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Abstract—Future Mars Rotorcrafts require advanced navigation
capabilities to enable all terrain access for science investigations
with long distance flights that are executed fully autonomously.
A critical component is the ability to safely land in hazardous
terrain as part of a mission, or triggered by an emergency situ-
ation. In this paper, we present an advanced navigation system
for continuous on-board terrain reconstruction for the purpose
of hazard-free landing site detection for the autonomous navi-
gation of a Mars Science Helicopter - a JPL research concept
that investigates the feasibility of flying a multi-kilogram science
payload at various Mars science locations, with flight ranges of
multiple kilometers per flight. Our approach builds on a vision-
based perception system that incorporates an on-board visual-
inertial state estimator augmented by a laser altimeter (range-
VIO), and a structure-from-motion 3D reconstruction approach
that uses a single, downward-looking camera to provide dense
depth measurements while the vehicle is in motion. Depth
measurements are accumulated in a local, robot-centric, multi-
resolution elevation map that is analyzed by a landing site
detector to extract safe landing areas below the rotorcraft, based
on a heuristic that includes slope, roughness and the presence of
landing hazards. Detected landing sites are prioritized by an
on-board autonomy engine that either selects suitable landing
sites for immediate landing maneuvers, or can explore a terrain
location as part of a mission in order to find a best landing
site in a pre-planned area. We demonstrate and evaluate our
approach on simulated data and data acquired with a surrogate
unmanned aerial system (UAS) executing flights over relevant
terrain.
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1. INTRODUCTION

Perseverance, NASA’s newest rover which is on its way
to Mars, is carrying a technology demonstrator on-board
that could enable a new era of Mars exploration: the Mars
Helicopter Ingenuity. If successful, Ingenuity will not only
demonstrate the first powered flight on another planet, it
also will have to perform its flights completely autonomous,
since signal delays between Mars and Earth prevent human
interaction during flight. Both aspects could revolutionize
Mars exploration. A helicopter would enable access to areas
out of reach for rovers, and enable regional-scale science
exploration [1]. Additionally, the required, unprecedented
level of autonomous mobility is likely to transfer to other
missions as well.

While Ingenuity is designed to perform a sequence of demon-
stration flights over benign, flat and level terrain [2], [3],
[4], a potential future Mars Science Helicopter requires the
ability to fly over any type of topography to access science
locations in complex 3D terrain. Flights over 3D terrain, on
the other hand, require an autonomous safe landing capability
that includes landing hazard detection, since existing terrain
maps, e.g. derived from HiRISE orbital images, do not have
the required resolution to resolve all landing hazards, and
landing maneuvers in emergency situations might need to be
executed at any time during flight.

A major limitation for implementing a landing hazard detec-
tion method are size, weight and power (SWaP) constraints,
due to the limited payload capability in Martian atmosphere.
Therefore, 3D reconstruction methods compatible with small,
lightweight and power-efficient sensors are preferred, and
algorithms for landing site detection need to be efficient
enough to be executed in near real-time on an embedded
computer with limited computational resources.

2. A FUTURE MARS SCIENCE HELICOPTER

Mars Science Helicopter (MSH) is a JPL concept designed to
succeed the Mars Helicopter Ingenuity to be the first aerial
exploration platform on Mars. MSH currently envisions
a science payload between 1 and 5 kg, depending on the
vehicle variant chosen, and other mission parameters, such
as a flight range of up to 25 km at up to 100 m altitude,
or additional hover time of up to 8 minutes for science
data acquisitions. The currently anticipated MSH avionics
hardware follows the Mars Helicopter avionics concept with
an upgraded navigation processor, with capabilities similar to
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Figure 1. Overview of our complete navigation software. Yellow: leveraged state estimator functions; Green: 3D
reconstruction; Red & Blue: landing site detection.

a Qualcomm Snapdragon 820 or 855 SoC.

Potential deployment scenarios are collecting samples from
sensitive areas on Mars, autonomous meso-scale mapping,
atmospheric sampling, cave exploration, or cliff-wall imaging
and interaction [1]. Any MSH mission designed to address
a specific scientific need will require the capability to au-
tonomously identify and land on safe landing sites.

