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Abstract—This paper introduces an autonomous navigation sys-
tem suitable for supporting a future Mars Science Helicopter
concept. This mission concept requires low-drift localization to
reach science targets far apart from each other on the surface
of Mars. Our modular state estimator achieves this through
range, solar and Visual-Inertial Odometry (VIO). We propose a
novel range update model to constrain visual-inertial scale drift
using a single-point static laser range finder, that is designed to
work over unknown terrain topography. We also develop a sun
sensor measurement model to constrain VIO yaw drift. Solar
VIO performance is evaluated in a simulation environment in a
Monte Carlo analysis. Range-VIO is demonstrated in flight in
real time on 1 core of a Qualcomm Snapdragon 820 processor,
which is the successor of the NASA’s Mars Helicopter flight
processor.
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1. INTRODUCTION
NASA’s Mars 2020 mission will carry a Mars Helicopter
(MH2020) to validate helicopter flight is possible in the ultra-
thin Martian atmosphere [1] [2]. A successful demonstration
would provide validated technologies and models necessary
for the design of future helicopters for Mars exploration. The
Mars Science Helicopter (MSH) concept envisioned in this
paper is one such future helicopter concept. The objective of
the MSH is to carry a moderate to large science payload (e.g.
2 kg of instruments) to designated surface locations in areas
otherwise inaccessible to rovers. Such a helicopter could
work in a standalone manner communicating to Earth via an
orbiter relay or it could work cooperatively with a lander or
rover

Both MH2020 and MSH require full reliable autonomy with
no human intervention. This is necessitated by the long
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time-delays for communication to Mars and the highly dy-
namic and uncertain flight environment. MSH will extend
the MH2020 capabilities in real-time onboard navigation to
estimate position, attitude and velocity in flight over rough,
highly-sloped and even discontinuous terrain. To enable
this, the global planar ground assumption of the MH2020
navigation algorithm [3] will be relaxed to allow the science
helicopter to operate over such challenging terrains.

For robustness and accuracy, the state vector maintained in
the on-board estimates is required to provide low-drifting
state estimates under all expected motion conditions, includ-
ing uniform-velocity translations which are not observable
by visual-inertial state estimators typically used in robotics
research [4]. That is a challenge because sensor options
for MSH are extremely limited. Size, Weight, and Power
(SWaP) requirements imposed by flying in an extremely thin
atmosphere with limited battery capacity, prevent the use
of most active sensors. The small rotorcraft dimensions
introduce range limitations to stereo camera setups. Daytime
outdoor flight conditions prevent the use of time-of-flight
cameras based on the projection of an infrared pattern on
the scene, which would be flooded by the Sun’s radiation.
Unlike sensors typically used on terrestrial Unmanned Air
Vehicles (UAVs), Mars atmosphere is too thin for pressure
sensors, and the magnetic field too weak for magnetometers.
Finally, GPS cannot be used because it does not exist on
Mars. For these reasons, we propose range and solar-visual-
inertial odometry algorithms that provide the required low-
drift guarantees using hardware comprised of a monocular
camera, a static single-point Laser Range Finder (LRF), a
sun sensor, and an Inertial Measurement Unit (IMU), that
together meet the tight SWaP requirements of MSH.

This paper claims the following contributions:

• a low-drift state estimator able to process range, solar,
visual and inertial measurements.
• a range measurement model for unknown terrain topogra-
phy, which limits the visual-inertial scale drift in the absence
of IMU excitation.
• evaluation of range-visual-inertial navigation performance
on real data
• real-time demonstration with spaceflight-representative
hardware
• a sun sensor measurement model, which limits the visual-
inertial yaw drift.
• evaluation of solar-visual-inertial navigation performance
on simulated data

Section 2 reviews visual-inertial odometry in the robotics
research literature and the existing solutions to limit the
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associated error drift, using range and sun sensors. Section 3
presents our state estimation framework based on an extended
Kalman filter. This includes state-of-the-art visual-inertial
Simultanous Localization And Mapping (SLAM). Our key
contribution is a range measurement update that is designed
to observe the scale, including during the acceleration-free
parts of the trajectory. It assumes that the terrain is locally
flat between the three neighboring image features around the
intersection point of the LRF with the ground. Depending on
the total number of features tracked and computational power
available, the algorithm can elegantly scale from a flat-world
assumption (3 features) to a dense 3D map (e.g. 1 feature per
pixel). To further constrain estimation position error drift,
one solution could be to incorporate pre-mapped landmark
measurements but they may not always be available. Since
heading error is a key contributor to this position drift, we
propose a sun sensor measurement model to observe heading.
Section 4 describes the hardware and software environments
of our flight testing. This involved range-VIO real-time
software execution on a Qualcomm 820 computer board,
using commercial off-the-shelf sensors, as envisioned for the
science helicopter concept. Flights were performed with
a terrestrial drone over analogue Mars terrains. Section 5
discusses results that demonstrate yaw drift elimination with
solar-VIO in a Monte Carlo analysis with simulated data, as
well as scale drift reduction by a factor of 5 with range-VIO
in real time at 30Hz image rate.

