Section II reviews the VIO literature, observability
limitations, and drift mitigation techniques using additional
sensors. Section III introduces our range-VIO framework.
Section IV analyzes the observability benefits of our approach.
Sections V and VI present our tests and results. A video and
a technical report [3] supplement this paper.

1https://github.com/jpl-x

https://github.com/jpl-x
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II. LITERATURE REVIEW

A. Visual-Inertial Odometry

One branch of VIO is based on loosely-coupled visual-
inertial sensing. In these approaches, a vision-only algorithm
estimates position and velocity up to scale, and orientation
up to gravity, before fusion with the IMU [4]. The visual
odometry module can be swapped between any of the modern
algorithms developed in the computer vision community, such
as PTAM [5], SVO [6], ORB-SLAM [7] or DSO [8].

The most accurate and robust VIO methods come from
tightly-coupled approaches, in which visual measurements
consisting of feature tracks or image patch intensities directly
constrain the inertial state integration in one single estimator.
These approaches require a larger state vector, which leads
to a higher computational cost. But they gain in accuracy
through the cross-correlations between the inertial and visual
states [9], and in robustness with the ability to propagate the
state even when no or few image primitives can be tracked.
Recent approaches include both filter-based [10], [11] and
nonlinear optimization-based methods [12], [13], [14]. Some
solutions use image feature coordinates for measurements [10],
[12], [13] while others use image intensity values [11], [14].
With good excitation, typical position errors can be under 1%
of distance travelled [15].

B. VIO Observability Analysis

VIO observability with unknown IMU bias has been studied
at length in the robotics literature. Under generic excitation,
the VIO states were found to be observable except for the
global position and the rotation about the gravity vector. [16],
[17], [18] demonstrated this for the nonlinear system; while
[19], [20] proved it for the linearized system and improved
its consistency. These unobservable quantities imply that VIO
position and heading estimates drift under any conditions with
noise. In practice, this drift is acceptable in many robotics
scenarios operating at small scale.

[21] further analyzed the unobservable directions under
two specific motions for the linearized system with unknown
bias. First, they showed that all three global rotations become
unobservable if the system has no rotational motion of its own.
Second, they showed that under constant acceleration, the scale
of motion is unobservable. [22] derived results in line with
these for the specific case of hovering. The complete absence
of rotation is unlikely in most real applications, and even if it
happens, the relative orientation of the camera with respect
to the scene structure is still preserved. Constant or zero-
acceleration is likely along straight traverses though, and the
consequences of scale errors in terms of position and velocity
drift can be catastrophic for the planning and control of a
robot’s trajectory.

C. VIO Scale Drift Mitigation

Range sensors and their equivalents can be used in addition
to, or in replacement of, a monocular camera, in order to elim-
inate the scale observability issue of VIO. Most approaches
leverage either lidar or radar scans [23], RGBD cameras [24],
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Fig. 1: Range-visual-inertial odometry architecture. Range and
visual measurement innovations z̃, Jacobians J and covariance
matrices R are used to correct the inertial navigation errors in
an EKF. The track manager sorts image features matches into
tracks, while the state manager adds and removes or vision
states dynamically.

or stereo visual measurements [25]. Unlike VIO, these options
suffer either from range limitation or integration costs2 that
limit their use in robotics applications.

1D Laser Range Finders (LRF) are an underrepresented
sensing option in the SLAM literature. Modern units can sense
over tens of meters with centimeter resolution. They fit within
a small, lightweight and power-efficient package that can be
accommodated even on resource-constrained robots. In our
previous work for NASA’s Ingenuity Mars Helicopter [1], we
implemented a range-visual-inertial odometry algorithm that
integrates LRF measurements to make the scale observable.
The low dimension of the resulting estimator, only 21 states,
comes at the cost of assuming the scene is flat and level, which
is not compatible with most robotics scenarios. [26] solve a
similar problem over 3D scenes by initializing the depth of
some VIO features with ultrasonic range measurements. This
relaxes the scene assumption from globally-flat to locally-flat,
but it also assumes the local terrain slope is perpendicular
to the range sensor axis within the ranged area. This is
problematic over 3D scenes, given the large beam width of
ultra sonic sensors.

