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Håvard F. Grip‖ Gene Merewether∗∗ Travis Brown†† A. Miguel San Martin‡‡

Jet Propulsion Laboratory, California Institute of Technology, 91109

A small helicopter has recently been approved by NASA as an addition to the Mars 2020 rover mis-
sion. The helicopter will be deployed by the rover after landing on Mars, and operate independently
thereafter. The main goal is to verify the feasibility of using helicopters for future Mars exploration
missions through a series of fully autonomous flight demonstrations. In addition to the sophisticated
dynamics and control functions needed to fly the helicopter in a thin Mars atmosphere, a key sup-
porting function is the capability for autonomous navigation. Specifically, the navigation system must
be reliable, fully self-contained, and operate without human intervention. This paper provides an
overview of the Mars Helicopter navigation system, architecture, sensors, vision processing and state
estimation algorithms. Special attention is given to the design choices to address unique constraints
arising when flying autonomously on Mars. Flight test results indicate navigation performance is
sufficient to support Mars flight operations.

I. Introduction
The use of helicopters promises to bridge a gap in current Mars exploration capabilities. Orbiters have provided

high-altitude aerial imagery of Mars, but with limited resolution. Rovers provide rich and detailed imagery of the
Martian surface, but move at a slow pace and are limited by traversability of the terrain and line-of-sight. Helicopters
can quickly traverse large distances without being hindered by terrain, while providing detailed imagery of the surface
from heights of a few meters to tens of meters above the surface. Paired with a rover, a helicopter can act as a scouting
platform, helping to identify promising science targets or mapping the terrain ahead of the rover. Looking further
ahead, helicopters may one day carry their own science payloads to areas that are inaccessible to rovers. An overview
of the Mars Helicopter Technology Demonstrator is given in [2], and its guidance and control functions are discussed
in [3][4]. The current paper will discuss the Mars Helicopter navigation system.

A CAD drawing of the Mars Helicopter is shown in Figure 1. The Mars Helicopter has two counter-rotating rotors
that are 1.21 m in diameter. The vehicle stands approximately 80 cm in height, and weighs 1.8 kg. Compared to an
Earth helicopter, the rotors are significantly oversized for its weight. This allows it to fly in the Martian atmosphere
which has only 1-2% the density for that of Earth. The helicopter carries a payload as part of its fuselage, which is a
cube-like structure containing the flight avionics, batteries, and sensors, all contained within a warm electronics box
that is insulated and heated to protect against low night-time temperatures. The batteries are sized to provide energy
for flights lasting over 90 s, while also supporting non-flight operations and night-time survival heating. A solar panel
at the very top of the vehicle is used to charge batteries between flights.
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Figure 1. CAD drawing of the Mars Helicopter

II. Navigation Sensors
The navigation sensors are shown in Figure 2 mounted on the Electronic Control Module (ECM) which lies within

the fuselage and constitutes the main component of the payload. The three main navigation sensors consist of a
monochrome camera, an IMU, and a laser range-finder (LRF) which serves as an altimeter. An inclinometer is included
for pre-flight calibration and initialization, but is not involved in the real-time navigation processing. A second IMU
is included as backup, and a color camera is included for public outreach, but these sensors are outside the scope of
this paper. As shown in Figure 2, the IMU and inclinometer are mounted together at the top of the ECM, while the
camera and altimeter, are mounted together lower down and cantilevered off to the side. The camera and altimeter are
nominally both aligned and nadir pointed.

Figure 2. Navigation sensors mounted on ECM
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Specific navigation sensor units are listed below. These are all commercial off-the-shelf (COTS) miniature sensors,
largely developed for the cell phone and lightweight drone markets.

• A Bosch Sensortech BMI-160 inertial measurement unit, for measuring 3-axis accelerations at 1600 Hz and angular
rates at 3200 Hz

• A Garmin Lidar-Lite-V3 laser rangefinder (LRF), for measuring distance to the ground at 50 Hz

• A downward-looking 640 × 480 grayscale camera with an Omnivision OV7251 global-shutter sensor, providing
images of the ground below the vehicle at 30 Hz

• A muRata SCA100T-D02 inclinometer, for measuring roll and pitch attitude prior to flight

III. Navigation Architecture
The navigation architecture is depicted in Figure 3. The architecture consists of a main flight computer (FC) a Nav

Processor (NP) and an FPGA. The NP is a Snapdragon 801 SoC with four Krait 400 cores (COTS cell-phone processor).
The FC is an ARM Cortex-R5 (COTS automotive-grade processor) which is 2x redundant for fault protection purposes.
High-rate data (IMU, altimeter, inclinometer) is read into the FPGA which communicates synchronously with the FC
and the sensor devices, and asynchronously with the NP. Camera images are read directly into the Nav Processor which
uses cell-phone technology and can directly ingest video image sequences. The dedicated Nav Processor allows the
CPU-intensive Vision Processing and State Estimation functions to be handled very efficiently using COTS cell phone
technology. The Nav Processor serves to offload the FC and FPGA allowing them to more reliably handle important
helicopter guidance and control functions. As shown in Figure 3, the Vision Processing and State Estimator functions
are each assigned a full core of the quad-core Nav Processor.