2. RELATED WORK
State of the Art in Visual-Inertial Odometry

Monocular Visual-Inertial Odometry (VIO) has become a
popular solution for aerial robotics. Even when a GPS signal
is available, image measurements can be more accurate when
operating in close proximity to surface assets. Moreover,
IMUs can provide the metric scale information necessary
for controlling flight when the accelerometers are properly
excited.

Some of theses solutions are based on a loose fusion of the
camera with the IMU, where a separate vision-only state
estimator provides position and velocity up to scale, and
orientation up to local gravity [5]. Loosely-coupled archi-
tectures have benefited from the rapid progress of Visual
Odometry (VO) in the computer vision community, with
algorithms such as PTAM [6], SVO [7] or ORB-SLAM [8].
Even though progress continues to be made with VO, VIO
has seen improved results in terms of accuracy and robustness
with tightly-coupled approaches, even if they have a higher
computational cost [9]. In tight coupling, visual measure-
ments consist of feature tracks or even image intensities, that
directly update the inertial estimator. Recent approaches in-
clude both filter-based [10] [11] and non-linear optimization-
based methods [12] [13]. Some solutions use image feature
coordinates for measurements [10] [12] while others optimize
on image intensity values [11] [13].

Despite monocular VIO’s success in the robotics research
community, it still has basic observability limitations for
real world applications. First, even under persistent IMU
excitation, VIO cannot observe the orientation about the local
gravity vector [14], i.e. the heading for UAV applications.
Second and most important, the very notion of persistent
excitation is lacking in some of the simplest motions that
one would expect a UAV to achieve, e.g. to hover, or to
fly at uniform velocity. In such cases, VIO cannot observe
scale [4], which leads to strong position and velocity drifts.

VIO Drift Mitigation Techniques

Mars Science Helicopter’s sensor constraints discussed in the
introduction steered our research into the use of range and sun
sensing to limit VIO drift.

In our previous work, we designed a range-VIO algorithm
for NASA’s Mars Helicopter flight project [3]. Unlike most
tightly-coupled VIO algorithms, this estimator design was
very lightweight with only 21 states. This was achieved
through a flat and level-terrain assumption, and a range
constraint to constrain the scale drift. Unfortunately, these
flat and level terrain assumptions will not hold for Mars
Science Helicopter, which is required to visit science targets
potentially in rough 3D topographies. On Earth, reference
[15] proposed initializing the depth of some VIO features by
using measurements from an ultrasonic range sensor. This
relaxes the globally-flat terrain constraint to locally-flat, but
it also assumes the local terrain slope is perpendicular to the
range sensor axis within the ranged area. This will cause
issues over 3D topographies, especially given the large beam
width of ultra sonic sensors. Many methods use 2D or 3D
scanning LRFs in SLAM literature [16]; but to the best of
our knowledge, fine terrain modeling for odometry with 1D
single-point range finders has not been addressed. In this
paper, we propose a measurement model for a laser range
finder used alongside a VIO system which assumes the terrain
is made of triangular facets with the VIO image features at
the edges. Depending on the density of features tracked,
this assumption can scale from a flat terrain assumption to
virtually no terrain assumption at all in the limit as the number
of features tracked increases, i.e. limited only by the available
computing power.

Multiple studies have been published which demonstrate
terrestrial rover navigation algorithms that augment existing
VO algorithms with sun sensors, based on using bundling
[17] or Kalman filters [18]. These studies generally found
that sun sensor data greatly improved orientation estimates
and thus overall position error, with the possible inclusion of
inclinometer data in [17]. Sun sensors are also commonly
used on spacecraft [19] to help with attitude determination.
To the best of our knowledge, sun sensors have not been
proposed to complement VIO frameworks.

