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Fig. 1: Autonomous online evolution of agile flight. The figure illustrates the continuous loop between Real-World Rollouts and Rapid Policy Learning,
comparing the initial conservative flights (Iter 0, top) with the evolved agile behaviors (Iter 12, bottom). Trajectories are composited with frames sampled at
uniform 0.5 s intervals. Consequently, trajectory density reflects flight speed, where sparser segments indicate higher velocity. Driven by this online adaptation,
the system pushes its physical limits without human intervention, tripling its speed within 100s of flight time across three tasks.

Abstract—Learning-based controllers have achieved impressive
performance in agile quadrotor flight but typically rely on
massive training in simulation, necessitating accurate system
identification for effective Sim2Real transfer. However, even with
precise modeling, fixed policies remain susceptible to out-of-
distribution scenarios, ranging from external aerodynamic distur-
bances to internal hardware degradation. To ensure safety under
these evolving uncertainties, such controllers are forced to operate
with conservative safety margins, inherently constraining their
agility outside of controlled settings. While online adaptation
offers a potential remedy, safely exploring physical limits remains
a critical bottleneck due to data scarcity and safety risks. To
bridge this gap, we propose a self-adaptive framework that
eliminates the need for precise system identification or offline
Sim2Real transfer. We introduce Adaptive Temporal Scaling
(ATS) to actively explore platform physical limits, and employ
online residual learning to augment a simple nominal model.
Based on the learned hybrid model, we further propose Real-
world Anchored Short-horizon Backpropagation Through Time
(RASH-BPTT) to achieve efficient and robust in-flight policy
updates. Extensive experiments demonstrate that our quadrotor
reliably executes agile maneuvers near actuator saturation limits.
The system evolves a conservative base policy with a peak speed
of 1.9 m/s to 7.3 m/s within approximately 100 seconds of flight
time. These findings underscore that real-world adaptation serves
not merely to compensate for modeling errors, but as a practical
mechanism for sustained performance improvement in aggressive
flight regimes.

I. INTRODUCTION

The domain of agile control has witnessed a paradigm
shift with the advent of data-driven policies, which now rival

or exceed the capabilities of classical model-based meth-
ods [1, 2, 3, 4, 5, 6]. Inspired by human skill acquisition,
most existing methods rely on imitation learning from expert
demonstrations [7, 8, 9] or reinforcement learning through
large-scale trial-and-error [3, 5, 6]. In practice, these policies
are typically trained in simulation with extensive domain
randomization [10] to approximate real-world variability and
are kept fixed during real-world deployment. As a conse-
quence, once deployed, the controller relies entirely on prior
training experience rather than learning and adapting in the
real world. More broadly, the capability to continue improving
performance through learning directly in the real world, which
is central to human motor learning, remains largely underex-
plored in robot learning.

This limitation becomes especially critical in the context
of agile quadrotor flight. Achieving high-speed, aggressive
maneuvers requires precise control under tightly coupled and
highly nonlinear dynamics, leaving little margin for model
mismatch or unknown external disturbances [11].

However, real-world flight conditions are inherently non-
stationary. Factors such as hardware wear, battery depletion,
and complex aerodynamic effects introduce inevitable dis-
crepancies between the training model and physical reality
that fixed policies cannot mitigate. Consequently, relying on
a fixed policy directly degrades performance and reliability,
often preventing the system from safely reaching its agility
potential. In contrast, enabling controllers to learn directly
in the real world fundamentally expands the utility of these
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systems. This capability empowers the agent to adapt not only
to external environmental shifts but also to internal hardware
variations, continuously exploiting platform-specific properties
to push performance towards current hardware limits without
requiring expensive offline system identification [12].
However, learning directly in the real world introduces dual
challenges of safety and data scarcity. First, agile quadro-
tors operate near the limits of stability, where even minor
deviations in state or control can trigger catastrophic failure.
Second, learning in the physical world demands high sample
efficiency because data collection is costly and constrained by
limited battery life, permitting only a few interactions. Con-
sequently, a safe, adaptive, and efficient approach is required.
Existing work has made significant progress toward learning
real-world agile quadrotor control. Sim-to-real approaches [13]
based on extensive domain randomization [10] expose poli-
cies to diverse dynamics and disturbances during training,
enabling them to tolerate moderate modeling errors. While
effective in controlled settings, their performance can degrade
significantly when real-world conditions deviate from the
randomized training distribution. To further reduce the sim-to-
real gap, Real2Sim2Real pipelines refine the simulation model
using real-world data and retrain the policy offline before
deployment [4, 14, 15]. Although effective, these methods
require substantial data collection and repeated retraining
cycles, which limit their practicality when system dynamics
evolve, or rapid adaptation is required. Recent advancements
have begun to leverage differentiable simulation for rapid real-
world adaptation of quadrotor control policies, notably in [16].
However, while this method facilitates rapid refinement during
deployment, it prioritizes disturbance rejection over exploit-
ing platform limits. Consequently, the resulting performance
remains conservative (i.e., 1-2 m/s), rendering the policy very
challenging for agile and high-performance behaviors.