The FPGA samples the IMU, the altimeter and inclinometer. The IMU is comprised of a gyro and accelerometer
which are sampled at 3200 Hz and 1600 Hz, respectively. The IMU outputs in the body frame are first notch filtered
at the first six rotor harmonic frequencies and then smoothed with a 90 Hz anti-aliasing filter. Data is then sent to
the FC where coning and sculling corrections are applied at the high sampling rates, and then bias corrected (with a
fixed initial gyro and accelerometer bias estimate only), and mapped to an inertial frame where it is integrated down
to 500 Hz. During integration, the IMU data is time-aligned to a perfect 500 Hz grid which is needed because 500
Hz is not rationally commensurate with the original 1600 or 3200 Hz IMU data. The resulting “cleaned-up” 500 Hz
delta-theta and delta-v IMU data and 50 Hz altimeter measurements are passed to the NP (via the FPGA) where they
are ingested by the State Estimator function. IMU propagation is intentionally made redundant between the Flight
Computer and Nav Processor in order to accommodate latencies and non-uniform packet arrival times associated with
using asynchronous communications between the FPGA and the NP. Furthermore, the FC is architected to be a free-
running integration of the IMU with updates that incorporate the latest bias and state information from the last good
NP packet. With this approach, the system is robust to NP dropout and/or failure because the FC always continues to
propagate the state from the last good navigation filter update.

It is worth noting that the helicopter avionics are largely comprised of commercial of-the-shelf (COTS) components.
This is very different than most spacecraft payloads which require their avionics to be hardened in face of the harsh
space environment and high radiation levels. While posing additional risk, this choice was essential for meeting tight
mission cost, mass, and power constraints. Moreover, all components undergo vibration, thermal, and radiation tests to
make sure that risks are consistent with a NASA Class D technology demonstration.

IV. Navigation Algorithm
A. MAVeN Approach
Many of the most reliable approaches to vision-based navigation make use of pre-mapped landmarks. This is because
with a sufficient number of landmarks, the vehicle pose becomes fully observable from a single camera image. Un-
fortunately, using pre-mapped landmarks is not a practical option for the Mars Helicopter application because Mars
terrain is observed predominantly from orbiting satellite assets, and is generally not mapped at sufficient resolution to
support operations in close ground proximity.
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Figure 3. Navigation architecture

An alternative approach is to generate features on the fly and in real time as the vehicle maneuvers above the surface.
Most generally, this problem can be addressed using SLAM (Simultaneous Localization and Mapping) algorithms from
the literature [5][6]. While there has been some success applying SLAM to Earth-bound assets, full SLAM solutions
are challenging for real-time space applications due to their over sized filter state dimensions. For example, SLAM
augments the Kalman Filter with 3 states for each of the N features observed, so that retaining a memory of, say
N=100 features, would require a filter state whose dimension exceeds 300. Such high-order filters are only marginally
numerically stable and demand large amounts of on-board computation. While methods are being developed to perform
management and real-time pruning of the number of features, such methods are relatively new and raise separate
questions about reliability and adding complexity to the implementation.

The unavailability of mapped landmarks coupled with the challenges involved in flying a real-time high-order
SLAM implementation, has motivated an alternative approach to Mars Helicopter navigation based on velocimetry.
Here, the vision system is used to characterize relative motions of the vehicle from one image to the next, rather than
to determine its absolute position. Providing good velocity information is also one of the main goals of the navigation
system since it is essential for best supporting real-time control of a vehicle with complex dynamics. Of course a
disadvantage of using velocimetry is that the navigation solution will drift with time since one is effectively integrating
a ”noisy” velocity measurement. However this is offset by the short (approximately 90 second), flights for the Mars
Helicopter, and the preference to implement simpler and lower-order navigation filters.

The velocimetry-based algorithm chosen to use for the Mars Helicopter application is MAVeN (minimal augmented
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state algorithm for vision-based navigation). MAVeN was originally developed as part of a JPL research project on
comet exploration [8][9], and is adapted here for Mars Helicopter. MAVeN works similar to SLAM except that it
avoids augmenting the state with feature vectors. MAVeN is mechanized as an Extended Kalman Filter (EKF) and has
several advantages relative to other vision-based velocimetry methods, including a relatively low-order 21-state filter
for full 6-DOF pose estimation, and the ability to maintain a stable hover condition. These advantages come at the
cost of having to assume that a faceted shape model is available of the terrain being traversed. The availability and
fidelity of such a faceted shape model will depend on the application. For example, applied to comet exploration, such
a facet model would generally be available from remote spacecraft observations of the comet surface made prior to
starting proximity operations. In contrast, for the Mars Helicopter application, a facet model or digital elevation map
(DEM) is not available, so that the shape model must be taken simply as a single facet. While this facet could be
defined as a tangent plane approximation to local terrain as informed by satellite data, it is instead just assumed to be
flat (i.e. normal to local gravity) for simplicity. This assumption is justifed by flying over terrain that is expected to
have sustained slopes of only 1-3 deg. An altimeter is added to provide scale, and to directly measure altitude above
ground level (AGL) which is critical for helicopter guidance and to avoid ground collision.

B. Algorithm Description
The 21-state filter vector associated with MAVeN is given by,

x =



pS
vS
qS
−−
ba
bg
−−
pB
qB


(1)

Here, pS , vS , qS are the position, velocity and attitude quaternion states which comprise the Search state; ba, bg are
bias terms for the accelerometer and gyro; and pB , qB are the position and attitude quaternion which comprise the Base
state. Attitudes are represented using quaternions denoted using q which has 4 elements, of which only 3 unconstrained
degrees-of-freedom are counted in the filter state size. Attitude is also represented equivalently using a DCOS matrix
A, in which case the associated quaternion will be notated as q(A). The Base state is a cloned version of the position
and attitude part of the Search state, and is used for updating the EKF with information derived from simultaneously
processing two images taken at different times. Cloned states are often added to vision-based methods help process
relative measurement information [10][11][12]. As explained in [8] for the MAVeN algorithm, Base states are copied
from Search states at the time instants tB when Base images are taken (i.e., pB(tB) = pS(tB), and qB(tB) = qS(tB)),
and propagate with constant dynamics between Base images (i.e., ṗB = 0, q̇B = 0).