3. RANGE AND SOLAR
VISUAL-INERTIAL ODOMETRY

The state estimation framework illustrated in Figure 1 com-
bines a camera, a LRF, a sun sensor and an IMU to produce
low-drift position, velocity and attitude estimates of a Mars
Science Helicopter. It is based on an Extended Kalman Filter
(EKF), which tightly couples visual, range and solar updates
with inertial state propagation.

In this section, we summarize the key design points of our
state-of-the-art VIO estimation base, before describing the
novel range and solar update models.

Visual-Inertial Odometry

The state vector x =
[
xI

T xV
T
]T

of our EKF can be
divided between the states related to the IMU xI , and those
related to vision xV . The inertial states

xI =
[
pi
w
T

vi
w
T

qi
w
T

bg
T ba

T
]T

(1)

2



FRONT END

IMU

Camera

STATE

MANAGER

TRACK 

MANAGER

FILTER UPDATE
INERTIAL 

PROPAGATION

Images

✂, f

VISUAL

UPDATE

Matches

Visual states

addition/removal

State priors

State correction

EKF

z, J, R~

Visual 

features

State estimate @ IMU rate

RANGE

UPDATE

SOLAR

UPDATE

LRF
SUN

SENSOR

Figure 1: State estimation archictecture. The visual, range and solar updates are constructed from the corresponding
sensor measurements and state priors. They each deliver a measurement innovation z̃, a measurement Jacobian matrix
J and covariance matrix R that is used by the EKF core to perform a Kalman update. A state management module is
responsible for the dynamic construction and destruction of vision states.

include the position, velocity and orientation of the IMU
frame {i}with respect to the world frame {w}, the gyroscope
biases bg and the accelerometer biases ba. We use rotation
quaternions to model orientations.

The vision states

xV =

[
pc1
w

T ... pcM
w

T qc1
w

T ... qcM
w

T

f1
T ... fN

T
]T (2)

include the orientations {qci
w}i and positions {pci

w}i of the
camera frame at the last M image time instances, along
with the 3D coordinates of N visual features

{
f j

}
j
. Each

feature state f j = [αj βj ρj ]
T represents the inverse-

depth parametrization of world feature point F j with respect
to an anchor pose

{
cij
}

selected from the sliding window of
pose states.

IMU measurements are used to propagate the state estimate
and the error covariance matrix to first order using [20] and
[21]. The visual measurement is the pinhole projection of
terrain feature F j over the normalized image plane z = 1 of
the camera frame {ci} at time i

i,jzv,m =
1

cizj

[
cixj
ciyj

]
+ nv , (3)

where nv is a zero-mean white Gaussian feature measure-
ment noise in image space. Equation 3 can be related to the
state if we express the cartesian coordinates of feature F j in

camera frame {ci} as

cipj = [cixj
ciyj

cizj ]
T (4)

= C(qci
w )

(
p
cij
w +

1

ρj
C(q

cij
w )T

[
αj
βj
1

]
− pci

w

)
. (5)

Visual features are detected in the image with the FAST al-
gorithm [22], and tracked with the pyramidal implementation
of the Kanade-Lucas-Tomasi algorithm [23] [24].

This subsection only briefly summarized the key design
points of our VIO estimator. We refer the reader to [25] and
[26] for more complete implementation details.

Range Update

Terrain range measurements are dependent on the poses of
the range sensor as well as terrain topography. A range
measurement model needs to properly account for uncertainty
on both. Since terrain information is included in VIO feature
states, we leverage these to construct a new range update
model.

Our range update assumes the terrain is locally flat between
three SLAM features surrounding the intersection point of the
LRF beam with the terrain. For simplification purposes in this
paper, we will assume zero translation between the optical
center of the camera and the origin of the LRF. This offset
can be measured in a calibration step and introduced in the
model. Figure 2 illustrates the geometry of the scene. uri is
the unit vector oriented along the optical axis of the LRF at
time i. I is the intersection of this axis with the terrain. F 1,
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Figure 2: Geometry of the range measurement at time i
izr and three surrounding visual features F 1, F 2 and F 3.
uri is the unit vector oriented along the optical axis of
the LRF, which is assumed to have the same origin as the
camera frame {ci}. Ii is the intersection of this axis with
the terrain.

F 2 and F 3 are SLAM features forming a triangle around I
in image space. n is a normal vector to the plane containing
F 1, F 2, F 3 and I . All the above vectors are assumed to be
resolved in the world frame {w}.