Contributions

In this work, we propose a self-adaptive framework that
bridges the gap between robustness and performance, enabling
continuous, on-policy improvement directly in the real world
without the need for precise system identification. Our ap-
proach relies on two key mechanisms to address the challenges
of safe exploration and efficient learning. First, to tackle the
safety-exploration paradox, we introduce Adaptive Temporal
Scaling (ATS). Unlike fixed-task baselines, ATS actively in-
centivizes the quadrotor to explore its physical capability
boundaries by dynamically adjusting the aggressiveness of the
reference trajectory based on the agent’s current competence.
Second, to ensure efficient learning, we employ a hybrid
dynamics model that augments a simple nominal model with
online residual learning. By introducing Real-world Anchored
Short-horizon Backpropagation Through Time (RASH-BPTT)
on these hybrid dynamics, we achieve on-the-fly policy opti-
mization, effectively turning limited flight data into sustained
performance gains.

Through extensive real-world experiments, we demonstrate
that our framework allows a quadrotor to reliably learn agile

maneuvers near actuator saturation limits. Empirically, the
system evolves a conservative base policy from a peak speed
of 2.0 m/s to 7.3 m/s within approximately 100 seconds of
flight time. Beyond pure agility, we demonstrate the practical
utility of our method in a multi-point inspection mission
under strong external wind disturbances (Fig. 1). Notably,
the quadrotor reduces mission completion time by 42% while
maintaining low tracking error against unknown aerodynamic
disturbances, achieved after only 2 minutes of real-world
training. These results underscore that real-world adaptation
serves not merely to compensate for modeling errors, but as a
practical mechanism for aggressive performance improvement
in dynamic environments.

II. RELATED WORK
A. Learning-based Agile Flight Control

In recent years, learning-based approaches have gained
significant attention for agile quadrotor flight control, owing
to their ability to handle highly nonlinear dynamics and
operate under aggressive flight conditions. Early work demon-
strated the feasibility of applying reinforcement learning to
quadrotor control, enabling waypoint tracking and recovery
from challenging initial conditions [17]. Subsequent research
showed that reinforcement learning can support highly agile
behaviors, with RL-based controllers achieving state-of-the-
art performance in autonomous drone racing [3, 18]. In these
settings, learning-based controllers have even surpassed expert
human performance in competitive racing scenarios [3, 18].
Advances in training efficiency further indicate that, under
carefully optimized pipelines, reinforcement learning policies
for quadrotor control can be trained within seconds [19]. Be-
yond reinforcement learning, imitation learning has played an
important role in accelerating training and improving stability
for agile flight. By leveraging expert demonstrations, imitation
learning has been applied both as a standalone approach and
as an initialization or regularization strategy for reinforcement
learning, substantially improving sample efficiency and overall
control performance [20, 9]. Despite these impressive results,
learning-based quadrotor controllers are typically trained of-
fline and remain fixed during deployment, limiting their ability
to adapt to changing real-world conditions.