MAVeN’s unique properties follow from the novel approach of projecting image features onto a shape model of the
ground surface to use as pseudo-landmarks for the next image. This process is briefly sketched here with the use of
Figure 4.

[1] Identify the first image as a Base image

[2] Use the current estimate of Base pose pB , qB to map features in the Base image onto the planar surface model
e.g., f1, f2, f3 in Figure 4. These feature positions will serve as pseudo-landmarks.

[3] Identify the next image as a Search image

[4] Match Search image features to the pseudo-landmarks mapped from most recent Base image. Assume that there
are m matches.
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Figure 4. Base and Search frames

[5] Combine the m pseudo-landmark matches with current geometry to form a measurement that is a function of both
the current Base and Search states,

yi = hi(pS , qS , pB , qB) + vi, i = 1...,m (2)

Perform Kalman filter measurement and time updates.

[6] If the number of matched features drops below a threshold (or other relevant logic), declare the next image as a
new Base image and go to [1]. Otherwise declare the next image as a Search image and go to [3]*

* The current mechanization is slightly more complicated where the new Base image in Figure 4 is also used simulta-
neously as a Search image associated with the previous Base frame. This intentional overlap minimizes the drift
incurred between Base frames since it avoids a purely IMU-only period of integration.

REMARK 1 In a motionless hover condition, MAVeN is capable of sitting on the same Base image indefinitely which
leads to very stable behavior. This property is generally not possible with non-SLAM approaches to velocimetry (cf.,
[14][15]).
REMARK 2 Updating the MAVeN EKF with consecutive Search images and altimeter updates automatically relocates
the feature projections (e.g., f1, f2, f3 in Figure 4), on the planar surface model to be consistent with the updated state
estimate pB , qB , while holding bearing directions constant as observed in the previous Base image.

C. Stable Hover Property
The capability to hover is mission-critical for the Mars Helicopter. Unfortunately, performing state estimation during
a motionless hover is very challenging for most vision-based velocimetry algorithms [14]. While algorithms based
on the computationally intensive EKF-SLAM are generally able to hover [5][6], it is unfortunate that there are very
few reduced-order estimators with this capability. This is because simpler estimators are often based on the essential
matrix, the fundamental matrix, the 5-point algorithm [16], or they enforce epipolar or multistate constraints [15][24],
and as such, achieve a singular condition that generates vacuous measurements under a motionless hover condition.
To overcome this limitation, researchers have resorted to augmenting their filter state with persistent features [25][26]
or invoking in-flight hover detection and switching to a different estimator in response [14]. While these modified
methods can be made to work in practice, they complicate the implementation, make it harder to test, and still involve
a large number of filter states. In contrast, the MAVeN algorithm contains only 21 filter states and is able to achieve
stable estimation during a completely motionless hover. This capability follows directly from the novel approach of
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projecting image features onto a shape model of the ground surface to use as pseudo-landmarks. The stability of
MAVeN during hover is demonstrated in Section VI, where a 200 second hover accumulates only 0.6 m of position
error.

D. MAVeN Measurement Update
The main innovation of the MAVeN algorithm is the relative measurement update which is briefly outlined here. To help
focus on the underlying geometry, camera measurement noise is temporarily dropped from discussion. The geometry
of the Base and Search frames will be used as shown in Figure 5.

Four frames are used in the analysis: The Ground frame FG, the Camera frame FC , the Base frame FB and the
Search frame FS . The Ground frame G serves as the world frame for the scenario; the Base frame FB is defined
as coincident with the Camera frame FC at the time instant tB of the Base image (i.e., FB = FC(tB)); and the
Search frame FS is defined as coincident with the Camera frame FC at the time instant tS of the Search image (i.e.,
FS = FC(tS)). The DCOS matrix AB maps a vector from FG into FB , and the DCOS matrix AS maps a vector from
FG into FS . These DCOS matrices are equivalently represented by the quaternions qB and qS , respectively in (1). The
feature vector fi lies in the ground plane and locates the i’th feature with respect to the origin of FG. Vector N is the
unit normal to the ground plane.

For an arbitrary line-of-sight vector r = [rx, ry, rz]T a pin-hole projection operator is defined as

π[r] =

[
rx/rz
ry/rz

]
(3)

Using this notation, a noiseless camera measurement z = [u, v] of line-of-sight vector r can be written as,

z =

[
u
v

]
= π(r) =

[
rx/rz
ry/rz

]
(4)

The corresponding unit direction vector d associated with the decomposition r = d‖r‖ can then be reconstructed from
its noiseless measurement z as

d =
Π(z)

‖Π(z)‖
(5)

where,

Π[z] =

[
z
1

]
=

[
π(r)

1

]
=

 rx/rz
ry/rz

1

 (6)

Based on this discussion, a noiseless camera measurement z of a line-of-sight vector r can be taken equivalently as its
unit direction vector d in the decomposition r = d‖r‖. It will be convenient to apply this decomposition to the camera
line-of-sight vectors rBi and rSi which will be split into their magnitude and direction parts as rBi = dBi‖rBi‖ and
rSi = dSi‖rSi‖, respectively.

The various vectors shown in Figure 5 are assumed to be resolved as follows:

pB , pS , fi, N ∈ FG

rBi, dBi ∈ FB

rSi, dSi ∈ FS

Forming a triangle at Base time tB in Figure 5 and resolving all vectors in FG gives

fi = pB +AT
BrB (7)

Substituting rBi = dBi‖rBi‖ where dBi is a unit vector, gives

fi = pB +AT
BdBi‖rBi‖ (8)
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Figure 5. Geometry of Search and Base Frames

Taking the inner product of both sides with N gives

NT fi = NT pB +NTAT
BdBi‖rBi‖ (9)

Since N is normal to the ground plane in which fi lies, it follows that NT fi = 0, and the above equation can be
rearranged to solve for ‖rBi‖ as

‖rBi‖ =
−NT pB
NTAT

BdBi

(10)

Substituting (10) into (8) gives

fi = pB −
AT

BdBiN
T

NTAT
BdBi

pB =

(
I − AT

BdBiN
T

NTAT
BdBi

)
pB (11)

This is a useful formula showing that the feature vector fi is a function of the cloned part of the state pB , AB , and the
noiseless camera measurement dBi of the i’th feature taken at Base time tB .

