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Synonyms

{ Panoramic camera, spherical camera, catadioptric camera, �sheye camera,
wide-angle camera

Related Concepts

{ camera calibration
{ pinhole camera
{ radial distortion
{ omnidirectional vision
{ camera parameter (intrinsic, extrinsic)
{ intrinsic parameter matrix
{ structure from motion
{ epipolar geometry

De�nition
An omnidirectional camera (from omni, meaning all) is a camera with a 360-

degree �eld of view in the horizontal plane, or with a visual �eld that covers a
hemisphere or (approximately) the entire sphere.

Background
Most commercial cameras can be described as pinhole cameras, which are

modeled by a perspective projection. However, there are projection systems
whose geometry cannot be described using the conventional pinhole model be-
cause of the very high distortion introduced by the imaging device. Some of these
systems are omnidirectional cameras.

There are several ways to build an omnidirectional camera. Dioptric cameras
use a combination of shaped lenses (e.g., �sheye lenses; see �gure 1a) and can
reach a �eld of view even bigger than 180 degrees (i.e., slightly more than a hemi-
sphere). Catadioptric cameras combine a standard camera with a shaped mirror
| such as a parabolic, hyperbolic, or elliptical mirror | and provide 360-deg ree
�eld of view in the horizontal plane and more than 100 degrees in elevation. In
�gure 1b you can see an example catadioptric camera using a hyperbolic mirror.
Finally, polydioptric cameras use multiple cameras with overlapping �eld of view
(�gure 1c) and so far are the only cameras that provide a real omnidirectional
(spherical) �eld of view (i.e., 4� steradians).

Catadioptric cameras were �rst introduced in robotics in 1990 by Yagi and
Kawato [1], who used them for localizing robots. Fisheye cameras started to



Fig. 1. (a) Dioptric camera (e.g. �sheye); (b) catadioptric camera; (c) an exam-
ple polydioptric camera produced by Immersive Media.

spread over only in 2000 thanks to new manufacturing techniques and precision
tools that led to an increase of their �eld of view up to 180 degrees and more.
However, it is only since 2005 that these cameras have been miniaturized to
the size of 1-2 centimeters, and their �eld of view has been increased up to 190
degrees or even more (see, for instance, �gure 6a).

In the next sections, an overview on omnidirectional camera models and cali-
bration will be given. For an in-depth study on omnidirectional vision, the reader
is referred to [2,3,4], and to [5] for a more detailed survey on omnidirectional
camera models.

Theory

0.1 Central omnidirectional cameras

A vision system is said to be central when the optical rays to the viewed ob-
jects intersect in a single point in 3D called projection center or single e�ective
viewpoint (�gure 2). This property is called single e�ective viewpoint prop erty.
The perspective camera is an example of a central projection system because all
optical rays intersect in one point, that is, the camera optical center.

All modern �sheye cameras are central, and hence, they satisfy the single ef-
fective viewpoint property. Central catadioptric cameras conversely can bebuilt
only by opportunely choosing the mirror shape and the distance between the



camera and the mirror. As proven by Baker and Nayar [6], the family of mir-
rors that satisfy the single viewpoint property is the class of rotated (swept)
conic sections, that is, hyperbolic, parabolic, and elliptical mirrors. In the case
of hyperbolic and elliptical mirrors, the single view point property is achieved
by ensuring that the camera center (i.e., the pinhole or the center of the lens)
coincides with one of the foci of the hyperbola (ellipse) (�gure 3). In the case of
parabolic mirrors, an orthographic lens must be interposed between the camera
and the mirror, this makes it possible that parallel rays re
ected by the parabolic
mirror converge to the camera center (�gure 3).

The reason a single e�ective viewpoint is so desirable is that it allows the
user to generate geometrically correct perspective images from the pictures cap-
tured by the omnidirectional camera (�gure 4). This is possible because, under
the single view point constraint, every pixel in the sensed image measures the
irradiance of the light passing through the viewpoint in one particular direction.
When the geometry of the omnidirectional camera is known, that is, when the
camera is calibrated, one can precompute this direction for each pixel. Therefore,
the irradiance value measured by each pixel can be mapped onto a plane at any
distance from the viewpoint to form a planar perspective image. Additionally,
the image can be mapped on to a sphere centered on the single viewpoint, that
is, spherical projection (�gure 4, bottom).