B. Efficient Control Policy Learning

Traditional reinforcement learning methods often require
extensive training time, though significant acceleration is pos-
sible through highly optimized physics simulation [21, 19].
Despite these improvements, these methods remain sample-
inefficient due to the high variance associated with zeroth-
order policy gradient estimation. An alternative paradigm,
policy learning via differentiable simulation, exploits smooth
and differentiable dynamics and reward formulations to com-
pute first-order policy gradients. This enables substantially
faster and more sample-efficient learning compared to standard
RL methods [22]. Differentiable simulation has been suc-
cessfully applied to direct policy parameterizations, including
parametric trajectory representations for underwater [23] and
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Fig. 2: Overview of the self-adaptive autonomous flight framework. The system operates as a continuous closed-loop cycle (bottom right) bridging
physical execution and differentiable simulation: (A) Policy Learning: Leveraging a learned hybrid dynamics model in a differentiable simulator, we perform
RASH-BPTT to optimize the control policy via massively parallelized rollouts. (B) Real-World Rollout: The agent executes the current policy on the
physical quadrotor to collect state-action-transition data. (C) Model Calibration: Collected data is used to update the Hybrid Dynamics Model online, where
a neural residual network learns to compensate for the reality gap (e.g., unmodeled aerodynamics, delays) of the nominal rigid-body model. (D) Anchored
Initialization: To mitigate compounding prediction errors, simulation rollouts are initialized (anchored) using the most recent real-world state estimates rather
than random resets. (E) Adaptive Temporal Scaling (ATS): Tightly coupled with policy optimization, the trajectory time-scale « is jointly optimized based
on real-world rollouts. Leveraging analytical gradients derived from closed-loop sensitivity, it maximizes agility (speed) while enforcing safety constraints via

a barrier function.

sinusoidal control policies for robotic cutting tasks [24]. How-
ever, extending these techniques to neural network policies
remains challenging. In practice, unstable gradients often limit
applicability to short-horizon tasks with simplified contact
dynamics and restricted variation in initial conditions [25].
To address these limitations, prior work has explored a range
of stabilizing techniques, including early termination of sim-
ulations at contact events, truncated backpropagation through
time [26], and reward shaping or augmentation with learned
critics [27, 28]. However, these methods have yet to effectively
address the challenge of safely exploring platform limits to
enable online learning of agile flight.

III. METHODOLOGY

In this section, we introduce our self-adaptive framework.
As illustrated in Fig. 2, the core workflow operates as a
continuous closed-loop cycle bridging physical execution and
differentiable simulation. The process begins with an initial-
ization phase, where we employ standard BPTT to train a base
policy on the nominal quadrotor model. Benefiting from the
sample efficiency of differentiable simulation, this pre-training
typically converges within seconds. Once deployed, the agent

commences the real-world adaptation loop. First, the system
collects flight data to update the Hybrid Dynamics Model,
using a neural residual network to capture both internal dy-
namic discrepancies and external disturbances. Subsequently,
leveraging this calibrated model, we execute RASH-BPTT to
optimize the policy via massively parallelized rollouts. To
mitigate compounding prediction errors, these rollouts utilize
Anchored Initialization, resetting the simulation to the most
recent real-world state estimates. Tightly coupled with policy
optimization, Adaptive Temporal Scaling (ATS) is applied
to dynamically adjust the reference trajectory evolution. By
optimizing a learnable parameter « through analytical gradient
derived from closed-loop sensitivity directly on real-world
rollouts, the system maximizes agility while maintaining safety
constraints.
The framework consists of three hierarchical components:
1) Online Residual Learning: Calibrates the onboard hybrid
dynamics model to compensate for the reality gap using
real-world data (Section III-A).
2) RASH-BPTT: Performs online policy optimization via
differentiable simulation, anchored to the current phys-
ical state to ensure robust updates (Section III-B).



3) Adaptive Temporal Scaling (ATS): Jointly optimizes the
reference trajectory’s time evolution to balance flight
agility and safety (Section III-C).

A. Online Residual Dynamics Learning

To avoid precise offline system identification and to adapt
to external disturbances and platform-specific discrepancies,
we employ a hybrid dynamics model. Specifically, we learn a
neural residual term that augments the nominal rigid-body dy-
namics and is trained by minimizing one-step state prediction
error, inspired by Neural ODEs [29].

1) Hybrid Continuous-Time Dynamics: We define the
quadrotor state as x = (p,v,R) € R® x R3 x SO(3),
where p and v are position and velocity in the world frame,
and R is the rotation matrix mapping body-frame vectors to
the world frame. The control input is the CTBR command
u e, w] 4] € R, where ¢ denotes the mass-normalized
collective thrust (units: m/s?) and weng € R denotes the com-
manded body rate. Let e3 = [0,0,1] " denote the world z-axis
unit vector; throughout this paper, we adopt the convention
that gravity acts along —ges.

