
Learning Deep Sensorimotor Policies
for Vision-based Autonomous Drone Racing

Jiawei Fu, Yunlong Song, Yan Wu, Fisher Yu, and Davide Scaramuzza

Fig. 1: We learn deep sensorimotor policies for vision-based autonomous drone racing. The policy maps sensory observations
to control commands directly. It achieves results that are robust against various visual disturbances and distractors, which are
not experienced during training. From left to right: changing hue value, changing brightness, adding blue boxes, and adding
random objects.

Abstract—Autonomous drones can operate in remote and
unstructured environments, enabling various real-world applica-
tions. However, the lack of effective vision-based algorithms has
been a stumbling block to achieving this goal. Existing systems
often require hand-engineered components for state estimation,
planning, and control. Such a sequential design involves labo-
rious tuning, human heuristics, and compounding delays and
errors. This paper tackles the vision-based autonomous-drone-
racing problem by learning deep sensorimotor policies. We use
contrastive learning to extract robust feature representations
from the input images and leverage a two-stage learning-by-
cheating framework for training a neural network policy. The
resulting policy directly infers control commands with feature
representations learned from raw images, forgoing the need
for globally-consistent state estimation, trajectory planning, and
handcrafted control design. Our experimental results indicate
that our vision-based policy can achieve the same level of racing
performance as the state-based policy while being robust against
different visual disturbances and distractors. We believe this
work serves as a stepping-stone toward developing intelligent
vision-based autonomous systems that control the drone purely
from image inputs, like human pilots.

Video: https://youtu.be/nPlGR83bC0Q

I. INTRODUCTION

Autonomous drones can travel through complex and dy-
namic environments at very high speed, holding great potential
for a wide range of applications, such as industrial inspection,
search and rescue, and reconnaissance. Robust vision-based
autonomous flight is key to this goal. Autonomous vision-
based drones have made significant progress in recent years,

J. Fu, Y. Song, and D. Scaramuzza are with the Robotics and Perception
Group, Department of Informatics, University of Zurich, and Department of
Neuroinformatics, University of Zurich and ETH Zurich, Switzerland (http:
//rpg.ifi.uzh.ch). Y. Wu and F. Yu are with Visual Intelligence and Systems
Group in the Computer Vision Lab at ETH Zurich. This work was supported
by the Swiss National Science Foundation (SNSF) through the National Centre
of Competence in Research (NCCR) Robotics, the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement No. 871479
(AERIAL-CORE), and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

continuously pushing the vehicle to higher speeds and better
robustness. Several competitions have been organized to push
the limit, such as the IROS 2016-19’s Autonomous Drone
Racing series [1], NeurIPS 2019’s Game of Drones [2], the
2019 AlphaPilot Challenge [3], [4], and the ICRA 2022’s
DodgeDrone Challenge.

Vision-based autonomous drone racing requires operating
the vehicle on the edge of its physical limits, thereby coping
with the motion blur and the rapid illumination changes
induced by the high speeds and quick rotations of the camera.
The tolerance of the system for mistakes is extremely low:
any small error can lead to a crash.

While existing works on vision-based autonomous drone
racing rely on globally-consistent state-estimation, planning,
and control [1]–[5], human pilots race drones by relying solely
on a video stream from the drone’s onboard camera, that
is, by directly mapping visual input to control commands.
While human pilots build a mental model of the drone state,
they do not perform any explicit state estimation or trajectory
planning [6]. In this paper, we make a small step toward
emulating human pilots by learning a deep sensorimotor policy
for vision-based autonomous drone racing.

Recent progress in the robot learning community demon-
strates that learning deep sensorimotor policies for robotic
tasks is feasible. Methods of this kind usually predict control
commands directly from information extracted from high-
dimensional sensory inputs. Deep sensorimotor policies have
been heavily investigated in many robotic domains, such as
object manipulation using robot arms [7], [8] or benchmark
control of simulated robots [9]–[11]. This line of works has
the advantage that the policy algorithm relaxes the need for a
globally-consistent state information and enlarges the applica-
tion of the system. However, learning deep sensorimotor poli-
cies for vision-based navigation still faces several challenges,
including high sample complexity and poor generalization.

ar
X

iv
:2

21
0.