Another reason why the single view point property is so important is that
it allows the user to apply the well known theory of epipolar geometry, which
is extremely important for structure from motion. Epipolar geometry hol ds for
any central camera, both perspective and omnidirectional.

0.2 Omnidirectional camera model and calibration

Intuitively, the model of an omnidirectional camera is a little more complicated
than a standard perspective camera. The model should indeed take into account
the re
ection operated by the mirror in the case of a catadioptric camera or
the refraction caused by the lens in the case of a �sheye camera. Because the
literature in this �eld is quite large, this chapter reviews two di�erent projecti on
models that have become standards in omnidirectional vision and robotics. Ad-
ditionally, Matlab toolboxes have been developed for these two models, which
are used worldwide by both specialists and non-experts.

The �rst model is known as the uni�ed projection model for central cata-
dioptric cameras. It was developed in 2000 by Geyer and Daniilidis [7] (later
re�ned by Barreto and Araujo [8]), who have the merit of having proposed a
model that encompasses all three types of central catadioptric cameras, that is,
cameras using a hyperbolic, parabolic, or elliptical mirror. This model wasde-
veloped speci�cally for central catadioptric cameras and is not valid for �sheye
cameras. The approximation of a �sheye lens model by a catadioptric one is
usually possible | however, with limited accuracy only | as investigated in [ 9].

Conversely, the second model uni�es both central catadioptric cameras and
�sheye cameras under a general model also known as Taylor model. It was de-
veloped in 2006 by Scaramuzza et al. [10,11] and has the advantage that both



catadioptric and dioptric cameras can be described through the same model,
namely a Taylor polynomial.

0.3 Uni�ed model for central catadioptric cameras

With their landmark paper from 2000, Geyer and Daniilidis showed that every
catadioptric (parabolic, hyperbolic, elliptical) and standard perspective projec-
tion is equivalent to a projective mapping from a sphere, centered in the single
viewpoint, to a plane with the projection center on the perpendicular to the
plane and distant � from the center of the sphere. This is summarized in �gure
5.

The goal of this section is to �nd the relation between the viewing direction to
the scene point and the pixel coordinates of its corresponding image point. The
projection model of Geyer and Daniilidis follows a four-step process. LetP =
(x; y; z) be a scene point in the mirror reference frame centered inC (�gure 5).
For convenience, we assume that the axis of symmetry of the mirror is perfectly
aligned with the optical axis of the camera. We also assume that thex and y
axes of the camera and mirror are aligned. Therefore, the camera and mirror
reference frames di�er only by a translation alongz.

{ 1. The �rst step consists in projecting the scene point onto the unit sphere;
therefore:

Ps =
P

kPk
= ( xs; ys; zs): (1)

{ The point coordinates are then changed to a new reference frame centered
in C� = (0 ; 0; � � ); therefore:

P� = ( xs; ys; zs + � ): (2)

Observe that � ranges between 0 (planar mirror) and 1 (parabolic mirror).
The correct value of � can be obtained knowing the distanced between the
foci of the conic and the latus rectuml as summarized in table 1. The latus
rectum of a conic section is the chord through a focus parallel to the conic
section directrix.

{ P� is then projected onto the normalized image plane distant 1 fromC� ;
therefore,

~m = ( xm ; ym ; 1) =
�

xs

zs + �
;

ys

zs + �
; 1

�
= g� 1(Ps): (3)

{ Finally, the point ~m is mapped to the camera image point ~p = ( u; v; 1)
through the intrinsic-parameter matrix K ; therefore,

~p = K ~m; (4)

where K is
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{ It is easy to show that function g� 1 is bijective and that its inverse g is given
by:

Ps = g(m) /
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m + y2

m )

3

7
5 ; (6)

where / indicates that g is proportional to the quantity on the right-hand
side. To obtain the normalization factor, it is su�cient to normalize g(m)
onto the unit sphere.
Equation (6) can be obtained by inverting (3) and imposing the constraint
that Ps must lie on the unit sphere and, thus, x2

s + y2
s + z2

s = 1. From this
constraint we then get an expression forzs as a function of � , xm , and ym .
More details can be found in [12].