Consider the camera measurement update at Search time tS . Forming a triangle at Search time tS in Figure 5 and
resolving all vectors in FG gives

rSi = ASfi −ASpS (12)

Unfortunately, the vector fi in this expression corresponds to an unmapped landmark and its coordinates are unknown.
As such, expression (12) cannot be used directly to generate a standard mapped landmark type measurement update.
Of course, one approach is to add fi to the filter state which is an approach similar to SLAM. However, in the interest
of keeping the filter dimension low, the main insight of MAVeN is to instead use the expression (11) for fi derived from
the earlier Base image. Specifically, substituting fi from (11) into (12) gives,

rSi = AS

(
I − AT

BdBiN
T

NTAT
BdBi

)
pB −ASpS (13)

It is worth noting that the formulation can progress from this point without any need to augment the state with fi. Here,
the formula (11) for fi can be interpreted as defining pseudo-landmarks that can be used as if they were real landmarks
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in the navigation filter update. Of course care must now be taken to model fi as a function of state, rather than simply a
known vector, which creates additional complexity that is not required when having real mapped landmarks. Happily,
the line-of-sight vector rSi in (13) is now purely a function of state x through the quantities pB , AB , pS , AS , and a
function of the exogenous quantity dBi which is assumed known from the earlier camera measurement at time tB .

Applying the pin-hole projection operation (3) to the line-of-sight vector (13) gives a camera measurement of the
form

zi = π[rSi]
∆
= hi(pS , AS , pB , AB) (14)

where,

hi(pS , As, pB , AB) = π

[
AS

(
I − AT

BdBiN
T

NTAT
BdBi

)
pB −ASpS

]
(15)

Since the only unknowns in this equation are pS , As, pB , AB (where dBi is assumed known from the noiseless camera
measurement at Base time tB), and these quantities are part of the state vector x in (1), this equation has the form
zi = h(x) which is consistent with standard nonlinear filtering formulations.

Until now we have assumed that there is no noise. To properly treat the underlying filtering problem, the camera
noise needs to be added back into the formulation. At Search time tS , the camera measurement zi in (14) actually has
the form

yi = zi + vi (16)

where yi is a noisy measurement, and vi is the measurement noise. Fortunately, the additive noise form (16)) remains
consistent with standard nonlinear filtering formulations.

At time tB the bearing measurement dBi
will also be noisy. Since camera noise in dBi

enters at Base time tB , it
becomes correlated with all subsequent Search frame measurement updates of the form (16). For simplicity, MAVeN
assumes that the camera noise at each Base Frame is sufficiently small so that this correlation can be neglected. Rig-
orously dealing with the issue of correlated measurement noise remains as an area for future investigation. This small
camera noise assumption at Base frame times, together with the planar ground assumption represent the only two
approximations required in formulating MAVeN as a nonlinear filtering problem.

E. Lessons Learned

1. Vertical Channel Tuning

In the vertical channel, there is a difference between inertial altitude (as measured by inertial sensors such as an IMU
or GPS), and altitude above ground level (AGL, as measured by the LRF and camera). These two quantities will be
the same only when traversing perfectly flat and level ground. When traversing non-flat or irregular terrain, these two
definitions of altitude conflict and can differ significantly. Without using GPS, and without using mapped landmarks
or a digital elevation map (DEM), MAVeN will be unable to completely separate these two altitude definitions.

Nevertheless, the navigation filter is intentionally detuned to try to produce an AGL estimate of vertical position,
while producing an inertial estimate of vertical velocity. This design is necessary because AGL height information is
critical for avoiding collisions with the ground, while inertial velocity information is critical for properly controlling
helicopter dynamics. Roughly speaking, filter tuning is performed by increasing LRF and camera weighting in the
vertical position, and IMU weighting in the vertical velocity. Since detuning represents a compromise, the filter still
generates noticeable systematic errors in vertical velocity estimates when flying over rough terrain. Fortunately, ex-
pected terrain for the Mars Helicopter mission is expected to be fairly flat. However for stress testing purposes, such
systematic velocity errors are intentionally demonstrated in Section VI.
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2. Attitude States

The original MAVeN algorithm design [8] only estimates translational states under the assumption that attitude is
perfectly known. This is an appropriate assumption in mission scenarios where the spacecraft has a star tracker and
high accuracy gyros. However, this mission does not have an absolute attitude sensor nor does it have navigation-grade
gyros. Although the BMI-160 angle-random-walk spec of 7× 10−3 rad/s/

√
Hz would be sufficient to meet attitude

knowledge requirements, early IMU testing revealed that the sensor is sensitive to vibration. The BMI-160 spec sheets
lists a g-sensitivity of 0.1◦/s/g: a 1-g vibration level can induce a 0.1◦/s gyro bias which would produce a 9◦ error
over a 90 second flight. This is unacceptable which motivated the augmentation of the MAVeN filter state with attitude
states. This extension of MAVeN is straight-forward to implement and extends the filter state dimension from 12 to 21
(three for current attitude, three for base attitude, and three for gyro bias). One drawback of this approach is that the
attitude estimate becomes sensitive to non-flat terrain. For example, when flying forward over a long uphill stretch, the
pitch error will converge to the slope of the hill. Nevertheless, the MAVeN attitude estimate is expected to be better
than the gyro-only attitude estimate for the operational terrain which is expected to have sustained slopes no larger than
1-3 deg.