We model the continuous-time dynamics
fiybria(x,u;6) by augmenting the nominal model with
a neural residual:

X =

p=v, (1)
vV = cRe3 — ges + ares(c; 9)7 (1b)
R = R(wcmd + wres(c; 0))/\7 (IC)

where (1) : R®> — s0(3) denotes the skew-symmetric

mapping to the Lie algebra s0(3), and a,s € R3 and
Wres € R3 capture unmodeled accelerations and angular-rate
discrepancies, respectively. This rotational model assumes that
the low-level attitude-rate loop tracks body-rate commands
sufficiently fast, so that the dominant uncertainty can be
modeled as a residual on the commanded rates.

The residual network f,.s({; 6) takes the feature vector
¢=[p', v, vee®), u'l’, @
where vec(-) denotes column-stacking vectorization, and out-
puts £e,(¢:0) = [ale wl]'

2) Differentiable Integration and Online Training: To ob-
tain a discrete-time transition, we employ a differentiable
fourth-order Runge—Kutta (RK4) integrator ®rx4. Beyond
improved numerical accuracy, RK4 is important for our one-
step residual learning: its intermediate stages partially ad-
vance R within the step, making the translational predic-
tion (Pg+t1,Ver1) sensitive to w,es and thus allowing posi-
tion/velocity errors to supervise attitude-related residuals. We
define the discrete dynamics map

X1 = Far(xp, ug; 0) £ Prica(Xp, Uk, Faybria; At) . (3)
In implementation, $ri4 is realized as a Lie-group integrator
that updates R on SO(3) using the exponential map, which

prevents attitude drift and preserves R € SO(3) while
remaining fully differentiable.

We optimize parameters € online using a sliding-window
replay buffer B of recent transitions (X, ux,Xg+1) collected
from the state estimator. Instead of explicitly supervising
acceleration targets (which are often noisy), we minimize the
integrated one-step prediction error between the simulated
next state Xpy1 = Fai(xg,ux;0) and the measured state
Xk+1:

Losl0) = % S Dkt %ks1) + e S [Willor ()

keB l

The discrepancy metric D(-, -) combines the Euclidean trans-
lation error and the geodesic distance on the rotation manifold.
The rotational term is formulated as ||Log(RTR)Y||2, where
Log : SO(3) — so0(3) denotes the logarithmic map to the
Lie algebra, and (-)¥ maps the skew-symmetric matrix to
its corresponding vector in R3. This ensures the loss strictly
respects the geometry of SO(3). The regularization term
penalizes the spectral norm ||W,||, of each network layer.
As motivated by [30], constraining the Lipschitz constant of
the residual dynamics is crucial for bounding gradient variance
and ensuring numerical stability during long-horizon recursive
optimization.

B. Real-World Anchored Short-Horizon BPTT

Building on the learned hybrid dynamics, we propose Real-
World Anchored Short-Horizon BPTT (RASH-BPTT). To ad-
dress model exploitation caused by compounding errors [31],
our method anchors each rollout to the instantaneous real-
world state. Furthermore, by restricting optimization to a short
horizon (Fig. 2D), we prevent error accumulation, ensuring
that policy gradients remain grounded in reality and optimized
specifically for the agent’s current dynamic conditions.

We parameterize the control policy 7y as a Multi-Layer
Perceptron (MLP) with two hidden layers of 256 units. The
policy takes an observation vector oy = [Xg, Xref £, Ng], com-
posed of the current state, the reference trajectory state, and
a history of past actions hy, to encourage control smoothness.
The output is a 4-dimensional CTBR command u;, € R*.

At each real-world time step ¢, we initialize the differen-
tiable rollout with the current state estimate X := Xyea1(t).
The policy generates control actions conditioned on the current
rollout state uy, := my(0y). We then unroll the short-horizon
dynamics for H steps using the learned discrete map from
Eq. (3):

Xk+1 :FAt(Xk,llk;g), kZO,...,H—].. (5)

The optimization objective is to maximize the cumulative
discounted reward along this predicted trajectory:
H—-1
T(@) =Y A" r(Xe, Uk, Xeet k), (6)
k=0
where v € (0,1] is the discount factor and r(-) is the task
reward function. We obtain the gradient V4 J by perform-
ing BPTT through the unrolled computation graph. This is
implemented via JAX’s automatic differentiation engine [32],
allowing us to differentiate through the RK4 integrator and
neural residuals exactly. The policy parameters are updated



via stochastic gradient ascent: ¢ < ¢ + 17,V 4J. By combin-
ing autodiff with JAX’s Just-In-Time (JIT) compilation and
automatic vectorization (vmap), we achieve highly efficient,
parallelized updates on the GPU.