In this paper, we eliminate VIO scale drift over any scene
structure using a novel LRF measurement model. The accuracy
and narrow beam width of the LRF create a strong range
constraint with the depth of the visual features estimated by
VIO in an Extended Kalman Filter (EKF). This constraint
assumes the scene can be partitioned into triangular facets
with the visual image features as vertices.

III. RANGE-VISUAL-INERTIAL ODOMETRY

The architecture of our framework in Figure 1 is based on
an Extended Kalman Filter (EKF). It tightly couples visual
and range updates with inertial state propagation. We provide
complete derivation details in our technical report [3].

2E.g. lidar scanner weight, or stereo baseline.
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A. Inertial State Propagation

The EKF state vector x =
[
xI

T xV
T
]T

is divided
between the states related to the IMU xI , and those related to
vision xV . The inertial states

xI =
[
piw

T
viw

T
qiw

T
bg
T ba

T
]T

(1)

include the position, velocity and orientation of the IMU frame
{i} with respect to the world frame {w}, the gyroscope biases
bg and the accelerometer biases ba. Rotation quaternions are
used to model orientations.

IMU measurements are used to propagate the state estimate
and the corresponding subblocks of the error covariance matrix
to first order, using [27] and [28].

B. Visual Update

We perform visual updates using the hybrid SLAM-MSCKF
paradigm [29]. This requires additional vision states

xV =
[
pc1w

T ... pcMw
T qc1w

T ... qcMw
T

f1
T ... fN

T
]T (2)

which includes a sliding window with the orientations {qciw}i
and positions {pciw}i of the camera frame at the last M image
time instances, along with the 3D coordinates of N visual
features

{
f j
}
j
. Each feature state f j =

[
αj βj ρj

]T
represents the inverse-depth parametrization of world feature
point F j with respect to an anchor pose

{
cij
}

selected from
the sliding window of pose states. Inverse depth improves
feature depth convergence properties [30].

The visual measurement is the pinhole projection of terrain
feature F j over the normalized image plane z = 1 of the
camera frame {ci} at time i

i,jzv,m =
1

cizj

[
cixj
ciyj

]
+ nv , (3)

where nv is a zero-mean white Gaussian feature measurement
noise in image space. Equation 3 can be related to the state if
we express the Cartesian coordinates of feature F j in camera
frame {ci} as

pFj
ci =

[
cixj

ciyj
cizj

]T
(4)

= C(qciw )

(
p
cij
w +

1

ρj
C(q

cij
w )T

αjβj
1

− pciw
)

(5)

This enables SLAM updates for features which are included
in the state vector [31]. Features which are not included in
the state vector are processed using MSCKF [10]. MSCKF
updates have a linear cost per feature, as opposed to a
cubic cost for SLAM. However MSCKF requires translational
motion since the feature has to be triangulated, which is
not always satisfied in practice. Hence, we always perform
SLAM updates, and only use MSCKF when the translational
motion allows for it. This hybrid approach is also the most
computationally-efficient [29]. SLAM features are either ini-
tialized with semi-infinite depth uncertainty [30], or using a
MSCKF prior if possible [29].

Visual corner features are detected in the image using
the FAST algorithm [32], and tracked with the pyramidal
implementation of the Kanade-Lucas-Tomasi algorithm [33],
[34]. Outlier features are detected at two levels: first at the
image level with RANSAC [35], and then at the filter level
with a Mahalanobis distance test. The track manager module in
Figure 1 assigns each feature to either the SLAM or MSCKF
paradigm based on the track length, detection score, and image
coordinates. We use image tiles to ensure SLAM features are
distributed throughout the field of view, and ensure strong pose
constraints.