14
98

5v
1

 [
cs

.R
O

]
 2

6
O

ct
 2

02
2

https://youtu.be/nPlGR83bC0Q
http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch

An overview of our system is given in Fig. 2. Our main con-
tribution is a deep sensorimotor policy that can jointly solve
perception, planning, and control for autonomous drone racing,
without relying on an globally-consistent state of the drone nor
on trajectory planning. The inputs to our policy are a sequence
of images and part of the drone state (orientation, velocity,
acceleration) but no globally-consistent position information.

Our method consists of two key components: privileged
policy training and robust feature learning. First, we leverage a
two-stage learning-by-cheating framework for policy training.
Second, we use contrastive learning and data augmentation to
extract robust image embeddings from RGB images.

Furthermore, we compare our vision-based deep sensorimo-
tor policy against a neural control policy that utilizes the full
globally-consistent state information [12]. Our experiments,
conducted in a realistic simulator [13], show that our vision-
based deep sensorimotor policy achieves the same level of
racing performance while being robust against different visual
disturbances and distractors. Finally, we benchmark the per-
formance of our vision-based policy against the time-optimal
trajectory generation algorithm [14], which offers a theoretical
minimum time. Our policy achieves lap times close to the
time-optimal solution.

II. RELATED WORK

Different approaches have been studied to tackle au-
tonomous drone racing. State-based methods that rely on glob-
ally accurate position information have been used extensively.
Foehn et al. [14] presented the time-optimal trajectory genera-
tion by jointly improving the time allocation and the trajectory.
The algorithm enabled them to outperform human experts in
drone racing. In [12], [15], [16], authors used reinforcement
learning to train a neural network as the policy. For example,
Song et al. [12] utilized relative gate positions towards the
next gates to achieve near-time-optimal performance. Nagami
et al. [16] initialized a network by mimicking a simplified
controller and further trained it with reinforcement learning.
The hierarchy allowed the policy to outperform a trajectory
planning policy. Although promising results can be generated
by state-based methods, the assumption of exact position
information limits the application of the methods.

Prior work on vision-based drone racing decouples the
perception, planning, and control modules. In the work of
Foehn et al. [3], visual-inertial odometry (VIO) was fused
with a CNN-based gate corner detection for robust state
estimation. A receding horizon path planner generates a time-
optimal trajectory using motion primitives based on a point-
mass model of the drone platform. However, the point-mass
assumption cannot represent the true actuation limits of the
drone and may lead to dynamically infeasible trajectories.
In [17]–[19], authors first use data-driven methods to train the
neural networks that can predict the waypoint and the desired
speed. Afterward, a minimum jerk trajectory is planned for
passing through the waypoint and then tracked by a low-level
controller. Muller et al. [20] propose to train a neural network
for local trajectory planning, in which a downstream control

policy is used to track the trajectory and generate low-level
commands for vehicle control. The trajectory labeling requires
additional engineering efforts and can result in ambiguity as
each image can be labeled with different trajectories. The
decoupling of the perception, planning, and control modules
inevitably involves simplified assumptions or manual design of
parameters, leading to sub-optimality during high-speed flight.

Recent advance in data-driven control [21]–[24] indicates
the potential of developing autonomous systems using sen-
sorimotor control, in which a neural network policy can map
high-dimensional sensory inputs directly to control commands.
However, with naive training, the deep sensorimotor policy
might suffer from poor generalization when facing unseen
disturbances. Different approaches have been employed to
alleviate the overfitting issue, such as data augmentation [11],
[25], injecting known biases [26], and extracting invariant in-
formation [27]. Most of them are applied to video games [10],
[26], robot arm control [25], [28], or autonomous driving [29].
The generalization capability of a neural network policy for
minimum-time flight has drawn much less attention due to
several challenges, such as low reaction time and a rapid
change of the image observations.