3. Outlier Feature Suppression

Visual feature tracking inevitably produces occasional outlier measurements (i.e. those with very large centroiding
error). Outlier measurements can corrupt the filter state estimate if they are not down-weighted or discarded. One
challenge in designing an algorithm for feature suppression is the possibility of lockout: the current state estimate
is in error which causes good measurements to be incorrectly suppressed and therefore prevents a state update. The
navigation system has a two-tiered approach to deal with this. The first tier is a base-to-search homography RANSAC
algorithm to identify and discard outliers. This algorithm finds the largest set of base and search features that are
consistent with a homography that maps base features to search features. By making the first tier independent of the
navigation state, the lockout problem is avoided.

The first tier can fail if there are many outliers that are mutually consistent. This can happen when many features are
detected on the shadow of the helicopter. To provide robustness to this failure mode, a second tier of outlier suppression
is implemented inside of the MAVeN feature update. The magnitude of the innovation is used to assign a measurement
weight on a per-feature basis. The weighting function is the Huber loss function [17] which assigns a weight between 0
and 1. A weight of 1 is assigned if the residual is less than a threshold. Beyond this threshold, the weight monotonically
decreases. Down-weighting, as compared to a hard accept-reject rule, reduces the risk of lockout because a persistent
update signal will still pass through to the estimated state.
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V. Vision Processing
A. Overview
To provide the navigation filter with positions of selected feature points over a sequence of images, a three step process
establishes the detection and tracking capability required by the MAVeN Base frame/Search frame procedure: Detection
of features in a Base frame, tracking of features in subsequent frames, and an outlier rejection step to avoid feeding
invalid feature tracks to the navigation filter. Note, that feature detection and tracking is performed on distorted images
from the navigation camera, reducing the need for initial rectification of the input images.

B. Feature Detection
To provide the template-based feature tracker with a set of distinct pixel positions (visual features) that maximize the
potential of being easily trackable in subsequent frames [18], we deploy a feature detection step at each Base frame to
identify pixels with significant brightness changes in their local vicinity. To optimize performance and run-time of the
feature detector, we use a modified FAST corner detector [19][20] to detect candidate feature points.

FAST explores the differences in brightness between an evaluated center pixel and neighboring pixels that are
located on a circle around the center pixel. If neighboring pixels on a continuous arc around the center pixel (FAST
arc) have consistently higher (or lower) brightness values than the center pixel, the center pixel is classified as a FAST
feature. The detection result can be influenced by choosing a brightness threshold that defines the minimum brightness
deviation between neighboring pixels and the center pixel, the radius of the circle in which neighboring pixels are
evaluated, and the minimum required length of the FAST arc. Common values for these parameters are e.g. a radius
of 5 pixels which yields a FAST window of 11x11 pixels and defines a circle around the center pixel containing 16
neighbors, and a minimum arc length of 9 pixels. Common FAST brightness thresholds - referred to as FAST threshold
in the rest of the paper - are usually within the 5% range of the maximum brightness interval of the image.

FAST achieves a significant speed-up by initially evaluating only a few selected pixel positions on the neighbor
arc to discard candidate features early on if the continuous arc condition is violated - eliminating the need to examine
all neighbors for each pixel. While this accounts for significant speed-up in the majority of images, it introduces a
run-time dependence on the texture content of the image. To limit the execution time of feature detection, we deploy
a scanning scheme that uses a row stride length to go through the image during feature evaluation. Feature detection
stops either when the whole image is scanned, or a maximum number of candidate features are found. This maximizes
the distribution of feature candidates spread over the image, while bounding the maximum execution time.

To reduce the number of features around strong image brightness changes, we perform a non-maximum suppression
step on all candidate features. Features are assigned a FAST score based on the brightness differences of the center
pixel and the pixels on the FAST arc, and then tested for maximum FAST score in a 3x3 local neighborhood. If another
feature with a higher score is located next to the tested feature, the tested feature is eliminated.

All surviving features pass through a final sorting step to only select the strongest features for ingestion into the
navigation filter. To maximize the distribution of features over the image, the image is divided into a 3x3 grid of tiles,
and features in each tile are sorted based on their FAST score. Finally, the n strongest features in each tile are accepted
as Base frame features.

C. Feature Tracking
For each new image, we deploy a feature tracking step that matches feature positions in the previous frame to the new
frame. This is done independently of Base frame generation to ensure continuous tracking.

To track features, we use a Kanade-Lucas-Tomasi (KLT) tracking framework. KLT uses an iterative gradient-
descent search algorithm based on pixel differences in a local window (template) around a feature position [21] to
estimate a new feature position in the current frame. To maximize robustness and minimize execution time, we deploy
KLT on an image pyramid comparable to [22] with a fixed number of 3 levels and a template window size of 11x11 pix-
els. Additionally, feature positions are initialized prior to tracking through a derotation step, which integrates delta gyro
measurements between frames to predict future feature locations through large rotations (see Section F below).

We further limit the maximum number of KLT iterations and discard any feature that did not converge during the
iteration.

11 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 J
E

T
 P

R
O

PU
L

SI
O

N
 L

A
B

O
R

A
T

O
R

Y
 o

n 
M

ar
ch

 3
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
14

11
 



Figure 6. Feature tracking example. Left: A new Base frame is triggered and 252 features are detected with an equal distribution over a
3x3 image tile grid. Right: Green tracks show features that survived continuous tracking over 10 frames.