C. Ranged Facet Update

Our main contribution is a novel range measurement model
to constrain the VIO scale drift. Like VIO, it is designed to
work over arbitrary unknown 2D or 3D scenes.

1) Measurement Model: A range measurement depends on
both the pose of the range sensor and the structure of the scene.
The associated measurement model in a Bayesian estimator
should account for uncertainty on both. Since structure un-
certainty is included in the SLAM feature states, we leverage
these states to construct the new range update model.

Our key assumption is that the structure is locally flat
between three SLAM features surrounding the intersection
point of the LRF beam with the scene. This assumption
derives from the observation that visual features are often
located at depth discontinuities, and that the structure of the
scene between features is often smooth. The impact of this
assumption in real-world sequences is discussed in the results
section. For simplification purposes in this paper, we also
assume zero translation between the optical center of the
camera and the origin of the LRF3. Figure 2 illustrates the
geometry of the scene. uri is the unit vector oriented along

Fig. 2: Geometry of the range measurement izr at time i. The
scene is assumed to be locally flat within a facet formed by
visual features F 1, F 2 and F 3 to build the range constraint.

the optical axis of the LRF at time i. Ii is the intersection of
this axis with the terrain. F 1, F 2 and F 3 are SLAM features
forming a triangle around Ii in image space. n is a normal
vector to the plane containing F 1, F 2, F 3 and Ii.

3This offset can be measured and introduced in the model if needed.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

If the dot product uri · n 6= 0, we can express the range
measurement at time i as

izr =
izr
uri · n
uri · n

(6)

=
(pIiw − pciw ) · n

uri · n
(7)

=
(pIiw − pF2

w + pF2
w − pciw ) · n

uri · n
(8)

=
(pF2
w − pciw ) · n
uri · n

(9)

since (pIiw − pF2
w ) · n = 0, where

n = (pF1
w − pF2

w )× (pF3
w − pF2

w ) (10)

Here, {ci} is the camera frame at time i, and p∗w represents
the position of an object in the world frame {w}. Note that n
is not necessarily a unit vector in this analysis.

Equations (9) and (10) demonstrate that range can be
expressed as a nonlinear function hr of the state vector x in
Equation (11), without requiring any additional state beyond
those of VIO. For use in our EKF estimation framework, we
assume that the LRF measurements are disturbed by additive
zero-mean white Gaussian noise nr.

izr,m = izr + nr = hr(x) + nr (11)

We refer the reader to [3] for the linearization of Equation 11,
providing the expressions of the measurement Jacobians.

2) Delaunay triangulation: To construct the range update in
practice, we perform a Delaunay triangulation in image space
over the SLAM features, and select the triangle in which the
intersection of the LRF beam with the scene is located. We
opted for the Delaunay triangulation since it maximizes the
smallest angle of all possible triangulations [36]. This property
avoids “long and skinny” triangles that do not provide strong
local planar constraints.

Figure 3 shows the Delaunay triangulation, and the triangle
selected as a ranged facet, over a sample image from our
outdoor test sequence. It also illustrates the partitioning of
the scene into triangular facets, with SLAM features at their
corners. Note that if the state estimator uses only 3 SLAM
features in a lightweight fashion, this is equivalent to a
globally-flat world assumption. Conversely, if the density of
SLAM features increases, the areas of the facets tend to zero
and the facet scene assumption virtually disappears.

3) Range outlier rejection: Before being used in the filter,
the range measurements go through a Mahalanobis distance
test to detect outliers. This gating compares the range mea-
surement to a prior built from the coordinates of the three
visual features in the facet. It rejects violations of the facet
assumption that cannot be explained by the prior uncertainty
model derived from the error covariance matrix.

IV. OBSERVABILITY ANALYSIS

We perform the observability analysis of the linearized
range-VIO system, since it is based on an EKF. Although the
observability of the nonlinear system would be required for
completeness, it is out of the scope of this paper.

Fig. 3: Delaunay triangulation between SLAM image features
tracked in the outdoor flight dataset. The red dot represents
the intersection point of the LRF beam and the surface. The
surrounding red triangle is the ranged facet.