If the dot product uri .n 6= 0, we can express the range
measurement at time i as

izr = izr
uri .n

uri .n
(6)

=
(pIi

w − pci
w ).n

uri .n
(7)

=
(pF2

w − pci
w ).n

uri .n
, (8)

where
n = (pF1

w − pF2
w )× (pF3

w − pF2
w ) , (9)

{ci} is the camera frame at time i, and p∗
w represents the

position of an object in the world frame {w}. Please note
that n is not a unit vector in general.

Equation (8) and (9) show the range is a nonlinear function
hr of the state vector x. We assume the LRF measurements
suffer from additive zero-mean white Gaussian noise nr for
use in our EKF estimation framework.

izr,m = izr + nr (10)
= hr(x) + nr (11)

To use this range update in practice, one still needs to select
three SLAM features to form the triangle F 1F 2F 3. In this
paper, we perform a Delaunay triangulation in image space
over the SLAM features, and select the triangle in which
the intersection point of the LRF with the ground falls into.

Figure 3: Delaunay triangulation between image features.
The features used as filter states form the edges of the
triangles. The red dot represents the intersection point of
the LRF with the terrain. The surrounding red triangles
are used to form the range update. Additional green
dots are image features tracked but not used for state
estimation.

We selected the Delaunay triangulation since it maximizes
the smallest angle of all possible triangulations [27]. This
property is interesting to avoid “long and skinny” triangles
that do not provide a strong local planar constraint. Figure 3
shows the Delaunay triangulation and triangle selection over
a sample flight image from the navigation camera.

Figure 3 highlights the assumption that the terrain surface
can be partitioned into triangular facets, with visual features
at their edges. It is interesting to note that that if the
state estimator uses only 3 VIO features in a lightweight
fashion, this is equivalent to a globally-flat world assumption.
Conversely, when the number of SLAM features increases,
the limit of the area of the facets tends to zero and the planar
terrain assumption virtually disappears.

Solar Update

Sun sensor measurements are dependent on the orientation of
the sun sensor as well as the position of the Sun in the sky.
We will ignore issues of cloud cover, since this is not of major
concern in the Martian atmosphere. Over short distances and
lengths of time, the Sun can also be assumed to be motionless
and still provide a global direction. We will do this here, so
we do not need to know local sidereal time, the estimated
position of the platform on the planet, and Kepler’s laws.
We will treat the unit vector pointing from the Sun to the
sun sensor, s, as constant. The sun sensor’s measurement,
depicted in Figure 4, provides the angles between the sun
sensor’s +Z axis and the projection of s onto the XZ and YZ
planes.

Given the components xs, ys, and zs of s in the sun sensor
frame {s}, the sun sensor measurement can be written as

zs =

[
θ1
θ2

]
=
[
arctan

(
xs

zs

)
arctan

(
ys

zs

)]T
(12)

where
[xs ys zs]

T
= C(qs

i )C(qi
w)

ws (13)
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Figure 4: Geometry of the sun sensor measurement zs =

[θ1 θ2]
T and the sun sensor frame {s}. The sun vector s

is drawn as a gray dotted line connecting the origin of {s}
to the sun. The green and red dotted lines demonstrate
the orthogonal projection of s onto the XZ and YZ planes.
The polar angles of these projections define θ1 and θ2.

Equation (12) shows the sun sensor measurement is a nonlin-
ear function of the state vector, which can be integrated into
our EKF estimation framework.

zs = hs(x) + ns (14)

4. TESTING
We deployed our algorithm on a UAV that was equipped
with an avionics payload to execute the range-visual-inertial
state estimator presented in Section 3 in real-time while
simultaneously logging all relevant sensor data for off-line
analysis.

UAV platform

The UAV consisted of a TurboAce Inifinity6 hexacopter
shown in Figure 5 that was commanded in an autonomous
fly-to-waypoint mode using GPS-based closed-loop controls.
The on-board autopilot was Pixhawk Cube with the Ardupilot
firmware. A typical trajectory included take-off to a specific
altitude, fly a waypoint pattern, return to the take-off position,
and land.

Sensors

Grayscale navigation images were provided by an Omnivi-
sion OV7251 camera, with a resolution of 640 × 480, depth
of 8 bits and auto-exposure. Range data came from a Garmin
Lidar Lite V3 single-point static range finder, which has an
accuracy of 2.5 cm and a range of 40 m. Inertial data were de-
livered by STIM300 tactical grade IMU. No specific vibration
isolation setup was used for the IMU. Flight accelerometer
data show vibration amplitude levels up to 10 m.s−2, which
is one order of magnitude higher than much lower grade
IMUs, such as Pixhawk’s MPU9250 in our tests. We are
currently investigating these issues. All the sensors can be
seen in Figure 6.