D. Outlier Rejection
Since KLT might get caught in a local minimum during its gradient-descend based search algorithm, a small number of
false feature matches might survive the tracking step. To eliminate potential false matches, we apply an outlier rejection
step to all newly matched features, that involves a homography-based RANSAC algorithm to identify the largest feature
inlier set between the most recent Base frame and the current Search frame. Using a homography constraint serves the
additional purpose of helping to enforce the ground plane assumption of the navigation filter. Specifically, only features
that are located on a common ground plane between a Base frame and a Search frame survive the outlier rejection which
naturally better conditions the selected features for the MAVeN state estimator. As an additional benefit, this scheme
guarantees that all features that are detected on non-static texture (e.g., the heliocpter shadow), are also eliminated by
the outlier rejection step under vehicle translation (but not pure rotation). Figure 6 shows an example of a Base frame
and a subsequent Search frame with feature tracks that are continuously tracked over 10 frames.

E. When to Trigger New Base Frame
In support of the MAVeN navigation algorithm, the vision processing logic must determine when to establish a new
Base frame. A new Base frame is required whenever the number of feature tracks drops below a certain threshold. In
addition there is a desire to limit the maximum number of frames n between consecutive Base frames to help minimize
drift induced from tracking over non-flat terrain. Specifically, since terrain tends to look locally planar over shorter
spans, the navigation filter benefits from shortening the track lengths and becoming less sensitive to its planar ground
assumption. The tracking algorithm evaluates the current tracking result and requests a new Base frame if the total
number of tracked features after RANSAC drops below a prescribed number m, or if the number of image tiles that do
not contain any features exceeds a maximum number k, whichever comes first.

In the current tuning, these numbers are chosen as m = 40 and k = 3. Additionally, track lengths are limited to
n = 10 frames. Since images are processed at 30 Hz, this currently puts an upper bound of 1/3 sec on the time between
consecutive Base frames. Generally, larger values for n best support hovering since there will be fewer Base-frame
updates and therefore less drift, while lower values best support forward flight since shorter Base-to-Base intervals act
to reduce navigation errors induced by traversing terrain that is not reasonably flat.

F. Tracking at High Angular Rates
The Mars Helicopter was designed to handle rotation rates of up to 80 deg/sec to help deal with wind gusts. Handling
vehicle rates of 80 deg/sec presents a formidable challenge for feature tracking. This challenge was first addressed by
speeding up the software to be able to process images at 30 Hz rate. However this alone was found to be insufficient for
tracking features at 80 deg/sec while simultaneously ensuring a desired > 40 features per tracked frame. Additionally,
it was found necessary to use gyro derotation. This is where delta-angles from the gyro are incorporated into the vision
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tracking algorithms. KLT linearizes the optical flow search around the initial feature position and becomes sensitive
when the search position is initialized far from the true feature location. De-rotation is used to reduce the large initial
displacements induced by vehicle rotation. Coupled with the high 30 Hz image frame rate, gyro-based derotation has
been found to significantly reduce the chance of tracking outliers and makes the vision processing more robust.

G. Computational Constraints
In order to achieve the required image processing frame rate of 30 Hz, all image processing has to be executed within
the 33 ms time limit between two successive frames. In a worst case scenario, the same image will need to be processed
as both a Search frame and a Base frame. Specifically, this happens when feature tracking is performed on a Search
frame and then a new Base frame is triggered because of insufficient feature tracks. This means that all components
of the vision processing software combined have to fit within one frame period. Execution times for all algorithm
steps on the target system are illustrated in Table 1. Results indicate a maximum execution time of 21.6 ms under this
worst-case scnario, providing a reasonable margin against the 33 ms limit.

Component min. [ms] max. [ms] avg. [ms]
Base Frame 4.3 8.8 4.7

Search Frame 5.9 12.8 6.6
total 10.2 21.6 11.3

Table 1. Runtimes on single Krait 400 core of Snapdragon 801 using well-textured images from simulation. Averages are calculated over
470 images.

H. Lessons Learned
1. FAST Threshold

As described in Section B, the number of derived FAST features for a given image depends on the chosen FAST
threshold that establishes a minimum brightness difference between a candidate feature and its neighboring pixels on
the FAST arc. Features with large brightness changes usually mark unique image content, increasing the likelihood
of being tracked in subsequent frames. But if the FAST threshold is chosen too high, fewer features are found and a
minimum number of desired features might not be reached. This problem is commonly solved by applying the FAST
detector to the same image with decreasing FAST thresholds, until the desired number of features is reached. Since
this dramatically increases the number of runs through the image and the required execution time, we chose to set the
FAST threshold to a low value and limit the number of extracted candidate features while applying the described stride
scheme to ensure good feature distribution in the image. This has the advantage that only one run through the image is
needed. Nevertheless, execution time is increased by the non-sequential memory access of the stride scheme, but we
found that this effect is only marginal for images of VGA size and the capability of modern CPUs to store significant
amounts of data in cache memory (the Snapdragon 801 has 2MB L2 cache on-chip).

Figure 7 illustrates the dependence of the number of detected features on the texture content of an image. Here, we
apply the FAST detector with various score thresholds to a stress case environment of very low-textured terrain. As
can be seen, a larger FAST threshold limits the number of features detected in the image.