To simplify the equations, our analysis assumes a state
vector x0 =

[
xI

T xP
T
]T

, where xI was defined in
Equation (1) and xP =

[
wp1

T ... wpN
T
]T

includes the
Cartesian coordinates of the N SLAM features, N ≥ 3. [19]
proved that observability analysis for the linearized system
based on x0 is equivalent to observability analysis for the
linearized system defined with x in the previous section.

A. Observability Matrix

For k ≥ 1, Mk = HkΦk,1 is the k-th block row of
observability matrix M . Hk is the Jacobian of the range
measurement in Equation (9) at time k with respect to x0,
which is derived in Equations (42-47) in [3]. Φk,1 is the state
transition matrix from time 1 to time k [37].

Without loss of generality, we can assume the ranged facet
is constructed from the first 3 features in xP 4. Then we derive
the following expression for Mk in [3].

Mk =
1

b

[
Mk,p Mk,v Mk,q Mk,bg Mk,ba

Mk,p1 Mk,p2 Mk,p3 01×3(N−3)

] (12)

where

Mk,p = −wnT (13)

Mk,v = −(k − 1)δtwnT (14)

Mk,θ =
wn
(
− a

b
C (qckw )

T bcur×cC
(
qikw
)

−
⌊
pi1w − vi1w (k − 1)δt− 1

2
wg(k − 1)2δt2

− pikw×
⌋)
C
(
qwi1
) (15)

Mk,bg = −a
b
wnTC (qckw )

T bcur×cφ12 − wnφ52 (16)

4This ordering of the states can be obtained at any timestep using permuta-
tion matrices. Permutation matrices are full rank and hence do not affect the
rank of the observability matrix.
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Mk,ba = −wnTφ54 (17)

Mk,p1 =
(⌊
(pF3
w − pF2

w )×
⌋ (
pF2
w − pIkw

))T
(18)

Mk,p2 =
(
wn+

⌊
(pF1
w − pF3

w )×
⌋ (
pF2
w − pIkw

))T
(19)

Mk,p3 =
(⌊
(pF2
w − pF1

w )×
⌋ (
pF2
w − pIkw

))T
(20)

a = (p
fj2
w − pciw )Twn (21)

b = wuri
Twn (22)

and φ∗ are integral terms defined in [37]. For a generic
vector u ∈ R3, let wu represent its coordinates in the world

frame {w}, and bu×c =

 0 −uz uy
uz 0 −ux
−uy ux 0

 the skew-

symmetric matrix associated with it. ci1 , ci2 and ci3 are the
anchor poses associated to F 1, F 2 and F 3, respectively, for
their inverse-depth coordinates at time i.

B. Unobservable Directions
1) Generic motion: One can verify that the vectors span-

ning a global position or a rotation about the gravity vector
still belong to the right nullspace of Mk. Thus, the ranged
facet update does not improve the observabily over VIO
under generic motion [19], which is intuitive. Likewise, in
the absence of rotation, the global orientation is still not
observable [21].

2) Constant acceleration: In this subsection, we demon-
strate that in the constant acceleration case, unlike VIO [21],
the vector spanning the scale dimension

N s =
[
pi1w

T
vi1w

T
06×1

T −iaiw
T

pF1
w
T

... pFN
w

T
]T

(23)
does not belong the right nullspace of Mk, i.e. MkN s 6= 0.
iaiw is the zero or constant acceleration of the IMU frame in
world frame, resolved in the IMU frame. One can write