C. Adaptive Temporal Scaling via Differentiable Optimization

While RASH-BPTT optimizes the control policy parame-
ters, achieving time-optimal performance under varying con-
ditions requires dynamically adapting the reference trajectory’s
evolution. To this end, we introduce Adaptive Temporal Scal-
ing (ATS), a closed-loop mechanism that decouples spatial path
planning from the temporal execution profile. This approach
enables the system to exhibit distinct “temporal elasticity”:
it aggressively compresses the time domain (reducing «)
to maximize agility when tracking is precise, yet automat-
ically relaxes kinematic demands (increasing «) to restore
stability upon encountering significant disturbances or model
mismatches. Unlike heuristic speed adjustment rules, ATS is
formulated as a holistic online optimization problem. Inspired
by [33], we explicitly minimize the future discrepancy between
the real and reference trajectories, utilizing the differentiable
hybrid model as a proxy to anticipate the closed-loop effects
of time-scale adjustments.

1) Parameterization: We parameterize the reference trajec-
tory as a piecewise polynomial sequence. For each segment,
the spatial path is defined by a coefficient matrix C € R3*¥
(representing a polynomial of degree N —1 in 3D space) and a
temporal basis vector B(t) = [1,¢,¢2,--- V=17, To control
the execution rate, we introduce a scalar scaling parameter
a € Ry . The reference position pgr at a specific trajectory
time 7 is formulated as:

Pref(T;0) = CB (g) - (7
Here, o serves as a time dilation factor. By exploiting the
differential flatness property [34], we map the derivatives to
the full reference state Xef(7; ).

2) Optimization Objective and Update: Direct optimization
of « using real-world rollouts is intractable, as the physical
system execution is non-differentiable and does not provide
analytical gradients. To address this, we employ the differ-
entiable hybrid model as a proxy to perform counterfactual
inference [35]. At each update step, given a recent real-
world rollout { (X, i)} » we analyze the sensitivity of the
closed-loop performance to the time-scale o by constructing
a counterfactual state sequence Xj(c). This allows us to
formulate a composite potential function Jars over the horizon
H that balances execution speed with safety:

H-1
jATS(a) = )\speed o + Asafe Z \Ij(gk (04) - gth) , (8
k=0
where the error metric is defined as
Sk(a) é D(ik(a), Xref)k,(a)). (9)

Here, D(-,-) denotes the geometry-aware discrepancy from
Eq. (4), and &, is a pre-defined safety threshold.

Crucially, the counterfactual state Xj(«) serves as a dif-
ferentiable surrogate for the physical state. It is anchored to
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Fig. 3: The optimization landscape for ATS. The heatmap visualizes the
composite potential Jars, balancing agility (low «) against safety. The
landscape transitions from the Safe Zone (blue) to the Unsafe Zone (red)
determined by the tracking error threshold &y, (dotted line) and a schematic
representation of the system’s physical limits (dashed curve). The green dot
marks the optimal equilibrium: the most aggressive time scale achievable
within safe tracking bounds.

the real observations, satisfying xx(cg) = Xy, at the current
time-scale «g. However, unlike the fixed real history Xy, the
evolution of X;(«) is dependent on «. Its local sensitivity is
approximated by linearizing the hybrid model dynamics along
the real rollout {(Xy, Ux)}. Aspeed, Asate are weighting factors,
and ¥(z) = L1In(1 + exp(kz)) is the Softplus barrier with
sharpness k.

We then compute the gradient V,Jars using closed-loop
sensitivity analysis. By applying the chain rule, the gradient
combines the analytic gradient of the reference with the
recursive sensitivity of the system state, approximated by the
hybrid model dynamics F a;:

dJats pey d&(a)
= Aspeed + Asate kzzo U (Ex() — En) o 10
where
dgk 35k 6Xref k 85k‘
—_F _ ’ . 11
da ~ Oxern Do 0t (1)

Here, S;, £ % is the closed-loop state sensitivity with Sp =

0, and evolving as:

du
Sie1 = AxSi+ By (12)
with Jacobians evaluated on the real rollout:
OF OF
Apt =2 By & T (13)
0% {(z,,) 0 |z, 04
Xk, Uk Xk, Uk