To guarantee a sufficient amount of features in equivalent scenes, a FAST threshold of 3 was selected for our feature
tracking frame work.
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Figure 7. Influence of FAST threshold on the number of detected FAST features (left) using a navigation image from a low-textured scene
over sand (right)

2. COTS Hardware

The Mars Helicopter would not have been possible without the low size, weight and power functionality offered by
COTS hardware. The Snapdragon processor’s four cores were assigned such that an entire core was dedicated to vision
processing and an entire core to the navigation filter. This turned out to be essential for achieving the 30 Hz image frame
rate needed to track features through wind-gust-induced vehicle rates of up to 80 deg/sec. There were however several
major challenges that had to be overcome. Performance of the Snapdragon processor is temperature dependent, and it
throttles back when it gets hot. Fortunately, thermal issues are less of a problem in the relatively short Mars Helicopter
mission flights. Nevertheless, alternative approaches may be needed on future missions requiring long duration flights.
Another problem is that the COTS Linus OS (Linaro) is not a real-time operating system, and its latencies are load-
dependent and increase under heavy computation. Load-dependent latencies caused significant challenges for software
repeatability and developing reliable real-time estimation and control functions. Finally, proprietary closed source
software drivers for camera control and internal image processing made it difficult to change behavior of internal
functions. Autoexposure, contrast settings, and internal image sharpening filters were all largely black box functions
that had to be optimized using tedious manual cut-and-try methods based on dedicated flight tests.

3. Autoexposure

The OV7251 camera sensor requires a companion software autoexposure and autogain algorithm to cope with terrain
having changing albedo, as it operates with manually adjusted exposure time and analog gain parameter setpoints.
We use a vendor-supplied algorithm that adjusts both of these parameters based on image statistics in an attempt to
optimize a data-driven function predicting image quality for feature tracking. The algorithm is tuned to reduce analog
gain in order to minimize image noise, while relying on the expected radiance at the image sensor when viewing typical
scenes on Mars to keep the exposure times low enough to eliminate motion blur.

In addition to adjusting the exposure time and analog gain as described above, the maximum allowable exposure
change between subsequent frames is clamped to a specific value. The value is chosen such that the KLT tracker,
which incorporates a constant brightness assumption at the core of the gradient-descent algorithm, is able to reliably
track through exposure adjustments. In order to speed initial convergence of the autoexposure algorithm, the frame-
to-frame clamp is removed during initialization of the navigation algorithm on the ground, and then reapplied during
flight.
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4. Sharpening / Brightness / Contrast

The Nav Processor carries out image preprocessing in dedicated on-chip hardware, the behavior of which can only be
modified in limited ways and is tailored to cell-phone use cases. Although this hardware can be bypassed to deliver
raw sensor data, we choose to enable this hardware to carry out radiometric darkening compensation, which improves
the ability of the KLT tracker to track features from image center to edge and vice-versa.

This dedicated hardware also adjusts brightness and contrast of the images, and we tune this adjustment to enhance
edge content in the images while avoiding pixel saturation. Specific values were chosen by capturing palettes of images
on a static Mars-like scene with fixed illumination, and then quantifying FAST scores and ability of KLT to converge
to the same pixel location being perturbed to varying degrees.

Unfortunately, the Nav Processor image processing hardware also has some undesirable characteristics. For ex-
ample, a localized edge detection filter triggers adaptive blurring of the image in regions with low edge response, and
spatially highpass filters regions with higher edge response. Although this is desirable for human viewing of commer-
cial cell-phone images (because it has a sharpening effect that reduces image noise in regions with low spatial frequency
content while enhancing sharpness in regions with higher edge content), this functionality degrades feature detection
and tracking performance, especially when the edge content changes frame-to-frame. This sharpening filter was even
sometimes found to cause undesirable frame-to-frame flickering in processed pixel intensities around edge content.
Simple methods could not be found to turn it off. A binary routine was eventually obtained from Qualcomm that could
turn it off, but it came too late to implement since all major testing and validation had already been performed.

VI. Flight Test Results
Flight testing was performed to evaluate expected performance by flying over regions local to JPL and the surround-

ing Arroyo area. The test platform was a commercial hexacopter outfitted with a payload consisting of an engineering
model of the Mars Helicopter flight avionics and navigation sensors. Additional sensors were mounted on the hexa-
copter platform for ground truthing purposes, consisting of an RTK-GPS and a STIM300 IMU. The navigation filter
was operated in real-time during these tests, although not actively used for feedback control of the vehicle.

Results are shown in this section for baseline flights representative of those to be flown as part of the Mars Helicopter
mission scenarios, as well as additional stress test flights intentionally designed to challenge the vision processing and
navigation filter capabilities. In all cases, the navigation filter performance is that of the 21 state MAVeN estimator
operating without the benefit of mapped landmarks. Navigation requirements ensure stable helicopter control, and are
given approximately as 3 m position error and 50 cm/sec velocity error, interpreted as the worst-case error norm over
each flight, i.e., maxt ‖e(t)‖.

In all runs, ground truth position errors are fairly small at approximately 2-3 cm. However ground truth velocity
errors are fairly large at 15-25 cm/s, and mostly due to high-frequency noise from back-differencing. As a result,
velocity error performance numbers are fairly conservative.
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A. Long Duration Hover Flight of 200 sec
Results from a long duration hover test are summarized in Figure 8. This test challenges the navigation filter to maintain
a stable hover condition of 200 seconds in duration without accumulating significant drift. This is a factor of 2 longer
than currently planned Mars Helicopter hovers which can be approximately 90 seconds duration.

Figure 8. Hover flight for 200 sec

As expected, drifts accumulate with time over the 200 seconds. The worst-case error norms are given by 0.6 m
in position and 32 cm/sec in velocity. The 32 cm/sec is dominated by ground truth errors as seen in the top right
velocity plot of Figure 8. This performance provides a good demonstration of MAVeN’s stable hover properties, and is
consistent with accuracies needed to support the Mars Helicopter mission.
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B. Forward Flight of 160m
Results from a forward flight test are summarized in Figure 9. This test challenges the navigation filter over a flight
distance of 160 m and a flight duration of 120 sec. This distance is approximately as long as currently planned Mars
Helicopter mission flights which can be up to 150 m. The terrain height profile (black trace) is plotted in the lower
right plot of Figure 9, and its axis is shown on the right side of the plot. The terrain profile is symmetric because the
flight traverses the same terrain going out and coming back. The slope is approximately 1 deg which is relatively flat
and representative of the Mars mission.