III. METHODOLOGY

An overview of our method is visualized in Fig. 2. Our
approach consists of two key components: policy training and
feature learning. The policy training is done using privileged
reinforcement learning and imitation learning, where a student
policy mimics the action of a teacher policy. To process high-
dimensional image data and allow efficient policy training,
we use YOLO [30], [31] to extract low-dimensional image
embeddings.

A. Policy Training

Teacher Policy Training: The first step is to obtain a
state-based teacher policy that can push the vehicle to its
maximum performance. We use reinforcement learning to
train a multilayer perceptron (MLP) policy πteacher for passing
through a sequence of gates {Gi|, i = 1, · · · , N} in minimum
time. At every time step t, the agent is at state st and
receives information about the gate state gt. Our goal is to
find the optimal policy π∗teacher that maximizes the expected
discounted return: π∗teacher = arg maxπ E

[∑T−1
t=0 γtrt

]
, where

γ is the discount factor and rt is the reward at time stage
t. In privileged learning, the teacher policy has access to all
ground truth information, including the vehicle’s state st and
the gate state gt. Hence, the teacher policy generates an action
āt ∼ π(st, gt) given both states. The policy outputs control
commands in the form of mass-normalized collective thrust
and angular velocity.

The main objective is to minimize the lap time, which
is equivalent to maximizing the path progress along the
center line connection between two consecutive gates [12].
In addition, we maximize a perception-aware reward to
maximize the visibility of the next gate. The perception-aware
reward incentivizes the policy to face the camera toward the

Visual Observation

T

Augmented Visual
Observation

T T

Truncated State

T

Image Embedding

Orientation

Lin. Velocity

Acceleration

Prev. Action

C
o

n
ca

t

YOLO
Encoder

Temporal Convolution

Latent Embedding

MLP

Action

Gate Pose

Action

Latent Embedding

Imitate

Imitate

MLP

B. Student Policy

A. Teacher Policy

Global Position

Fig. 2: Overview of our policy training method. We first train a teacher policy with access to privileged state information using
model-free reinforcement learning. This teacher policy is then distilled into a student policy, which is trained to do perception,
planning, and control jointly.

next passing gate, which is crucial for vision-based flight
since our environment is only partially observable when using
a camera. We denote the position and velocity of the center of
the next gate on the image plane by pc and ṗc, respectively.
The perception award reward is formulated to keep the
gate in the image center and reduce the motion blur [32]
as rp = exp (−||pc||2 − ||ṗc||2) , where ||·||2 refers to 2-norm.

Student Policy Training: After we obtain a teacher policy
π∗teacher(st, gt) that can race the drone optimally, we distill the
teacher’s knowledge to a student policy πstudent(st,ot) that
does not have access to the privileged information about the
environment. Specifically, the student policy can only observe
part of the drone state st, which does not contain the vehicle’s
global position, and need to infer the gate information from the
camera observation ot → gt. There are three key components
of our student policy: a feature extractor, a memory-based
neural network, and a policy network.

We use YOLO [30], [31] as the feature extractor and train it
to detect all gates in a given image. We use average pooling to
downsample the output of the three convolutional layers in its
detection head and concatenate them as the embedding of the
image zt. Since the detection head is the rightmost module
of YOLO, this embedding contains all the information for
detecting the gates, and hence, is a sufficient for representing
the image. Note that we additionally normalize the embed-

ding with l2-normalization, which is empirically found to be
beneficial for the convergence of policy training.

When using a single camera, the environment becomes
a partially observable environment. To this end, we use a
temporal convolutional network (TCN) [33] for the policy
representation. The embedding from the image is concatenated
with the truncated vehicle state st. The sequence of concate-
nated embeddings is then fed into the TCN to extract temporal
information from history observations. Finally, we use a MLP
to regress the control command. The MLP takes the output
of the TCN as input and produces the student policy’s action
which is of the same format as the teacher policy.

We use imitation learning to train the student policy. We
define an action loss LA that is the mean square error between
the outputs of the teacher policy and the student policy.