3. RELATED WORK

Safe landing site detection for autonomous landing has been
pioneered in a number of approaches. NASA developed
autonomous landing hazard avoidance for spacecraft landing,
initially for landing on the Moon which included a Lidar for
3D perception of landing hazards [5]. Another variant is now
deployed on Mars 2020 as the lander vision system (LVS)
[6] to support safe landing. LVS uses a monocular camera
to estimate spacecraft position during descent with respect
to an on-board map with hazard locations predetermined, to
diverge the landing trajectory if a landing hazard is present.
Unfortunately, size, weight and power constraints prevent the
use of a Lidar on a Mars Rotorcraft, and maps with the resolu-
tion required to detect landing hazards for rotorcrafts up front
are not available (HiRISE’s best resolution is ~ 25 cm/pixel).

A number of research approaches use vision-based methods
to reconstruct the 3D structure of the overflown terrain based
on images from a monocular camera. These approaches
couple the reconstruction problem with the state estimation
problem and mainly focus on Simultaneous Localization and
Mapping (SLAM) [7], [8]. While this is relevant for our
approach, our state estimator is a stand alone module for
robustness purposes, and for computational efficiency.

[9], [10], [11] use the reconstructed surface directly to find
landing sites on flat rooftops, deploying a homography strat-
egy which is not feasible over complex 3D terrain. An optical
flow based method was introduced in [12] for landing hazard
detection on-board a helicopter test bed. While this approach
demonstrated the feasibility of on-board detection, the res-
olution of the 3D reconstruction was reduced significantly
to enable on-board execution, and no temporal fusion was
implemented.

Several individual approaches for 3D reconstruction and also
mapping are relevant for our work [13], [14]. Recently, ETH
Zurich published the Maplap open source frame work [15]
that combines several 3D reconstruction and mapping re-

search algorithms. While these algorithms are relevant, they
are computationally too demanding for on-board processing
on a small embedded processor. This is also the case for
several component approaches which require a high-end GPU
for near real-time execution [16], [14].

4. 3D PERCEPTION OVER COMPLEX
TERRAIN

Landing site detection in unknown terrain requires a robust
method of on-board 3D perception. Since we want to
maximize the science payload on MSH, we couple our 3D
reconstruction approach with the on-board state estimator.
This has two advantages: First, we can reuse sensor data
such as imagery from a down-facing navigation camera for
3D reconstruction. Second, outputs from the estimator can
directly be used as pose priors for a structure-from-motion
approach, which reduces the computational cost of necessary
camera pose reconstruction within the structure-from-motion
approach compared to conventional vision-only approaches.

Figure 1 gives an overview of our integrated processing
pipeline. Images from the down-facing navigation camera
are passed to a feature tracking module to perform frame
to frame feature tracking, and as raw data to the structure
from motion process (green boxes). The state estimator
xVIO fuses measurements from feature observations and data
from the on-board IMU and a laser range finder (LRF) in
a tightly coupled approach [17]. By incorporating the met-
ric information from the LRF, xVIO overcomes traditional
weaknesses of VIO such as the unobservable metric scale
during zero or constant acceleration. This is implemented in
a range-facet approach to regain metric scale on triangulated
feature observations that can adapt to any terrain topography.
This approach guarantees stable pose estimates during critical
maneuvers, such as hovering with no motion, and straight
line, constant speed trajectories, while providing state of
the art accuracy with an average position error of 0.5% of
distance traveled and 2° (30) global attitude error in roll
and pitch in the absence of inertial excitation. While these
error levels are accurate enough for controlling the vehicle,
they are not sufficient for 3D reconstruction. Therefore,
we deploy a camera pose refinement step which executes a
windowed bundle adjustment to improve camera poses of
selected keyframes and the most recent navigation camera
image. Keyframes are stored in a sliding-window, rolling
buffer, and are selected based on a parallax constraint, which
establishes a minimum and maximum image overlap thresh-
old for a simulated fronto-parallel plane at the distance of the



tracked features

Figure 2. Keyframe approach and stereo frame selection.
Poses of the current frame and previous keyframes are
optimized during the camera pose refinement step. A
keyframe is selected to form a stereo image pair with the
current view.