The action sensitivity is obtained by differentiating through
the policy:
dup _ Omg (aok doy, axref,k) (14)
da B 80k (9)Ack axref,k da ’
where the observation oj is a function of the state x; and
the reference X;cfr(c). While the functional dependency
on xy, allows for differentiation, all Jacobian matrices (e.g.,
g%, gz’; ) are evaluated at the nominal operating point defined
by the real rollout (Xj,uy). Additional dependencies in oy

(e.g., action history) can be included analogously and are
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Fig. 4: Experimental platform with extreme modifications. To validate
robustness, the nominal quadrotor (192 g) is subjected to drastic degradations:
mechanically clipped propellers (inducing aerodynamic loss) and a 60g
payload. This 31% mass increase significantly alters the inertial properties
and reduces the thrust-to-weight ratio.

handled automatically in our autodiff implementation.
The parameter is updated via projected gradient descent:

Q< H[ozmin,amax](a - navaJATS)- (15)
This update rule naturally maintains an equilibrium near the
safety boundary, as visualized in Fig. 3. In the Safe Regime
(€ < &in), the barrier gradient vanishes, and the linear term
Aspeed drives o down to accelerate execution. Conversely, in
the Unsafe Regime, the barrier gradient dominates, using the
model-based sensitivity to increase o and restore feasibility.

IV. RESULTS AND EXPERIMENTS

In this section, we present comprehensive experiments to
validate the effectiveness of our self-adaptive framework. We
conduct both real-world flight tests and extensive simulation
comparisons to answer the following research questions:

e RQI (Agility): Can the proposed framework push the
quadrotor to its physical limits (e.g., actuator saturation)
in real-time, starting from a conservative policy?

e RQ?2 (Robustness): Is the framework capable of adapting
to internal dynamic changes (e.g., payload, damage)
and unknown external disturbances (e.g., wind) while
maintaining safety?

e RQ3 (Ablation): How do the individual components: the
residual learning and the real-world anchored initializa-
tion, contribute to the overall performance?

We validate the proposed framework entirely in real-world
flight using a quadrotor based on the Agilicious platform [36],
as shown in Fig. 4. A motion-capture system provides state
estimates at 100 Hz. An off-board workstation runs the online
learning loop and sends commands to the onboard controller
at 50 Hz.

A. Real-World Agile Flight and Adaptation

1) Pushing the Physical Limits (RQ1): We evaluate whether
our framework can evolve from conservative flight to near-
limit agility on two canonical trajectories: a linear shuttle
and a Figure-8. As shown in Fig. 1, Linear Shuttle: the
vehicle starts with a conservative maximum speed of 2.0 m/s
and, after approximately 100 seconds of in-flight adaptation,
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Fig. 5: Commanded body-rate wc,,q during real-world Figure-8 and Line-
Shuttle flights. Solid curves denote the 2 s sliding-window mean, overlaid on
raw measurements (background traces). The orange dashed line marks the
actuation limit (6 rad/s).
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Fig. 6: Adaptation to hardware variations. The framework is tested with i)
added mass, ii) Propeller Damage, and iii) combined conditions. In all cases,
the residual learning module swiftly compensates for the dynamic mismatch
within one iteration, enabling the ATS to safely push the compromised
hardware to its new physical limits.

reaches 7.3 m/s. Figure-8: starting from 2.2 m/s, it similarly
accelerates to 7.2 m/s within roughly 100 seconds.

In both scenarios, the system reaches the platform’s angular-
rate capability. Fig. 5 shows the commanded body rate w¢md,
where the 2s sliding-window mean (solid line) and raw
measurements (background) indicate consistent saturation at
the actuation limit (||wemdllcc = 6 rad/s) in the later stage.
This suggests that ATS can safely exploit the improved track-
ing accuracy enabled by residual learning and RASH-BPTT,
pushing aggressiveness to the boundary of actuator feasibility.

2) Robustness to Hardware Variations (RQ2): To evaluate
the system’s resilience to drastic internal dynamic shifts, we
conducted flight tests on the Figure-8 trajectory (£y = 0.3 m)
under three distinct hardware degradations: Added Mass (in-
creasing 60g payload), Propeller Damage (clipping propeller
tips), and Combined (simultaneous mass increase and propeller
damage).

