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A computer algorithm for
reconstructing
a scene from two projections

H. C. Longuet-Higgins

Laboratory of Experimental Psychology, University of Sussex,
Brighton BN1 9QG, UK

A simple algorithm for computing the three-dimensional struc-
ture of a scene from a correlated pair of perspective projections
is described here, when the spatial relationship between the two
projections is unknown. This problem is relevant not only to
photographic surveying' but also to binocular vision?, where the
non-visual information available to the observer about the
orientation and focal length of each eye is much less accurate
than the optical information supplied by the retinal images
themselves. The problem also arises in monocular perception of
motion®, where the two projections represent views which are
separated in time as well as space. As Marr and Poggio® have
noted, the fusing of two images to produce a three-dimensional
percept involves two distinct processes: the establishment of a
1:1 correspondence between image points in the two views—
the ‘correspondence problem’—and the use of the associated
disparities for determining the distances of visible elements in
the scene. I shall assume that the correspondence problem has
been solved; the problem of reconsfructing the scene then
reduces to that of finding the relative orientation of the two
viewpoints.

Photogrammetrists know that if a scene is photographed from
two viewpoints, then the relationship between the camera posi-
tions is uniquely determined, in general, by the photographic
coordinates of just five distinguishable points; but actually
calculating the structure of the scene from five sets of image
coordinates involves the iterative solution of five simultaneous
third-order equations’. I show here that if the scene contains as
many as eight points whose images can be located in each
projection, then the relative orientation of the two projections,
and the structure of the scene, can be computed, in general, from
the eight sets of image coordinates by a direct method which

calls for nothing more difficult than the solution of a set of
simultaneous linear equations. :

Let P be a visible point in the scene, and let (X, Xz, X,) and
(X}, X4, X4) be its three-dimensional cartesian coordinates with
respect to the two viewpoints. The ‘forward’ coordinates X3 and
X} are necessarily positive. The image coordinates of P in the
two views may then be defined as

(X1, X2) = (X2/ X5, Xo/X5),
(x4, x3) = (X1/X4, X3/X5)

and it is convenient to supplement them with the dummy
coordinates :

(1)

X,=1, x3;=1 2)
so that one can then write
X, =Xu/Xs, x=XU/X3 (n,v=1,2,3) (3)

As the two sets of three-dimensional coordinates are connected
by an arbitrary displacement, we may write

X.=R.X,-T.) “

where T is an unknown translational vector and R is an unknown
rigid rotation matrix. (In this and subsequent equations I sum
over repeated Greek subscripts.) The rotation R satisfies the
relationships

RR=1=RR, detR=1 (5)

and it is convenient to adopt the length of the vector T as the unit
of distance: ' ' ’

TH(=Ti+T}+TH =1 (©)
I begin by establishing a general relationship between the two
sets of image coordinates—a relationship which expresses the

condition that corresponding rays through the two centres of
projection must intersect in space. We define a new matrix Q by

Q=RS )
where § is the skew-symmetric matrix
0 T -T;
S=|-T, O T, (8)
T, -T: O
Equation (8) may be written as
Su=eroTo | ©)

where &,,, =0 unless (A, », o) is a permutation of (1, 2, 3), in
which case €,,, = =1 depending on whether this permutation is
even or odd. It follows from equations (4)—(9) that

XLQuuxv = Run (XK —Tx)Ru.AEAvo'Taxv
= (XA _TA)E»\WTOXV (10)

but because the quantity &,,. is antisymmetric in every pair of its
subscripts, the right-hand side vanishes identically:

X.Q,,X, =0 (11)

Dividing equation (11) by X5X, we arrive at the desired rela-
tionship between the image coordinates:

x;Q,.x,=0 (12)

The next step is to determine the nine elements Q,.,. There will
be one equation of type {(12) for every point P;, namely

(x,.%,)Q,., =0 (13)

and in this equation the nine quantities (x,.x,); are presumed to
be known. The ratios of the nine unknowns Q,,, can therefore be
obtained, in general, by solving eight simultaneous linear equa-
tions of type (13), one for each of eight visible points Py, . . ., Ps.
I shall not yet discuss the special circumstances under which the
solution fails; for the present merely note that if the eight
equations (13) are independent, their solution is entirely
straightforward from a computational point of view.

0028-0836/81/370133—03$01.00

© 1981 Macmillan Journals Ltd




134

S

Nature Vol. 293 10 September 1981

- The translational vector T must be calculated next. Multiply-
mg Q on the left of equation (7) by its transpose we obtain ..