Worst-case error norms are given as 1.22 m in position and 26 cm/sec in velocity. This performance is consistent
with accuracies needed to support the Mars Helicopter mission.

Figure 9. Forward flight traverse of 160 m
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C. Forward Flight of 400m Over Rough Terrain
Results from a forward flight test over rough terrain are summarized in Figure 10. This test challenges the navigation
filter over a flight distance of 400 m and a flight duration of 275 sec. This is a factor of 2.7 longer in distance and a
factor of 3 longer in duration than for currently planned Mars Helicopter mission scenarios. As before, the terrain height
profile (black trace) is plotted in the lower right plot of Figure 10. Besides the long distance and time duration, a main
challenge is the rough terrain which varies by 2 meters in altitude as it is traversed, and contains sharp discontinuities.
This represents a stress test of the navigation filter’s flat ground plane assumption.

Worst-case errors are given by 2.51 m in position and 49 cm/sec in velocity. The maximum velocity errors (see blue
traces in the top-right plot), are obtained at the time instants of the sharp discontinuities at 60 and 225 sec. Here, the
altimeter picks up terrain discontinuities and passes them into the navigation filter where they are partially attributed to
changes in the vehicle’s inertial velocity. While the vertical channel of the navigation filter is detuned to minimize this
effect, the tuning is not perfect because of conflicting requirements to estimate AGL position while estimating inertial
velocity. Performance in this run is consistent with accuracies needed to support the Mars Helicopter mission.

Figure 10. Forward flight traverse of 400 m over rough terrain
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D. Forward Flight of 120 m Over Mounds
Mound flights represent some of the most stressful test flights because of violation of the flat ground plane assumption.
Results from a forward flight of distance 120 m is shown in Figure 11. The main challenge is due to flying over
significant mounds. Terrain height is given by the black trace in the lower right plot of Figure 11, and its axis is shown
on the right side of the plot. It can be seen that the mounds grow by 1 meter and then dip by 3 meters in a short time
span as they are traversed. This is a particularly challenging flight test since it represents a strong violation of MAVeN’s
planar ground assumption and a stress test of the filter’s LRF altimeter detuning in the vertical channel.

Worst-case errors are given by 3.0 m in position and 68 cm/sec in velocity. The maximum velocity errors are
obtained at the time instants in the vicinity of the mound peaks at 35 and 225 sec. Specifically, the mound position
“pulses” are differentiated to become velocity error “doublets” (regions of alternating negative and positive peaks),
that appear in the vertical channel velocity error plots (blue trace). Because the mounds are very broad (compare to
Figure 10), and are traversed slowly, the navigation filter detuning discussed in Section E becomes less effective at
preventing their bleeding into the vertical channel velocity estimates.

Figure 11. Forward flight traverse of 120 m over mounds
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VII. Discussion
MAVeN only tracks features between the current Search image and the previous Base image. Because the Base

frame is frequently reset as features are lost, MAVeN is effectively a long-baseline visual odometry algorithm: the
relative position and attitude between the two images are measured, but not the absolute position and attitude. A
typical consequence of visual odometry algorithms is that the absolute position and attitude error can grow over time.
In the implemented navigation system, this is true for horizontal position and yaw. The LRF altimeter provides direct
observability of vertical position which bounds vertical position error. In addition, the visual features and flat plane
assumption provide observability of absolute pitch and roll when the vehicle is moving (but not when the vehicle is
stationary). Although absolute pitch and roll are not directly measurable in hover flight, the growth in pitch and roll
error is much slower than the gyro angle-random-walk rate. This is because rotational and translational motion are
coupled in the IMU integration equations. The result is that pitch and roll error grow at a rate proportional (by the
inverse of gravity) to the accelerometer bias growth rate.

A key advantage of MAVeN over other Simultaneous Localization and Mapping (SLAM) algorithms is that the
state only needs to be augmented with six scalar elements - three for position and three for attitude. Other SLAM
algorithms have a state augmentation scheme that scales with the number of features tracked [5][6]. The use of an LRF
altimeter and an assumed ground plane enables MAVeN to estimate 3D position and velocity without introducing a scale
ambiguity, resulting in reduced computational cost and improved numerical conditioning. Furthermore, unlike some
loosely coupled architectures [13], MAVeN immediately benefits from feature data once it begins receiving images,
without requiring a dedicated initialization step of the vision subsystem. Finally, unlike many other methods [14],
MAVeN does not require vehicle motion to maintain observability during hover, which makes it ideal for hovering
helicopter missions.

The two main disadvantages of MAVeN are sensitivity to rough terrain, due to the ground-plane assumption, and
long-term drift in position and heading. For the Mars Helicopter technology demonstration, this is an acceptable
tradeoff, because accuracy degradation is graceful and the algorithm has proven to be highly robust in both simulation
and experiments.

VIII. Conclusions
A navigation system has been developed for the NASA Mars Helicopter. The design is driven by the need for

completely autonomous operations and high reliability. The MAVeN navigation filter was deemed most useful because
it has a relatively low filter order (21 states), and the unique property that it is able to hover stably. The novelty
and intuition behind MAVeN’s relative measurement update was outlined and discussed. Special vision-processing
algorithms were discussed that address feature tracking over Mars-like terrain, under various stress conditions, and at
high vehicle rotation rates. Also included are summaries of lessons learned from the development of the navigation
system, and working with COTS hardware. Performance results indicate navigation accuracies of 1-3 m in position and
10-50 cm/sec in velocity over a flight envelope that includes flights having forward flight velocities of 1-5 m/s, hover
durations of 200 sec, and 400 meters total distance traversed. These results are consistent with accuracies needed to
support the Mars Helicopter mission.
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