Figure 3. 3D reconstruction example: Left: rectified
reference image from UAS flight; Right: reconstructed range
image (warm colors are closer to the camera).

overflown terrain (acquired from the LRF), and a minimum
number of tracked features constraint, that requires features
to be tracked in all keyframes and the current image.

After the refinement step, a past keyframe from the keyframe
buffer is selected based on baseline constraints to form a
stereo image pair with the current image (Figure 2). Finally,
a conventional real-time stereo algorithm [18] is deployed to
calculate a dense stereo disparity image which is triangulated
into a range image to contain the 3D positions of each pixel
that was assigned with a valid stereo disparity (Figure 3).

Tying the 3D measurement to the pixel footprint has the
advantage that the pixel resolution on the ground can be
used to aggregate measurements of similar resolution into
a common representation, as will be explained in the next
section.

5. TERRAIN MAPPING

3D measurements are processed into a multi-resolution ele-
vation map that is inspired by a Laplacian pyramid structure
which doubles the resolution at each consecutive layer (Fig-
ure 4). A base layer with the lowest resolution carries the
aggregated height estimate for all measurements within the
footprint of a cell in this layer, higher resolution layers store
the difference between the height estimate at the current layer
and the aggregated coarser layers.

This implementation is motivated by two aspects that define
the mapping process: The measurement accuracy of the
3D point cloud is directly tied to the pixel footprint on the
ground since 3D points were reconstructed by an image based
method. Thus, a map representation that can ingest different

Figure 4. Map resolutions for different layers. Blue: base
layer; Green: consecutive layers store residuals. Colored
squares in each layer cover the same ground area.

measurement resolutions is preferred. On the other hand, the
primary goal for the map implementation is computational
efficiency. Therefore, it is desired that landing hazards
can be detected at the coarsest resolution possible to save
computation time.

The multi-resolution map structure combines the two effects
naturally. Following a dynamic Level of Detail (LoD) ap-
proach [14] known from Computer Graphics, a new measure-
ment with an assigned resolution (pixel footprint) only has to
update the map representation up to the layer that corresponds
to its resolution. Finer resolution layers remain untouched.
The landing site detector can perform a top down approach
to find suitable landing areas. If the terrain at a coarse
map resolution already violates the landing constraints, the
detection is aborted for this particular area, which leads to a
faster execution on average. Further, the process of extracting
an elevation map with a desired resolution is simple, since
it only involves adding the individual map layers up to the
desired resolution (Figure 5).

To limit memory access during map access, we fix the map
size in memory, make the map robot-centric and locate the
map directly beneath the rotorcraft. When the vehicle moves
laterally, the map is moved accordingly by a double rolling
buffer implementation, invalidating map cells that move
passed the map boundary and adding them in the direction
of motion. This leads to an implementation where a map cell
with a fixed global position remains at the same location in
memory. No resampling is required.

Map updates with new measurements are performed in a
coarse to fine strategy. Updates are first applied to the base
level, then for each finer level individually. This allows
to subtract the current height estimate (aggregated from the
coarser levels) from the height measurement to calculate the
measurement residual which is then fused with the current
layer by a Kalman update, using a measurement variance
directly derived from the expected stereo disparity accuracy.
In our case, the stereo algorithm provides sub-pixel precise
disparity maps, thus we assume a maximum disparity error
of 0.25 pixel.
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Figure 5. Map extraction at different resolutions.