LA(θ) = ||πstudent(st,ot|θ)− π∗teacher(st, gt)||2. (1)

In addition, to better enable the knowledge transfer between
the teacher policy and the student policy, we also add a
latent loss LE to supervise the output of the TCN et with
the intermediate embedding of the teacher ēt, written as
LE(θ) = ||ēt − et||2. Therefore, we minimize the total loss
for the imitation learning

min
θ

L = LA(θ) + λLE(θ), (2)

where λ is a coefficient to weight the latent loss.

B. Robust Feature Learning via Data Augmentation

To learn robust image embeddings against disturbance,
we train the encoder with contrastive learning. We use the
framework introduced in [34]. The framework (shown in
Fig. 3) contains an online network and a target network.
The online network defined by parameters φ contains three
components: an encoder fφ, a projection gφ, and a predictor
qφ. The target network is an exponential mean average of the
online network and defined by parameters ξ. It is comprised
of two components: a target encoder fξ and a target projection
gξ.

Online Network

Target Network

Encoder Projection Predictor

Original View

Augmented View

Cosine Similarity

ema ema

ema: exponential mean average

: stop gradient

Fig. 3: Contrastive learning framework [34].

An input image o is passed through two augmentations,
denoted as t and t′, to obtain two augmented views v = t(o)
and v′ = t′(o) separately. Then the embedding prediction
zφ(v) = qφ(gφ(fφ(v))) is extracted by the online network
while the embedding target zξ(v′) = gξ(fξ(v′)) is extracted
by the target network. A cosine similarity loss is applied to
align the embeddings,

Lcos(v,v′) = 2− 2 · < zφ(v), zξ(v′) >

||zφ(v)||2 · ||zξ(v′)||2
(3)

where || · ||2 denotes l2-normalization.

IV. EXPERIMENTS

We design our experiments to answer the following research
questions: 1) our student policy does not depend on the
vehicle’s global position and can only observe the environ-
ment partially; how does such a vision-based control system
compare to a state-based system? 2) our policy is trained with
data augmentation. Can the data augmentation align image
embeddings given different visual disturbances and distractors,
and is the policy robust against those disturbances? 3) our
policy still relies on some part of the vehicle state; how well
can the policy handle estimation errors in the drone state?

A. Experimental Setup

Simulator Environment: We conduct experiments using
the Flightmare [13] simulator, a realistic quadrotor simulator
with various racing tracks and realistic racing environments.
We set up three different race tracks (Circle, Figure8, and
SplitS) in a warehouse environment (see the visualization
in Fig. 4 left). For training the teacher policy, we use a
customized implementation of the proximal policy optimiza-
tion algorithm (PPO) [35] based on the code from [36]. For

training the student policy, we implement an imitation learning
pipeline. For learning robust feature representations from raw
images, we use data augmentation with random convolution
and random cutout-color (see Fig. 4 middle and right).

Evaluation: To evaluate our policy, we rollout for 10
episodes, with quadrotor starting from different starting posi-
tions, which are sampled from a uniform distribution between
-0.1m and 0.1m in x, y, z-axis of each. We evaluate the
performance of our policy using two different metrics: Lap
Time and Success Rate. The lap time indicates the racing
performance of our policy, while the success rate indicates the
robustness of the policy. We report the lap time by computing
the time required by the policy to finish one complete track
and calculate the success rate by calculating the ratio that the
quadrotor can successfully finish one full lap without crashing
among the ten rollouts.

B. Baseline Comparisons

We compare our vision-based policies against two baselines:
a state-based learning-based policy [12] and a time-optimal
trajectory [14]. The state-based policy controls the drone using
ground truth information about the drone state, including
position, velocity, orientation, and acceleration, as well as
the pose of the next two gates. The time-optimal trajectory
serves as the theoretical minimum bound for our platform.
The student policy does not have access to ground truth
information about the drone’s position and the gate poses.
Instead, it uses a camera to capture RGB images and controls
the drone directly using the image. Therefore, the student
policy can only observe the environment partially, similar to
how human pilots control the drone using the first-person-view
camera. The result is shown in Table I. A visualization of the
trajectories is given in Fig. 5. Both policies achieve strong
performance on three different race tracks with high success
rates. The student policy learns to cut corners, resulting in
lower lap time, but more risky behaviors.