MkN s = −wnTpi1w − (k − 1)δtwnTvi1w + wnTφ54
iaiw

+
(⌊
(pF3
w − pF2

w )×
⌋ (
pF2
w − pIkw

))T
pF1
w

+
(
wn+

⌊
(pF1
w − pF3

w )×
⌋ (
pF2
w − pIkw

))T
pF2
w

+
(⌊
(pF2
w − pF1

w )×
⌋ (
pF2
w − pIkw

))T
pF3
w

(24)
Reference [21] shows that, under constant acceleration,

φ54
iaiw = −

(
pikw − pi1w − (k − 1)δtvi1w

)
(25)

so
MkN s =

wnT
(
pF2
w − pikw

)
+
(
pF2
w − pIkw

)T ( ⌊
(pF3
w − pF2

w )×
⌋T
pF1
w

+
⌊
(pF1
w − pF3

w )×
⌋T
pF2
w

+
⌊
(pF2
w − pF1

w )×
⌋T
pF3
w

) (26)

The cross product of the first term can be modified such that(
pF2
w − pIkw

)T ⌊
(pF3
w − pF2

w )×
⌋T
pF1
w

=
(
pF2
w − pIkw

)T ⌊
(pF3
w − pF2

w )×
⌋T (

pF1
w − pIkw + pIkw

)
(27)

=
(
pF2
w − pIkw

)T ⌊
(pF3
w − pF2

w )×
⌋T
pIkw (28)

By definition of the cross product,

∃λ ∈ R,
⌊
(pF3
w − pF2

w )×
⌋T (

pF1
w − pIkw

)
= λwn (29)

and
λ
(
pF2
w − pIkw

)T wn = 0 (30)

Thus, by applying this to all cross-product terms,

MkN s =
wnT

(
pF2
w − pikw

)
+
(
pF2
w − pIkw

)T ⌊
(pF3
w − pF2

w + pF1
w

− pF3
w + pF2

w − pF1
w )×

⌋T
pIkw

(31)

= wnT
(
pF2
w − pikw

)
(32)

By definition, if the three features of the facet are not aligned
in the image, wnT

(
pF2
w − pikw

)
6= 0. End of proof.

Unlike VIO, range-VIO thus enables scale convergence even
in the absence of acceleration excitation.

3) Zero-velocity: Note that when the velocity is null, i.e.
in hover, vi1w = 0, pi1w = pikw in the previous demonstration,
and the following unobservable direction appears instead.

Nh =
[
024×1

T pF4
w
T

... pFN
w

T
]T

(33)

It corresponds to the depth of the SLAM features not included
in the facet. This result means that in the absence of translation
motion, when feature depths are uncorrelated to each other,
the ranged facet provides no constraint on the features outside
the facet. As soon as the platform starts moving, visual
measurements begin to correlate all feature depths, and the
depths of all features become observable from a single ranged
facet.

V. EXPERIMENTAL SETUP

We recorded two datasets to characterize the performance
of our approach. The first one is an outdoor flight in an urban
environment, which is a common scenario in aerial robotics.
The second sequence is aimed at stressing the facet assumption
in an indoor environment, where full-state ground truth based
on motion capture is available. Both tests consist of a uniform-
velocity traverse, i.e. a straight line at constant speed, since this
is the most limiting unobservable direction of VIO. Processing
was done offline for this paper since the focus is on analysis,
but we previously demonstrated the real-time performance of
the range-visual-inertial odometry algorithm at 30 frames per
seconds on a Snapdragon 820 processor [2], which is the
space hardware baseline for the next Mars helicopter mission
concept.

A. Sensors

Range data was provided by a Garmin Lidar Lite V3 single-
point static laser range finder. This can range up to 40 m with
a 2.5-cm accuracy, weighs only 22 g, and is less than 5 cm-
long. The monocular navigation camera was a global-shutter
Omnivision OV7251, providing 640 × 480 8-bit grayscale
images in auto-exposure mode. Inertial data was delivered by a
STIM300 tactical-grade IMU. The camera was collecting data
at 30 Hz, the LRF at 25 Hz, and the IMU at 250 Hz. The sensor
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suite was mounted on a rigid platform. The camera intrinsics
and extrinsincs were calibrated, including the angles between
the camera and LRF optical axes. The distance between the
camera and the LRF was neglected, as the two sensors were
mounted side by side.