QQ SRRS ss L (14)
50 that by the definition of S » o
Q..Qu = -T.T, (15)
But TZ =1 by equation (6), and SO the trace of QQ must be
Q..Q,. =8, ~Ti=2 - (16)

" The nine elements of Qcan therefore be normallzed by dividing
them by 1 trace QQ; the elements of the normalized matrix
QQcanthenbe used for computing the ratios of the components

of T:
1-T% =TT,
QQ=[—Tsz 1-T3 —Tsz] (17
L-T.T, -T:T, 1-T3

There are evidently three independent relationships between
the diagonal and the off-diagonal elements of QQ; these supply
three independent checks on the results obtained so far. The
absolute signs of the T, and the Q,,, are still undetermined but,
as we shall see, these ambiguities are easily resolved later.

We are now in'a position to compute the elements of the
rotation matrix R. First note that equation (7) has a simple
interpretation in terms of vector products. If we regard each row
of Q, and each row of R, as a vector, then '

w Q.=TxR, (a-123). .- © (18)

and the condition for R to represent a proper rotation can be
expressed in a similar form:

-T.\T;

R.=Rz;xR, (19) -

for @, B, v such that .4, = 1. The problem is then to express the
R, in terms of T and the Q,.

By equation (18), R,, is orthogonal to Q, and may therefore
be expressed as a linear combination of T and Q. XT. We
therefore introduce new vectors

W,=Q.xT (a=1,2,3) (20)
and write
R.=a,T+b,W, 21)
Substitution into equation (18) gives
Q. =Tx(a,T+b,W,)=b,(TXW,) (22)
But as T is a unit vector,
TXW, =Tx(Q.xT)=Q. (23)
and so
=1 . (24)

Turning to equation (19) we deduce that when &,4, =1,
a, T+W, =(agT+W;)x(a, T+W,)
=asQ,—a,Qz + Wy XW, (25)

" But in equation (25) the vectors W,, Q; and Q, are all ortho-
gonal to T, whereas Wz X W, is, by equation (20), a multiple of
T. It follows that in equation (25) the first term on the left equals
the last term on the right,

a, T=WyxW, (26)
and equation (21) finally becomes
R, =W, +WgxW, (27)

Having obtained in this way the vector T and the three rows of
the matrix R, we can at last find the three-dimensional coor-
dinates X,,, as follows:

By equation (4),
X:L = Ruv(xv _Tv)

from which it follows that

Xi Ru(X,-T.)
== 28
| MTX TR, -T.) @8)
Introducing the vectors

X=(X;, Xz, X3), x={(x, X, 1) (29)

we may write equation (28) in terms of the rows R,, of the matrix
R:

R;-X-T) R, (x-T/X,)

1= = 30
=R, X-T) Ry = T/Xy) G0)
from which it follows that
(R,—xiR;3)- T
Xy=——— 1
*“Ri—xiRs) GV

The other unprimed coordinates are then given by equation (3)
as

X =x1X3, X2 =%:X; (32)

and the primed coordinates are finally obtained from equation
(4).

There are, in fact, four distinct solutions to the problem,
associated with the alternative choices of sign for the
components of T and the elements of Q. But any doubt as to
which choices to adopt is easily resolved: the condition that the
forward coordinates of any point must both be positive will be
satisfied if, and only if, both sets of signs are correctly chosen.

There are certain ‘degenerate’ eight-point configurations for
which the algorithm fails because the associated equations (13)
become non-independent. A configuration will be degenerate if
as many as four of the points lie in a straight line, or if as many as
seven of them lie in a plane. Quite unexpectedly, degeneracy
also arises if the configuration includes six points at the vertices
of a regular hexagon, or consists of eight points at the vertices of
a cube. The ‘invisibility’ of such configurations to the eight-point
algorithm may be demonstrated by arguments too long to be
presented here; but the reasons for it are unconnected with any
ambiguity in the interpretation of the resulting projections. A
degenerate configuration immediately becomes ‘visible’,
however, if one of the offending points P; is moved slightly away
from its original position,

In general, then, the three-dimensional coordinates of a set of
eight or more visible pomts may be obtained by the following
algorithm:

(1) Setupeight equatlons of the form (13), and solve them for
the ratios of the nine-unknowns Q,.,.

(2) Compute the matrix QQ and normahze the ele-
ments of Q by dividing them by Vi trace QQ.

(3) Obtain the magnitudes and the relative signs of the T,
from equation (17); their absolute signs, and those of the Q,..,
may have to be chosen arbitrarily at this stage.

(4) Define three new vectors by equation (20) and use equa-
tion (27) to calculate the rows of the matrix R.

(5) Use equations (31) and (32) for computing the unprimed
three-dimensional coordinates of all the visible points, and
equation (4) for calculating the primed coordinates.

(6) Check that the forward coordinates X; and X; of any
point are both positive. If both signs are negative, alter the signs
of the T, and return to step (5); if X3 and X3 are of oppesite sign,
reverse the signs of the Q,,, and return to step 4.