Figure 5: TurboAce Infinity6 Hexcopter with avionics
payload used for flight testing.

(a) Top panel with STIM300 IMU and TMS570 microcontroller

(b) LRF and camera

Figure 6: Avionics payload used during flight testing. The
upper image shows the top panel of the avionics board,
with the STIM300 IMU (in orange) and the TMS570
microcontroller (in red). The lower image shows the LRF
sensor (two black cylinders) and the navigation camera
(on the right).
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Figure 7: Avionics system siagram

Real-time environment

The avionics payload is designed as a stand-alone module
representative of future MSH avionics. The main processor
is a Snapdragon 820, a quad-core 64-bit ARM CPU, with 2
high power cores clocked at 2.1 GHz, and two high efficiency
cores clocked at 1.6 GHz. The Snapdragon 820 is responsible
for executing the navigation algorithm and logging avionics
sensor data. A Texas Instruments TMS570 microcontroller
accurately timestamps IMU and range data and passes the
sensor to the Snapdragon 820 over a serial bus. The Snap-
dragon 820 directly reads camera images over a Camera
Serial Interface. All avionics sensor data is logged to disk in
addition to being published over a ROS network. An Odroid
XU4 is included for logging RTK-GPS data. The RTK-GPS
is directly logged to Odroid memory during the test flights.
The Snapdragon 820 is time synchronized to a GPS time
source and the Odroid is time synchronized to the Snapdragon
820. A system diagram of the avionics payload is provided in
Figure 7.

The Snapdragon 820 and TMS570 run custom software
for sensor data handling written using the F-Prime frame-
work [28]. F-Prime is a modular software framework tailored
to supporting small scale spaceflight systems. The navigation
software C++ implementation is currently executed in a ROS
environment for research purposes on one high power core of
the Snapdragon 820.

Ground Truth

Position was provided by a RTK-GPS system composed of
a Trimble BD930-UHF receiver with a BX982 base sta-
tion. This setup provides centimeter accuracy in outdoor
environments. It also served as time server for all of our
time synchronization. GPS coordinates were averaged before
take-off to set the local origin, and converted to East (E),
North (N), Up (U) coordinates from that reference point.

Position estimates are readily time-synced with the RTK-
GPS ground truth. The origin of the state estimator’s world
frame {w}, introduced in Section 3 was also set to the take-
off location. The axes of {w} are defined as the IMU axes
at the time of state estimator initialization, which typically
are not aligned with GPS’ ENU. To compute position error,
position estimates were interpolated to the times of GPS
”ground truth” measurements, and a 3D rotation centered
on the common origin was computed through a least-square
fit [29].

Attitude and velocity ground truth are work in progress and
not available in our current setup. Since such attitude ground

truth is needed to characterize the yaw drift reduction using
sun sensor measurements, we instead focused on analysing
the performance of solar-VIO completely by computer simu-
lation, as will be presented in the next section.

5. RESULTS
Solar-VIO on simulated data

In the absence of attitude ground truth on real datasets, we
performed a 1000-run Monte Carlo analysis of our solar-
VIO algorithm on simulated data to characterize yaw drift
reduction peformance. The reference trajectory for these runs
is 3 minutes long, with the craft moving at 4 m/s in a circular
pattern of 10-m radius, 5 m above the simulated ground, with
the body rotating in the horizontal plane at the same angular
rate that it moves. Run-to-run randomness came from sensor
noise, which was set to be representative of a SolarMEMS
ISS-D60 sun sensor with 0.06-deg precision that we have
characterized on real data, our visual front end performance
and a Pixhawk MPU9250 IMU. Inertial data was simulated at
200 Hz, solar and image at at 20Hz.

Figures 9 and 8 compare the attitude and position errors,
respectively, for VIO with and without solar update.
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Figure 8: Plots of the attitude estimation errors in world
frame, with (below) and without (above) the sun sensor.
Mean error is plotted in blue, with dashed red lines indicating
3-sigma bounds calculated from the data.

Figure 8 clearly an impressive drift error reduction in attitude.
Although one would expect only yaw drift from VIO, attitude
errors also grow over the x and y axes in world frame
because of the position drift along the circle path, observed
in Figure 9, that we assume due to the lack of sufficient VIO
excitation. The non-zero mean error in the VIO case were re-
lated to linearization errors during IMU integration, due to the
circular motion, the high velocity and IMU frequency. Solar
VIO is able to reduce the standard deviation significantly on
all axes, and eliminate the error biases.