6. FINDING SUITABLE LANDING SITES
Analyzing the Overflown Terrain

Several terrain features can become landing hazards to a
rotorcraft. Depending on the design, especially of its landing
gear, slopes and objects above a size limit will result in a non-
stable landing or even result in damage or crash. We therefore
evaluate the elevation map for slope, rock size, roughness,
and confidence in the map reconstruction. The criteria for
safe landing sites are:

e a safe landing area large enough to fit the vehicle plus
a safety margin to establish a keep-out zone around landing
hazards

« slope
« roughness, which includes discontinuities caused by rocks

« map reconstruction confidence

The landing site detector evaluates the elevation map in
several stages. First, the local terrain slope - with respect
to the safe landing area as a reference area - is calculated
using a coarse map layer with a pixel footprint (resolution)
that corresponds to the footprint of the vehicle. This reduces
computational cost, while introducing only minimal error.
Second, for areas that pass the slope test, the elevation map
is derived at finer resolutions, and from coarse to fine, a
roughness operator is applied to estimate terrain disconti-
nuities within the landing area. The roughness operator
considers two reference areas: the safe landing area itself,
and a smaller rock area that depends on the desired minimum
rock size (Figure 6). The roughness test fails, if the terrain
deviates from a planar surface within the safe landing area
which accounts for continuously sloping terrain, and if there
are discontinuities beyond a threshold in a rock area within
the safe landing area, accounting for abrupt changes around
hazards. If a roughness test fails at a coarser level, the area
is labeled as unsafe and no finer level is examined. Third,
after processing each layer, a confidence test invalidates the
detected landing area, if the map reconstruction confidence is
below a threshold, again, aborting any further evaluation at a
finer layer.

The areas that pass the landing site detection at the highest
resolution available are designated as safe landing areas (e.g.
the green area in Figure 8 and Figure 12) and annotated
in a binary landing site map. Finally, a list of candidate
landing sites is derived by selecting the center location of
each landing area patch by applying a distance transform to
the binary landing map and selecting the location with the
maximum distance to any border as landing site.

To save computation time, the landing site detector is initiated
by the on-board autonomy. The vehicle autonomy engine can
either chose to receive a complete landing site list for the full
image, or query a landing site for a specified region, if the
vehicle needs to fly back to a previously detected landing site.

Searching for Landing Sites

In a notional autonomy architecture, the Landing Site Detec-
tor is complimented by a Landing Behavior (Figure 7). The
landing behavior is responsible for querying the landing site
detector and providing motion commands to a mobility layer,
such as flying to a given waypoint above a selected landing
site, and landing the vehicle. Additionally, the landing

Keep-out-zone

Safe Landing Area .+
Keep-out-zone + safety margin)
Figure 6. Landing site selection criteria. The Safe Landing
Area includes the keep-out-zone required by the vehicle for
safe landing, plus a safety margin to establish a safe distance
to landing hazards.

behavior can survey and select a landing site.

The landing behavior and the landing site detector commu-
nicate through a query interface. This allows to decouple
the landing site detection process from the mapping process
within the landing site detector. 3D reconstruction and
map aggregation is executed continuously, whereas the map
evaluation is triggered by the behavior.

The landing behavior specifies a circle, with a lateral, X/Y
location and radius for potential landing sites and the detector
responds with a list of valid landing sites within the circular
region, ordered by their proximity to the X/Y center location.
In the case the detector cannot find a suitable landing site,
it informs the landing behavior about the cause, which can
be either because there is not sufficient data for a selection
within the defined area, or there is sufficient data, but no valid
landing site exists.

The landing behavior uses this interface to execute a landing
maneuver in three distinct cases. In the first case, the landing
behavior tries to land the vehicle at a pre-defined location. At
a mission level, it is desirable to specify the landing site of the
vehicle. For example, to support a multi-flight transit between
two science locations. In this case, the behavior will first
query the detector for landing sites near the desired landing
site. If the vehicle has not yet flown over the desired area,
it may be necessary for the behavior to survey the desired
site. In a survey, the landing behavior flies the vehicle over
the desired landing area at a low altitude to gather enough 3D
measurements of the area to find suitable landing sites. For
this purpose, the behavior moves throughout the landing area
in a lawnmower pattern in order to collect elevation data over
the entire desired landing area. It then re-queries the landing
site detector for landing sites within the desired area. If no
landing sites are found, it moves onto the second case.