Table 1. � values for di�erent types of mirrors

Mirror type �
Parabola 1
Hyperbola dp

d2 +4 l 2

Ellipse dp
d2 +4 l 2

Perspective 0

Observe that equation (6) is the core of the projection model of central cata-
dioptric cameras. It expresses the relation between the pointm on the normalized
image plane and the unit vector Ps in the mirror reference frame. Note that in
the case of planar mirror, we have� = 0 and (6) becomes the projection equation
of perspective camerasPs / (xm ; ym ; 1).

This model has proved to be able to describe accurately all central catadiop-
tric cameras (parabolic, hyperbolic, and elliptical mirror) and standard perspec-
tive cameras. An extension of this model for �sheye lenses was proposed in 2004
by Ying and Hu [9]. However, the approximation of a �sheye camera through a
catadioptric one works only with limited accuracy. This is mainly because, while
the three types of central catadioptric cameras can be represented through an
exact parametric function (parabola, hyperbola, ellipse), the projective models of
�sheye lenses vary from camera to camera and depend on the lens �eld-ofview.
To overcome this problem, a new uni�ed model was proposed, which will be
described in the next section.

0.4 Uni�ed model for catadioptric and �sheye cameras

This uni�ed model was proposed by Scaramuzza et al. in 2006 [10,11]. The
main di�erence with the previous model lies in the choice of the functiong. To
overcome the lack of knowledge of a parametric model for �sheye cameras, the



authors proposed the use of a Taylor polynomial, whose coe�cients and degree
are found through the calibration process. Accordingly, the relation between the
normalized image point ~m = ( xm ; ym ; 1) and the unit vector Ps in the �sheye
(mirror) reference frame can be written as:

Ps = g(m) /

2

4
xm

ym

a0 + a2� 2 + : : : + aN � N

3

5 ; (7)

where � =
p

x2
m + y2

m . As the reader have probably noticed, the �rst-order term
(i.e., a1� ) of the polynomial is missing. This follows from the observation that
the �rst derivative of the polynomial calculated at � = 0 must be null for both
catadioptric and �sheye cameras (this is straightforward to verify for catadiop-
tric cameras by di�erentiating (6)). Also observe that because of its polynomial
nature, this expression can encompass catadioptric, �sheye, and perspective cam-
eras. This can be done by opportunely choosing the degree of the polynomial.
As highlighted by the authors, polynomials of order three or four are able to
model very accurately all catadioptric cameras and many types of �sheye cam-
eras available on the market. The applicability of this model to a wide range of
commercial cameras is at the origin of its success.

0.5 Omnidirectional camera calibration

The calibration of omnidirectional cameras is similar to that for calibrat ing stan-
dard perspective cameras. Again, the most popular methods take advantage of
planar grids that are shown by the user at di�erent positions and orientations.
For omnidirectional cameras, it is very important that the calibration im ages
are taken all around the camera and not on a single side only. This in order to
compensate for possible misalignments between the camera and mirror.

It is worth to mention three open-source calibration toolboxes currently avail-
able for Matlab, which di�er mainly for the projection model adopted and the
type of calibration pattern.

{ The toolbox of Mei uses checkerboard-like images and takes advantage of the
projection model of Geyer and Daniilidis discussed earlier. It is particularly
suitable for catadioptric cameras using hyperbolic, parabolic, folded mirrors,
and spherical mirrors. Mei's toolbox can be downloaded from [13], while the
theoretical details can be found in [14].

{ The toolbox of Barreto uses line images instead of checkerboards. Like the
previous toolbox, it also uses the projection model of Geyer and Daniilidis. It
is particularly suitable for parabolic mirrors. The toolbox can be downloaded
from [12], while the theoretical details can be found in [15] and [16].