B. Outdoor Test

1) Flight Sequence: For this test, the sensor platform was
mounted on a GPS-controlled hexacopter. After take-off, the
rotorcraft ascended to a cruise altitude of 11 m, and initiated
a 150 m straight horizontal traverse at a constant speed of
2 m/s. The traverse was controlled within the performance
limits of the on-board Pixhawk 2.1 Cube autopilot set up
with the ArduCopter APM firmware. No inertial excitation
was provided before take-off.

The flight path was chosen so that the first half of the
trajectory covers flat ground, where the facet assumption is
likely to be respected; and the second half is over buildings
with non-flat roofs, including structure discontinuities where
the facet assumption may be challenged. Our video supplement
includes the full sequence, and a height profile to illustrate
structure variations along the flight path. Figure 3 shows the
image facets at the transition between flat ground and rooftops.

2) GPS Ground Truth: Position ground truth was provided
by a RTK-GPS system composed of a Trimble BD930-UHF
receiver with a BX982 base station. This system provides
centimeter accuracy in clear outdoor environments. It also
served as time server for our logging computer, so sensor data
was readily time-synchronized with ground truth.

We attempted to run a GPS-IMU filter to get attitude ground
truth, in addition to position only. However the horizontal
accelerations were too small to observe the heading component
of attitude [38], which ended up drifting.

C. Indoor Test

1) Hand-Held Sequence: Our second data set was recorded
in an indoor environment, with the intention to create a stress
test for the facet assumption. We arranged boxes of different
heights next to each other in straight line under the LRF path,
to create a structure with multiple 90◦ drop-offs, which result
in severe relative height changes when the sensors are in close
proximity to the top of the boxes. We refer the reader our video
material to observe the violations of the facet assumption,
which happens frequently in this sequence.

To highlight the benefit of the ranged facet model, we also
made it a stress case for VIO: the sensor platform was hand-
held to smooth the motion and eliminate the residual acceler-
ations coming from the hexacopter controls5; the environment
had surfaces with little texture to limit long feature tracks
and increase visual scale drift; and once again, no inertial
excitation was provided before the horizontal traverse.

2) Motion Capture Ground Truth: Another motivation for
an indoor dataset was to obtain complete and accurate ground
truth to fully characterize range-VIO performance in a stress
case. Our test arena was equipped with 10 Vicon Vero motion

5Residual accelerations from hand motion are still present though.

capture cameras, which typically provide millimeter accuracy
in position and sub-degree in orientation. For velocity ground
truth, we filtered Vicon pose measurement with the on-board
IMU [27]. We should note that this ground truth is not fully
independent from the state estimates since the same IMU was
used for both.

VI. RESULTS

This section discusses the performance of our range-VIO
algorithm on the sequences presented in the previous section.
The visual state was set to accommodate M = 4 poses in
the sliding window, and N = 27 SLAM features. The Maha-
lanobis distance test to capture outliers was set to 2σ, with σ
the estimated range standard deviation. VIO was run with the
exact same settings as range-VIO in all our comparison tests.
The only difference was the additional processing of the range
measurement with the ranged facet model in range-VIO.

A. Outdoor Flight Tests

Figure 4 compares the position errors of range-VIO and
VIO during the outdoor traverse. Range-VIO maximum errors
remain below 1 m on each axis, which is under 0.6% of the
distance travelled. This performance is similar to state-of-the-
art VIO under excitation [15]. Conversely, the VIO error rises
along the direction of the traverse (X axis) from the time it is
initiated, and up to values 9 times larger compared to range-
VIO.

(a) Range-VIO position error

(b) VIO position error

Fig. 4: Position errors for range-VIO (top) and VIO (bottom)
on the outdoor dataset. The X and Y axes are horizontal, Z
is up. X was aligned with the direction of the traverse.
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(a) Range-VIO position error (b) Range-VIO velocity error (c) Range-VIO attitude error

(d) VIO position error (e) VIO velocity error (f) VIO attitude error

Fig. 5: Position (left), velocity (center) and attitude (right) errors for range-VIO (top) and VIO (bottom) on the indoor stress
dataset. The X and Y axes are horizontal, Z is up. X was aligned with the direction of the traverse.