In the second case, no valid landing sites are available in the
desired area. Here, the behavior needs to select a landing

Invoke Landing . Query Landing
Mission Behavior o Landing sies | Landing Site
Autonomy 71 Behavior = Detector
Planner
Mobility
Commands
Flight i
Mobility Commands > Flight
Controller

Figure 7. Notional architecture for a landing behavior.



site that has previously been seen during the flight up to this
point, including the takeoff point. The behavior queries the
detector about its current position with an increased, large
radius. It then picks a landing site that is both likely to be
valid and is within the remaining performance limits of the
vehicle. From this point, the vehicle flies to the new landing
site, re-evaluates it if necessary, and lands.

A final case involves an emergency landing. If the vehicle
detects an anomalous condition - e.g. an unforeseen battery
power drop - an immediate landing, even at a poor landing
site, is preferable to crashing. In this case, the landing
site behavior is triggered to request an emergency landing
site from the landing site detector. The detector responds
with the best landing site within reach, even if this site
may not normally meet acceptability criteria, and the vehicle
immediately navigates to it and lands.

7. EXPERIMENTAL EVALUATION

For verification and evaluation, we deployed our software
in various scenarios in simulation and on data from UAS
flights. We simulated flights of a Mars Helicopter over

Figure 8. Flight in simulation environment. Top left:
simulated UAS over Mars Victoria crater rim; Top right:
current navigation camera image with overlaid tracked
features; Middle from left to right: current reference view
(rectified left image); past view (rectified right image);
height map generated from stereo disparity map (warmer
colors are closer to camera); Bottom left: aggregated
elevation map (top-down view, note that map is rotated
~45°); Bottom right: landing site map (green: safe landing
site, red: landing hazard). White circles label selected
landing hazards for visualization. Flight altitude: 20 m AGL.
Map: 3 layers, 10 cm resolution at highest layer. Safety area
radius: 1.0 m; slope threshold: 20°.

Mars Victoria Crater using the JPL DARTS simulator [19] to
validate the performance of 3D reconstruction under various
noise scenarios, including noise overlays on generated images
(shot noise and blur), and on IMU data (measurement noise
and random walk).

Figure 8 illustrates a flight that passes over the crater rim
using the DARTS simulator [19]. The flight was executed
at 20 m altitude above ground to simulate a terrain following
behavior. Tracked features are used by the state estimator and
the camera pose refinement step. As can be seen, landing sites
are correctly detected on flat terrain outside the crater, but not
on the terrain below the rim that violates the slope constraint.

To verify the ability of the landing site detector to detect
small landing hazard, we evaluated the detection results using
simulated terrain with random rock distributions (Figure 9).
Rocks with a random rock size were placed on a flat ground
plane, and 3D reconstruction was simulated by producing a
point cloud for a simulated camera (VGA resolution, 100°
horizontal field of view) at each individual camera position
directly from the terrain. Point clouds were overlaid with
Gaussian noise corresponding to a 0.25 pixel disparity error
for a fixed baseline between cameras of 4.8 m at a flight
altitude between 5 m and 6 m.

The detection result for different rock sizes is shown in
Figure 10. In this test, we perform a Monte-Carlo evaluation
with randomly generated terrain for each flight. Rocks are
distributed randomly over a ground plane and the flight trajec-
tory is a straight line with random direction. Rock sizes were
constant over one flight, but varied among different flights.
Note, that we model rocks as half spheres with a height of
half a diameter.

Figure 9. Landing site detection over simulated terrain with
random rock distribution (detail). Green: safe landing
location; Red: hazard location.
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Figure 10. Rock detection rates using simulated terrain
with random rock distribution. Flight altitude: 5-6 m; terrain
slope: 5°. Map: 3 layers, 6 cm resolution at finest layer.
Safety area radius: 0.7 m; keep-out zone radius used for
evaluation: 0.5 m; slope threshold: 10°. Rocks are modelled
as half spheres, with a rock height of half the rock diameter.
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Figure 11. Landing site detection with UAS flight data over
sample rocks: Top Left: Raw image of rock field used for
evaluation. Top Right: Landing site map (green: safe landing
site, blue: landing hazard, yellow: border region assumed to
be hazardous, not evaluated, red: manually annotated
landing hazard for evaluation). Bottom Left: Detection rate
per rock height group for different map cell sizes. Bottom
Right: Accumulated recall, detection, and false positive rate
over different map cell sizes. Flight altitude: 5 m. Map:

3 layers. Safety area radius: 0.5 m, keep-out-zone radius
used for evaluation: 0.3 m, slope threshold: 10°, rock area
radius: 0.5 m, max. roughness: 0.1 m.