As illustrated in Fig. 6, compared to the intact baseline, the
achievable maximum speeds in all three scenarios naturally
decreased, reflecting the reduced physical authority of the
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Starting from a baseline of 12s (Policy VO, Left), the framework adapts to
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compromised hardware. In contrast, our framework success-
fully identified the new physical limits for each configuration,
allowing the drone to operate at the boundary of angular
velocity saturation while maintaining stability.

A key observation underscores the efficacy of our Residual
Dynamics Learning. Immediately following hardware alter-
ation, the nominal policy exhibited significant tracking errors
due to severe model mismatch. Remarkably, after just a single
update iteration of the residual model, the tracking error
dropped precipitously. This rapid adaptation enabled the ATS
to confidently increase the temporal scaling «. This confirms
that the residual network effectively captures platform-specific
properties, enabling the ATS+RASH-BPTT loop to safely
explore the unknown performance envelope.

3) Application: Time Optimal Inspection under Unknown
Disturbances: To demonstrate practical utility, we evaluated
the framework in a realistic multi-stage inspection mission
subject to unknown wind fields between landmarks (Fig. 1).
Despite turbulent aerodynamic disturbances, the system suc-
cessfully maintained stable tracking via online residual adap-
tation. This robustness empowered the ATS mechanism to
progressively compress the execution duration, ultimately re-
ducing the total motion time by 42% (from 12s to 7s) while
adhering to safety constraints, as visualized in Fig. 7.

B. Simulation Evaluation

1) Ablation Study: While our real-world experiments
demonstrated the system’s overall efficacy, we use simulation
to disentangle the contributions of individual modules. Since
no existing method supports online learning and exploiting
agile policy, we integrate our ATS framework into all baselines
to ensure a fair comparison. Consequently, the comparisons
below represent ablated variants of our holistic system, eval-
uated on tracking accuracy (RMSE) and the maximum speed
optimized by ATS:

o Baseline: Relies solely on the nominal dynamics model
optimized via standard BPTT, serving as a lower bound
to benchmark the efficacy of residual learning.

o LOFT [16]: Adapts the LOFT architecture to our frame-
work. It models residual linear acceleration but omits
rotational dynamics.
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Fig. 8: Ablation study of residual dynamics and anchored rollouts. Note:
Since no existing methods support online learning at the physical limit in
real-world settings, all baselines are augmented with our ATS framework to
enable feasible deployment. We compare the Baseline (nominal), LOFT [16]
(acceleration residual only), component ablations (Anchor/Residual Only), and
Ours (full system). Enabled by our ATS framework, all methods successfully
maintain a bounded tracking error less than & while reducing lap time,
demonstrating the framework’s effectiveness. Furthermore, Ours achieves the
smallest lap time, validating that combining anchored initialization with full
hybrid residuals is essential for pushing the envelope of agility.

e Anchor Only: A variant that applies RASH-BPTT with
anchored rollouts while disabling the learned residual
component.

e Residual Only: Incorporates the full hybrid residual
model (linear acceleration and body rates) but reverts to
standard BPTT optimization.

e Ours: The complete approach that integrates the full hy-
brid residual dynamics with anchored rollouts for optimal
performance.

We set the tracking error threshold &, to 0.35 m. The results,
summarized in Fig. 8, yield three key insights:

Residual learning is the primary enabler for agility. Across
all methods, incorporating residual dynamics substantially
reduces tracking errors. Since the ATS mechanism allows for
time compression (decreasing «) only when the predicted error
remains within the safety margin, lower RMSE directly trans-
lates into more aggressive time-scaling capabilities. Without
residuals, the baseline hits the error threshold early, strictly
capping the maximum speed.

Angular dynamics fidelity is critical in high-speed regimes.
Compared to LOFT (acceleration residuals only), our full
residual model (acceleration + angular velocity) achieves su-
perior tracking accuracy as speed increases. This indicates that
compensating for rotational dynamics mismatches (e.g., aero-
dynamic drag moments) is essential for maintaining prediction
fidelity during aggressive maneuvers, which in turn empowers
ATS to push performance boundaries further.