{ Finally, the toolbox of Scaramuzza uses checkerboard-like images. Contrary
to the previous two, it takes advantage of the uni�ed Taylor model for cata-
dioptric and �sheye cameras developed by the same author. It works with
catadioptric cameras using hyperbolic, parabolic, folded mirrors, spherical,



and elliptical mirrors. Additionally, it works with a wide range of �sheye
lenses available on the market | such as Nikon, Sigma, Omnitech-Robotics,
and many others | with �eld of view up to 195 degrees. The toolbox can
be downloaded from [17], while the theoretical details can be found in [10]
and [11]. Contrary to the previous two toolboxes, this toolbox featuresan
automatic calibration process. In fact, both the center of distortion and the
calibration points are detected automatically without any user interventio n.
This toolbox became very popular and is currently used at several companies
such as NASA, Philips, Bosch, Daimler, and XSens.

Application
Thanks to the camera miniaturization, to the recent developments in optics

manufacturing, and to the decreasing prices in the cameras market, catadioptric
and dioptric omnidirectional cameras are being more and more used in di�erent
research �elds. Miniature dioptric and catadioptric cameras are now used by
the automobile industry in addition to sonars for improving safety, by prov iding
to the driver an omnidirectional view of the surrounding environment. Minia-
ture �sheye cameras are used in endoscopes for surgical operations or on board
microaerial vehicles for pipeline inspection as well as rescue operations. Other
examples involve meteorology for sky observation.

Roboticists have also been using omnidirectional cameras with very successful
results on robot localization, mapping, and aerial and ground robot navigation
[18,19,20,21,22,23]. Omnidirectional vision allows the robot to recognize places
more easily than with standard perspective cameras [24]. Furthermore, land-
marks can be tracked in all directions and over longer periods of time, makingit
possible to estimate motion and build maps of the environment with better accu-
racy than with standard cameras, see �gure 6 for some of examples of miniature
omnidirectional cameras used on state-of-the-art micro aerial vehicles. Several
companies, like Google, are using omnidirectional cameras to build photorealistic
street views and three-dimensional reconstructions of cities along with texture.
Two example omnidirectional images are shown in �gure 7.
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Fig. 2. (ab) Example of central cameras: perspective projection and catadioptric
projection through a hyperbolic mirror. (cd) Example of noncentral cameras:the
envelope of the optical rays forms a caustic.



Fig. 3. Central catadioptric cameras can be built by using hyperbolic and
parabolic mirrors. The parabolic mirror requires the use of an orthographic lens.

Fig. 4. Central cameras allow the user to remap regions of the omnidirectional
image into a perspective image. This can be done straightforwardly by inter-
secting the optical rays with a plane speci�ed arbitrarily by the user (a). For
obvious reasons, we cannot project the whole omnidirectional image onto a plane
but only subregions of it (b). Another alternative is the projection onto a sphere
(c). In this case, the entire omnidirectional image can be remapped to a sphere.



Fig. 5. Uni�ed projection model for central catadioptric cameras of Geyer and
Daniilidis.



Fig. 6. (a) The �sheye lens from Omnitech Robotics (www.omnitech.com) pro-
vides a �eld of view of 190 degrees. This lens has a diameter of 1.7 cm. This cam-
era has been used on the sFly autonomous helicopter at the ETH Zurich, (section
2.4.3) [18]. (b) A miniature catadioptric camera built at the ETH Zurich, whi ch
is also used for autonomous 
ight. It uses a spherical mirror and a transparent
plastic support. The camera measures 2 cm in diameter and 8 cm in height. (c)
The muFly camera built by CSEM, which is used on the muFly helicopter at the
ETH Zurich (section 2.4.3). This is one of the smallest catadioptric cameras ever
built. Additionally, it uses a polar CCD (d) where pixels are arranged radially.



Fig. 7. (a) A catadioptric omnidirectional camera using a hyperbolic mirror. The
image is typically unwrapped into a cylindrical panorama. The �eld of view is
typically 100 degrees in elevation and 360 degrees in azimuth. (b) Nikon �sheye
lens FC-E8. This lens provides a hemispherical (180 degrees) �eld of view.