The algorlthm yields the most accurate results when applied
to situations in which the distance D between the centres of
projection is not too small compared with their distances from
the points P;. If the projective coordinates are accurate to a few
seconds of arc, the forward coordinates of the P; can be esti-
mated out to about 10D with great accuracy, and even as far as
100D if the P; are adequately spaced in depth. This performance
is comparable with that of the human visual system; but that
does not, of course, imply that the eight-point algorithm is
actually used in stereoscopic vision, as in binocular vision we
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have at least some information about the relative orientation of
the two eyes. The most useful applications of the eight-point
algorithm will probably be found in computer vision systems,
where there is still a need for fast and accurate methods of
converting two-dimensional images into three-dimensional
interpretations. - g
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_Local extinction and ecological
re-entry of early Eocene mammals
David M. Schankler

Department of Geological and Geophysical Sciences,
Princeton Uniyersity, Princeton, New Jersey, USA

The use of high-resolution stratigraphical control in studying the
species sequencing patterns of early Eocene mammals has
recently been demonstrated by Gingerich et al.’5. These studies
have documented the nature of the tempo and mode of evolu-
tion and have stimulated the debate between adherents of
phyletic gradualism and punctuated equilibria‘. Allstudies have
been largely verticalist (evolutionary) in outlook, equating
change within a single basin of deposition with evolution.
However, when I applied these techniques to the early Eocene
condylarth, Phenacodus, I found a strong lateral (biogeo-
graphical and ecological) component influencing the sequencing
of species in a single basin. Ireport here that Phenacodus species
are relatively static in size and morphology throughout the local
section studied, and two of these show statistically significant
discontinuities in temporal range. The clumped re-entry of these
species after local disappearance along with the introduction of
other new taxa points to ecological control of vertical events
within a local section.

I used high-resolution stratigraphy to study mammalian
evolution at the species level, concentrating on early Eocene
Willwood Formation of northwestern Wyoming because of the
density and continuity of the fossil record preserved in these
sediments. The Elk Creek Section through the Willwood

Formation of the central Bighorn Basin is 773 m thick’, and
represents an estimated 3.5 Myr (ref. 8). Using a 10-m resolu-
tion interval, over 240 fossil localities can be related to this
section. These localities, distributed over a 650-km? area, so far
have produced over 15,000 specimens and. are. distributed
vertically through the section so that more than 50 of the

77 10-m intervals are fossiliferous; half of these have total

mammalian sample sizes (minimum number of individuals)
of over 75. E . : :

In a recent review of the systematics of the genus Phenacodus,
West® recognized three species from the early Eocene, P. bra-
chypternus, P.vortmani and P. primaevus; his study predates
publication of the Elk Creek Section and the stratigraphical
resolution used was at the level of the zone, that is, early Eocene
Phenacodus were divided into three samples corresponding to
Graybullian (base-530m), Lysitian (530-660 m) and
Lostcabinian (660-770 m) zones. P. brachypternus was recor-
ded as being almost wholly restricted to the Graybullian,
whereas the other two species were distributed through the
entire Wasatchian. P. brachypternus and P. vortmani are rela-
tively well defined fossil species that have always been easily
identified in collections on the basis of size and morphology,
whereas P. primaevus has usually been characterized by a fairly
large variation that has made it difficult to define the bounds of
the species. This has led to the subdivision of P. primaevus into
two to four species'®'!. West® did not subdivide this species even
though the recorded ranges of variation (coefficients of variation
of ~10 for most linear measures) and a range of In 0.8 for tooth
crown area of M, (lower second molar) are almost double those
expected for a single species'>™*. -

Inclusion of all large specimens of Phenacodus in a single
species is untenable, and on the basis of data shown in Fig. 1, the
large phenacodontids have been subdivided into two species,
P. intermedius and P. primaevus. As previously shown by
Gingerich''® and observed in the two smaller species of
Phenacodus, the normal range of variation of In of the crown
area of a molar tooth is of the order of 0.4. In the interval
100-190 m, almost all specimens fall neatly within the expected
range of a single species, the size of which agrees well with the
type of P. intermedius; thus these specimens are referred to that
species. The single outlier at the 100-m level has a value that
differs by 4 standard deviations from the mean of P. intermedius

* specimens, and is therefore too large to be included in that
species. In the interval 200380 m there is a second well defined

Fig. 1 Species-sequencing pattern of early
distribution in size and time of the four species,
(#), and the transition in dominance between P. intermedius

the Elk Creek Section. The horizontal linesat the 7
the Wind River Basin. Note the similarity between t

Eocene Phenacodus in the central Bighorn Basin,
and illustrates the discontinuity in the temporal ranges of P. brachy,
(O)and P. primaevus (@) at the base of the Upper Haplomylus—Ectocion Zone. Size
is mehsured on the abscissa as In of the crown area of the lower second molar (M) and time is shown on the ordinate as metres above the base of
30-m level are the maximum ranges of the two species of Phenacodus from the Lostcabinian of
he size range of the larger species from the Wind River Basin a
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