Anchored rollouts enhance optimization stability. Compar-
ing Anchor Only against standard initialization reveals that
anchoring the simulation rollout to the current real-world
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Fig. 9: Online adaptation under wind disturbance. Comparison between the Baseline and Ours. The Baseline fails to accelerate due to unmodeled wind
drag, remaining stuck at lower speeds of 4.7 m/s. In contrast, Ours demonstrates a rapid adaptation cycle: the residual network first suppresses the tracking
error (VO — V1, RMSE drops to 0.06 m), creating a safety margin. Subsequently, ATS exploits this margin to aggressively scale up agility, achieving a top
speed of 6.8 ms~! (V10) while maintaining the trajectory tracking error within the threshold.

state mitigates the distribution shift between optimization and
deployment. Practically, this keeps the optimization trajectory
aligned with the on-policy region, yielding more stable con-
vergence than optimizing from a reset reference state.

Overall, Ours achieves the optimal speed—accuracy trade-
off, demonstrating a synergistic effect between residual dy-
namics (ensuring prediction accuracy) and anchored optimiza-
tion (ensuring stable adaptation).

2) Online Adaptation under Wind Disturbance: We fur-
ther evaluate robustness by benchmarking Ours against the
Baseline in a simulated 5ms~! wind field (Fig. 9). Within
just a single update, the residual-enhanced policy reduces
tracking RMSE by approximately 4 times compared to the
baseline. This rapid error suppression is critical: it creates the
necessary safety margin for ATS to initiate aggressive time-
scaling early in the flight, validating that accurate dynamics
are a prerequisite for agility. Over ten iterations, our method
achieves a 2.6 times speedup (from 2.6 to 6.8 ms~!) while
maintaining a bounded tracking error less than &, = 0.3 m.
In contrast, the baseline fails to accelerate meaningfully due
to persistent model mismatch. This confirms that residual
learning effectively compensates for external disturbances,
empowering the ATS optimizer to safely push the system
toward its physical limits.

V. DISCUSSION

We present a self-adaptive framework that enables au-
tonomous quadrotors to evolve from conservative operation
to their physical agility limits in real time. Unlike methods
requiring offline identification or extensive pre-training, our
approach achieves this progression within 100 seconds of
flight without any prior system identification. By tightly cou-
pling differentiable simulation, online residual learning, and
Adaptive Temporal Scaling (ATS), the system autonomously
bridges the gap between conservative planning and agile
execution, grounding performance dynamically in the robot’s
instantaneous capabilities.

A. Synergy between Residual Learning and ATS

Ablation studies reveal a critical dependency: accurate
short-horizon prediction is the prerequisite for safe agile

exploitation. Without residual learning, significant model mis-
match (e.g., unmodeled drag or delays) increases real-world
tracking error, causing the ATS safety barrier (Eq. (8)) to
prevent time compression. By introducing the hybrid residual
model to minimize this dynamics mismatch, we expand the
feasible safety margin. ATS immediately exploits this margin
by decreasing «, pushing the system towards its physical
limits (e.g., command body rates saturation) rather than being
bounded by modeling artifacts. This mechanism explains why
Ours attains substantially higher terminal speeds: improved
prediction accuracy unlocks agility without sacrificing safety.

B. Adaptation versus Static Robustness

Hardware variation experiments (Fig. 6) highlight the dis-
tinction between static robustness and adaptive evolution.
Classical robust control typically ensures stability under a
worst-case uncertainty set, often at the cost of nominal per-
formance. In contrast, our framework continuously identifies
and optimizes for the current dynamics. This is evident in
the propeller damage scenario: rather than maintaining flight
in an overly conservative regime, the system rapidly internal-
izes the altered dynamic signature and re-optimizes temporal
scaling. This online specialization allows the policy to adapt
to degradation without overestimating capabilities or imposing
unnecessary conservatism.

C. Limitations and Future Work

Joint Spatial-Temporal Optimization: While currently re-
stricted to temporal scaling of fixed geometries, our dif-
ferentiable pipeline supports simultaneous spatial-temporal
optimization [37]. Future work will leverage this to jointly
optimize path shape and timing, similar to MPCC [38], and
incorporate soft constraints for obstacle avoidance.

Active Exploration: Currently, our residual model is learned
passively during stable task execution, which may leave
boundary regions under-modeled. To address this, future work
could incorporate safe active exploration by enabling the
controller to intentionally probe high-uncertainty regions while
maintaining stability guarantees, thereby significantly improv-
ing model robustness.



Perception-Aware Control: We currently assume precise,
low-latency state estimation. However, real-world perception
suffers from noise and motion blur during aggressive maneu-

VErs.

Future iterations will integrate perception-aware con-

straints directly into the ATS barrier to ensure trajectories
remain within the platform’s sensing limits.
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