The detection rate corresponds to the number of rocks de-
tected relative to the number of rocks that were visible to the
simulated camera during flight - which is 100% if all visible
rocks were detected. A rock counts as detected, if all map
cells that contain a part of a rock plus a margin of half the
keep-out-zone around the perimeter of the rock are labeled
correctly as hazardous. False positive rate is the number of
landing sites that are labelled as safe, but are unsafe in reality
(false positives), relative to the total number of evaluated map
cells with ground truth hazards (i.e. red cells in 9). Of
course, the false positive rate should be zero to exclude crash
landings. Recall rate is the number of map cells that are
designated as safe landing sites, relative to the true number
of safe landing sites - this would ideally be 100%, but the
recall rate is usually traded against the false positive rate: We
rather do not find all possible landing sites, if we can in turn
reduce the false positive rate to zero. In our case, the recall
rate is reduced by the added safety margin around the keep-
out zone. As can be seen in Figure 10, the detector is able to
resolve rock sizes larger than 3 times the cell resolution of the
finest map layer with high accuracy.

We verified the simulation results with data from a UAS flight
at 5 m altitude over an artificial rock field consisting of rocks
with heights between 14 cm and 46 cm and evaluated the
performance of the landing site detector for different map
cell sizes (Figure 11). Images were collected with a nadir
pointed camera with VGA resolution and approximately 110°
horizontal field of view. As expected, the detection rate for
smaller rocks decreases, if the cell size increases. This also
leads to an increased false positive rate, since rocks are now
missed. For this experiment, we selected rocks that roughly
adhere to the half-sphere model, with a rock height of half

the rock diameter. As can be seen in Figure 11 the detection
rate starts decreasing for cell sizes larger than ~ 2/3 the
rock height, which agrees with the simulation results from
Figure 10.

Figure 12 illustrates landing site detection with data from a
UAS flight over an arid terrain. The top row shows the result
of the 3D reconstruction process. On the bottom left, the
aggregated map is shown in a top-down view, whereas the
landing site map with safe landing sites labeled in green is
shown on the bottom right. Note, that the map is rotated with
respect to the reference view image by approximately 105°.
The purple circles annotate selected landing hazards around
a sandy patch of roughly 3 m diameter that includes a valid
landing site (yellow circle), which is detected correctly by our
software.

8. CONCLUSIONS AND FUTURE WORK

We introduced an advanced navigation module for a future
Mars rotorcraft to autonomously detect landing hazards dur-
ing flight. The proposed approach leverages existing sensor
data and data processing products to minimize impact on size
weight and power. The module was tested on various sim-
ulated and real environments, demonstrating the feasibility
of a vision-based perception approach for safe landing site
detection.

The landing site detection navigation module is currently
being implemented on surrogate Mars Science Helicopter
avionics hardware for on-board execution in near real-time
with a target execution frame rate of 1 Hz. Once completed,
we will verify and validate our approach during UAS flights
over various Mars analog terrain types.

Figure 12. Landing site detection with UAS flight data: Top
row: Left: Reference view (rectified); Middle: stereo
disparity map; Right: height from range image. Bottom left:
aggregated elevation map; Bottom right: landing site map
(green: safe landing site, red: landing hazard). Purple circles
label selected landing hazards for visualization. Yellow
circle depicts suitable landing site on sand patch in input
image. Note, that the map is rotated ~105°. Flight altitude:
8 m. Map: 3 layers, 10 cm resolution at highest layer. Safety
area radius: 1.0 m, slope threshold: 10°, rock area radius:
0.25 m, max. roughness: 0.1 m.
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