We note that the VIO error is consistent with a scale
error, which is not observable for VIO under the constant-
acceleration traverse. This is a clear illustration of the ob-
servability benefit of range-VIO on a trajectory commonly
used in robotics. We also note that the range-VIO errors in
Figure 4(a) do not suffer from the transition between a flat
terrain and a 3D structure, that occurs at t = 425 s. This is
a good indication that the facets constructed with real-world
visual features efficiently capture the structure of the scene.
Additionally a 7-m ranged facet outlier occurred at t = 410 s,
as the LRF hits a street light. This can be observed in the
range profile shown in our video material. However it does
not affect the range-VIO estimates in Figure 4(a), showing
the efficiency of our range outlier rejection scheme.

B. Indoor Stress Tests

To further assess the robustness of the facet model, the
indoor sequence discussed in Subsection V-C was used as
a stress case. Figure 5 compares range-VIO and VIO errors
in position, velocity and orientation, since ground truth was
available for all these states indoors. The scale drift reduction
is clearly visible along the direction of travel in Figures 5(a)
and 5(d). Range-VIO has a maximum position error of 30 cm,
or 2.5% while VIO errors grow to 2 m, or 17% in these
challenging visual conditions and without excitation.

The velocity and orientation plots are a good illustration of
how the facet assumption can work over challenging environ-
ments. Figure 5(b) and 5(e) show the velocity errors benefit
from scale observability in range-VIO, since they are up to

twice lower than VIO. Likewise, range-VIO orientation errors
in Figure 5(c) slightly differ from that of VIO in Figure 5(f),
especially in the Z (yaw) axis. We interpret these differences
as error accumulation cause by ranged facet assumption vi-
olations too small to be caught by the Mahalanobis range
outlier rejection. This only happens around the global yaw
axis, which is unobservable to both methods. However, even
in this extreme stress case, the yaw error has the same order
of magnitude between range-VIO and VIO, while range-VIO
clearly outperforms VIO in terms of position and velocity drift
reduction.

Finally, we refer the reader to our video material for addi-
tional comparison results in a sequence with large excitation
and good visual texture. Under these optimal conditions, VIO
performs on par with range-VIO, having a maximum position
error of 40 cm. This confirms that VIO was not detuned
previously, but only suffered from the lack of excitation. It also
confirms that range-VIO does not degrade VIO performance
in the presence of good excitation and visual conditions.

VII. CONCLUSION

VIO-based robotic applications are limited by the inability
to observe scale without excitation. In aerial robotics, scale
observability without excitation is critical for even the most
basic hovering and straight-line trajectories. Our main interest
is for aerial exploration of distant worlds, like Mars [1].
Common terrestrial applications include conditions where GPS
is unavailable (defense, underground), degraded (tall buildings,
canyons), or not accurate enough (indoors).
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Using a simple 1D laser range finder, our range-VIO ap-
proach eliminates scale drift in the absence of excitation while
retaining the minimal size, weight and power requirements
of VIO. A theoretical analysis demonstrated the observability
of scale in such conditions. Results on constant-velocity real
flight data showed error reduction by a factor of 9 compared
to VIO.

The novel range update is based on a facet scene assumption
that efficiently leverages VIO feature depth estimates to handle
unknown structures. The facets can scale from a flat world
assumption, to virtually no structure assumption at all based
on visual feature density. This paper and supplement report [3]
provide a full derivation of the range-VIO model. Range-VIO
does not require additional states with respect to VIO, and
does not add significant computational cost. We demonstrated
the robustness of our facet assumption in a stress case.

Future extensions include increasing visual feature density
around the LRF impact point on the scene to improve accuracy
further. We also investigate the use of magnetometers and
sun sensors to address the next major unobservable direction:
orientation about the gravity vector.
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