In reality, the vehicle states are prone to error due to the drift
in state estimation and measurement errors. Despite impressive
results in visual-(inertial) odometry in recent years, high-speed
flight with six degrees of freedom motion remains challenging
for existing estimation algorithms [37]. Hence, the state-based
control system is subject to failure since the policy relies
heavily on position estimation. We investigate this problem
using a simulated VIO pipeline, in which we simulate position
drift. Fig. 6 shows how position drifts affect the performance
of the state-based policy. Given perfect state information, the
policy achieves 100 % success rates on all tracks. However,
as we increase the drift in position, the success rates collapse
quickly. The VIO drift can be alleviated by relocalizing with
respect to the gates but this is challenging because the camera
suffers from motion blur and limited field of view. On the
other hand, our vision-based policy is not affected by the drift
in the position since it does not rely on that information.

Fig. 4: Visualization of data augmentations used during training. Left: no augmentation. Middle: random convolution. Right:
random cutout-color.

Lap Time [s] Success Rate
Circle Figure8 SplitS Circle Figure8 SplitS

Time-optimal Trajectory [14] 4.68 6.26 7.93 - - -
State-based Policy [12] 4.97±0.01 6.84±0.05 8.74±0.01 1.0 1.0 1.0

Vision-based Policy (ours) 4.95±0.01 6.76±0.01 8.58±0.01 1.0 1.0 1.0

TABLE I: Performance of the time-optimal trajectory, state-based teacher policy, and vision-based student policy on three
different race tracks.

Fig. 5: Visualization of trajectories. Left: Circle. Middle:
Figure8. Right: SplitS.

0.00 0.01 0.02 0.03

Position Drift [m/s2]

20

40

60

80

100

S
u

cc
es

s
R

at
e

[%
]

Circle

Figure8

SplitS

Fig. 6: Success rates of the state-based policy over position
drift.

C. Handling Visual Disturbances and Unseen Distractors

We deploy our vision-based system in various unseen con-
texts to investigate how it performs against unseen visual
disturbances, such as environments with color changes, bright-
ness changes, and environments with many randomly arranged
unseen objects. We darken the environment by lowing the
brightness value from 1 to 0.5 and 0.8, and we also change
environment colors by tuning the image hue value from 0 to
both 0.5 and -0.5. Fig. 1 left and middle-left provide examples
of environment with brightness values of 0.5 and hue values
of 0.5, respectively. In addition, we also place some visual
distractors randomly around the environment, including blue

boxes that are similar in color and shape to the racing gates
(see visualization in Fig. 1 middle-right), and some random
objects with irregular shapes (see visualization in Fig. 1 right).

As presented in Table II, our system is robust against various
types of visual disturbances while still maintaining a high
success rate and comparable lap time on all three racing tracks,
which demonstrates the effectiveness of our image feature
learning mechanism. In the following section, we further
investigate how the image encoder trained using contrastive
learning can generalize to these visual disturbances.

D. Aligning Image Embeddings

To ensure robust feature extraction, we use contrastive
learning (Setion III-B). In the contrastive learning framework,
the similarity loss ensures that the encoder learns the in-
variance between the two augmented views. As a result, the
image embeddings between augmented views are aligned in
the embedding space. We choose random convolution as the
augmentation for hue changes and brightness changes; and use
random cutout-color against distractors, such as blue boxes
and random objects. In Fig. 7, we present the qualitative
results of aligning image embeddings between augmentations
and disturbances. For each of the three tracks, we collect
the images along the flight trajectory of the teacher policy
with either augmentations or disturbances. For each of the
trajectories, we extract the image embeddings with the YOLO
encoder and reduce the dimension to 2 with t-distributed
stochastic neighbor embedding (t-SNE). The embeddings of
each test-time disturbance are then evaluated with those of the
corresponding augmentation during training. We can observe
that the image embeddings of all the disturbances are well
aligned with those of the corresponding augmentations. It
ensures that our policy receives matching image embeddings in
test time and behaves robustly. Thus, our policy still maintains
a high success rate under all the disturbances (Table II).