Range-VIO on Real Flight Data in Real Time

The hardware platform described in Section 4 was flown in
the Arroyo Seco next to JPL in Pasadena, CA.

During these flights, our state estimator was running in real
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Figure 9: Plots of the position estimation errors in world
frame, with (below) and without (above) the sun sensor.
Mean error is plotted in blue, with dashed red lines indicating
3-sigma bounds calculated from the data.
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Figure 10: Real-time range-visual-inertial flight position
estimate, compared to ground truth. Position components
are expressed in the East (E), North (N), Up (U) frame at
origin, which is the origin of the IMU frame at the start of
the flight.

time on one of the high-performance cores of the Snapdragon
820 board. Image and range data was processed at 30Hz,
and inertial data at 250Hz. No sun sensor data was used
during this tests. The visual front end was set to track at
least 50 features, up to 15 of which were used for VIO. No
specific IMU excitation was provided before or during flight.
Apart from control disturbances and dynamic transients, the
trajectory was programmed to achieve a straight uniform
velocity profile between waypoints.

Figure 10 shows a comparison between the estimated and true
position on a representative 90-meter flight commanded at 6-
m altitude and 5-m/s horizontal speed. The position error is
shown in Figure 11. The maximum position error per axis is
0.6 m, and below 1 m in norm. This is less than 0.5% of the
distance traveled, which is on par with best VIO performance
under proper excitation [30].
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Figure 11: Real-time range-visual-inertial position error
components. Position components are expressed in the
East (E), North (N), Up (U) frame at origin, which is the
origin of the IMU frame at the start of the flight.
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Figure 12: Visual-inertial position error components.
Position estimates were obtained offline by replaying the
sensor data recorded during the real-time flight of Fig-
ure 11, to allow for direct comparison of the benefit of
using range measurements in addition to visual-inertial
only. Position components are expressed in the East (E),
North (N), Up (U) frame at origin, which is the origin of
the IMU frame at the start of the flight.

To provide an explicit comparison, we re-ran the estimator
offline on the visual and inertial data recorded during the
same flight, but this time without using range measurements.
Figure 12 shows the VIO position errors. It rises up to
3 meters in the East axis, which is the direction of travel.
Compared to the range data case, the position error is 5
times bigger on that axis. This result is consistent with the
observability properties of VIO reviewed in Section 2, which
claims that scale is not observable under uniform velocity,
and hence the drift will be larger along the direction of travel.

It is interesting to correlate the errors with the terrain topog-
raphy to verify our assumptions. Figure 13 shows the LRF
measurements during the same flight. To first order, these can
be considered equivalent to height above terrain. The ascent
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Figure 13: Terrain range measurements from downward-
pointing laser range finder. In the absence of attitude
ground truth, these are assumed to be equivalent at first
order to height (above terrain) measurements along the
local vertical.

phase finishes at t = 460 s, and the descent starts at t = 525
s. In between, the flight is controlled to be horizontal. Height
above terrain varies rapidly between +3.5 m and +9 m, with
two mounds visible at t = 475 s and at t = 510 s. This terrain
was selected to test our topography assumption. It seems to
be well modeled since the growing position estimation error
during the horizontal part of the flight interval is always under
0.6m in Figure 11. Local error peaks are under investigation
and may be related local triangular facet violation, or require
further tuning.

6. SUMMARY
We presented a modular state estimator design based on
visual, range, solar and inertial measurements for a future
Mars Science Helicopter concept. Such a mission requires
low-drift localization to reach science targets far apart with
a limited set of sensors above the surface of Mars. We
introduced a novel range update model to constrain VIO
scale drift using a single-point range finder. It is based
on a triangular-facet terrain assumption, that can be scaled
from flat-terrain to virtually no-topography-assumption at all
based on the number of VIO features processed, or equiv-
alently the computational power available. Range-VIO was
demonstrated in real time onboard a Qualcomm Snapdragon
820 processor in flight. This processor is the successor of
the Snapdragon 801, which will launch for the first airborne
powered flight on another planet in July 2020 with Mars
Helicopter. We also incorporated a sun sensor measurement
model to constrain VIO yaw drift. Sun sensor benefits were
demonstrated in a Monte Carlo analysis on simulated data.

Future work include characterization of range VIO errors
on steeper and vertical terrain slopes, integration of attitude
ground truth into our real-time datasets to help characterize
solar VIO yaw drift reduction on real datasets, VIO using
range and solar observations together, and using the estimator
for supporting closed-loop controls.
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