Lap Time [s] Success Rate
Circle Figure8 SplitS Circle Figure8 SplitS

Brightness Change 0.5 4.88±0.01 6.71±0.01 8.60±0.01 1.0 0.8 1.0
0.8 4.91±0.02 6.68±0.01 8.65±0.01 1.0 1.0 1.0

Hue Change -0.5 4.91±0.01 6.72±0.03 8.66±0.01 1.0 1.0 1.0
0.5 4.92±0.02 6.71±0.01 8.65±0.01 1.0 1.0 1.0

Blue Boxes 10 4.94±0.01 6.87±0.01 8.64±0.01 1.0 1.0 1.0
60 4.90±0.02 6.77±0.01 8.73±0.01 1.0 1.0 0.9

Random Objects 10 4.94±0.02 6.75±0.02 8.67±0.01 1.0 1.0 1.0
60 4.91±0.02 6.81±0.03 8.67±0.01 1.0 0.6 1.0

TABLE II: Success rate and lap time of the vision-based sensorimotor control policy. Our policy is robust against different
visual disturbances, including brightness change (darker environment with brightness value changing from 1 to 0.5 and 0.8,
respectively) and hue change (environment color changes with hue value tuning from 0 to 0.5 and -0.5, respectively), and the
presence of various distractors, including blue boxes and random objects, of various densities (10 and 60 distractors are added,
respectively).

Circle Track Figure8 Track Split-S Track

A

B

C

D

Fig. 7: A time-lapse t-SNE visualization of image embeddings
used by our policy. We collect images along the flying
trajectory on three different tracks. The blue dots represent
image embeddings from augmentations during training time
and the orange dots represent image embeddings from test-
time disturbances. A: Hue change. B: Brightness change. C:
Blue boxes. D: Random Objects.

E. Handling Noisy State

Our policy relies on part of the drone state, including the
orientation, linear velocity, and acceleration. The state infor-
mation can be estimated using measurements from onboard
sensors, such as IMUs, which are usually noisy. We further
investigate the robustness of our policy against disturbances
on the truncated sates by adding Gaussian noise N (0, std)
individually to each component of the states, where std is the
standard deviation. Table III shows the result. We can observe
that the success rate decreases mildly when the standard
deviation increases, which proves that our policy is robust

std Circle Figure8 SplitS

State Disturbance

0.04 1.0 1.0 1.0
0.12 1.0 1.0 0.7
0.20 1.0 1.0 0.4
0.28 0.3 0.5 0.0

TABLE III: Success rates of the student policy when adding
Gaussian noises to the drone states.

against noises from the sensor measurements.

V. DISCUSSION AND CONCLUSION

This work presented a method to learn deep sensorimotor
policies for vision-based autonomous drone racing. We showed
that a vision-based control policy allows predicting control
commands with information extracted from images without
explicitly estimating position information, trajectory planning,
and tracking. The vision-based policy can achieve the same
level of racing performance as the state-based policy while
being robust against different visual disturbances and distrac-
tors. On the other hand, a state-based control policy is sensitive
to position errors in state estimation. The key to achieving
robust sensorimotor control is to learn well-aligned image
embeddings using contrastive learning and data augmentation.
These findings suggest that deep sensorimotor control has the
potential for vision-based agile drone flight and merits further
investigation.

A major limitation of the presented work is a lack of
real-world experiments to demonstrate the effectiveness and
robustness of our vision-based policy. The deployment of the
student policy on a real drone still requires further research
on transfer learning or adaptive learning. Although relaxing
the need for globally-consistent position information about
the drone and the gate, the student policy still relies on part
of the vehicle’s state to predict the control commands. We
plan to tackle this in the near future by using memory-based
policy representations, such as RNNs to learn hidden state
representations from a history of images alone. We believe
our study is a stepping stone towards this goal.

REFERENCES

[1] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,
A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter et al.,
“Challenges and implemented technologies used in autonomous drone
racing,” Intelligent Service Robotics, 2019.

[2] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor, “Airsim
drone racing lab,” in NeurIPS 2019 Competition and Demonstration
Track. PMLR, 2020.

[3] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, 2021.

[4] C. De Wagter, F. Paredes-Valles, N. Sheth, and G. de Croon, “The
sensing, state-estimation, and control behind the winning entry to the
2019 artificial intelligence robotic racing competition,” Field Robotics,
2022.

[5] L. O. Rojas-Perez and J. Martı́nez-Carranza, “On-board processing for
autonomous drone racing: an overview,” Integration, vol. 80, pp. 46–59,
2021.

[6] C. Pfeiffer and D. Scaramuzza, “Human-piloted drone racing: Visual
processing and control,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3467–3474, 2021.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[8] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113, 2019.

[9] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq et al., “Deepmind control suite,”
arXiv preprint arXiv:1801.00690, 2018.

[10] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in Neural
Information Processing Systems, vol. 33, pp. 19 884–19 895, 2020.

[11] N. Hansen and X. Wang, “Generalization in reinforcement learning by
soft data augmentation,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 13 611–13 617.

[12] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), 2021.

[13] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[14] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, 2021.

[15] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[16] K. Nagami and M. Schwager, “Hjb-rl: Initializing reinforcement learning
with optimal control policies applied to autonomous drone racing.” in
Robotics: science and systems, 2021.

[17] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: Learning agile flight in dynamic
environments,” in Conference on Robot Learning. PMLR, 2018, pp.
133–145.

[18] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE Trans. Robotics, vol. 36, no. 1, pp. 1–14,
2019.

[19] T. Wang and D. E. Chang, “Robust navigation for racing drones based
on imitation learning and modularization,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
13 724–13 730.

[20] M. Muller, G. Li, V. Casser, N. Smith, D. L. Michels, and B. Ghanem,
“Learning a controller fusion network by online trajectory filtering for

vision-based uav racing,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[21] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” RSS: Robotics, Science, and
Systems, 2020.

[22] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[23] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science Robotics,
vol. 5, no. 47, 2020.

[24] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool, “End-to-end urban
driving by imitating a reinforcement learning coach,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 222–15 232.

[25] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[26] X. Wang, L. Lian, and S. X. Yu, “Unsupervised visual attention and
invariance for reinforcement learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
6677–6687.

[27] B. Li, V. François-Lavet, T. Doan, and J. Pineau, “Domain adversarial
reinforcement learning,” arXiv preprint arXiv:2102.07097, 2021.

[28] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A
simple technique for generalization in deep reinforcement learning,”
arXiv preprint arXiv:1910.05396, 2019.

[29] L. Fan, G. Wang, D.-A. Huang, Z. Yu, L. Fei-Fei, Y. Zhu, and A. Anand-
kumar, “Secant: Self-expert cloning for zero-shot generalization of visual
policies,” arXiv preprint arXiv:2106.09678, 2021.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[31] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek,
L. Diaconu, and M. T. Minh, “ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,” Feb.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6222936

[32] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). IEEE, 2018, pp. 1–8.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[34] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,
“Bootstrap your own latent-a new approach to self-supervised learning,”
Advances in neural information processing systems, vol. 33, pp. 21 271–
21 284, 2020.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[36] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[37] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza,
“Are we ready for autonomous drone racing? the uzh-fpv drone racing
dataset,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2019.

https://doi.org/10.5281/zenodo.6222936
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	I Introduction
	II Related Work
	III Methodology
	III-A Policy Training
	III-B Robust Feature Learning via Data Augmentation

	IV Experiments
	IV-A Experimental Setup
	IV-B Baseline Comparisons
	IV-C Handling Visual Disturbances and Unseen Distractors
	IV-D Aligning Image Embeddings
	IV-E Handling Noisy State

	V Discussion and Conclusion
	References

