
This paper has been accepted for publication at the
IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, 2024. ©IEEE

Revisiting Token Pruning for Object Detection and Instance Segmentation

Yifei Liu Mathias Gehrig Nico Messikommer Marco Cannici Davide Scaramuzza
Robotics and Perception Group, University of Zurich, Switzerland

{yifei.liu@, mgehrig@ifi., nmessi@ifi, cannici@ifi., sdavide@ifi.}uzh.ch

Abstract

Vision Transformers (ViTs) have shown impressive per-
formance in computer vision, but their high computational
cost, quadratic in the number of tokens, limits their adop-
tion in computation-constrained applications. However,
this large number of tokens may not be necessary, as not
all tokens are equally important. In this paper, we investi-
gate token pruning to accelerate inference for object detec-
tion and instance segmentation, extending prior works from
image classification. Through extensive experiments, we of-
fer four insights for dense tasks: (i) tokens should not be
completely pruned and discarded, but rather preserved in
the feature maps for later use. (ii) reactivating previously
pruned tokens can further enhance model performance. (iii)
a dynamic pruning rate based on images is better than a
fixed pruning rate. (iv) a lightweight, 2-layer MLP can
effectively prune tokens, achieving accuracy comparable
with complex gating networks with a simpler design. We
assess the effects of these design decisions on the COCO
dataset and introduce an approach that incorporates these
findings, showing a reduction in performance decline from
∼1.5 mAP to∼0.3 mAP in both boxes and masks, compared
to existing token pruning methods. In relation to the dense
counterpart that utilizes all tokens, our method realizes an
increase in inference speed, achieving up to 34% faster per-
formance for the entire network and 46% for the backbone.
Code: https://github.com/uzh-rpg/svit/

1. Introduction
Transformers and multi-head self-attention [52] have

revolutionized the field of computer vision. Since their first
introduction, Vision Transformers (ViTs) [16, 37, 51] have
quickly become the leading model architecture for a number
of vision tasks, including image classification [21, 37, 51],
object detection [4, 9, 33, 37, 75], semantic segmentation
[10, 37, 60, 74], and others [23, 29]. Their unique ability to
perform global reasoning through pair-wise token attention
is, however, both a strength and a weakness. Although it
enhances the representational power of these architectures,
it also leads to a significant increase in computational foot-

Figure 1. Top: high-level workflow of SViT, the MLP selectively
chooses tokens to be processed in the transformer block, and the
pruned tokens are preserved in feature maps and can be reactivated
in later layers. Bottom: the token useage heatmap represents the
number of layers using the tokens, and shows that the computa-
tional distribution highly aligns with interested objects.

print, limiting the adoption of ViTs in resource-constrained
settings.

A viable strategy for mitigating the substantial compu-
tational demands involves leveraging input-aware inference
to prune less critical features within the input space. While
this strategy has previously been applied to CNNs [20], re-
sulting in improved FLOP measurements, the intrinsic reg-
ularity of convolution operations makes it difficult to obtain
noticeable speedup on hardware. However, the advent of
ViTs paves the way for input-space pruning, as the MLPs
in ViTs operate pointwise and self-attention inherently ac-
commodates an arbitrary number of tokens. Consequently,
pruning tokens can readily attain remarkable speedup with-
out necessitating any additional hardware adaptations.

Initial investigations in the domain of token pruning have
encompassed the utilization of gating networks to identify
less significant tokens [32, 39, 44] or eliminating tokens re-
ceiving minimal attention from the class token [19, 34, 61].
These approaches, while having demonstrated their effec-
tiveness, were only applied to classification and have yet
to be applied to other tasks such as object detection and
instance segmentation. To the best of our knowledge, the
exploration of token pruning in the context of dense tasks

https://github.com/uzh-rpg/svit/


Figure 2. A high-level comparison of the overall workflows for various token pruning methods. ① Selection Module: may utilize a gating
module (before self-attention) or be attention-based (after self-attention). ② Number of pruned tokens: can be either dynamic or fixed. ③

Treatment of pruned tokens: either removing or preserving them. If they are preserved within feature maps, there is an additional option to
reactivate them.

remains still notably scarce (Section 2)1. In this paper,
we investigate token pruning for object detection and in-
stance segmentation on isotropic vision transformers, with
the aim of bridging the gap between classification and dense
tasks. During our preliminary experiments, we adapted
prior methods to dense tasks and discovered they have ap-
parent performance loss (Section 4.1). With extensive ex-
periments, we identified four key insights that are beneficial
for improving model performance and simplifying model
designs (Section 3.2), leading to a method that outperforms
previous state-of-the-art token pruning methods by a signif-
icant margin on object detection and instance segmentation
(Section 4.2). Our insights are as follows:

Token preserving on dense tasks. Unlike classifica-
tion, where pruned tokens can be removed permanently,
dense prediction tasks benefit from preserving them in fea-
ture maps for subsequent utilization by the detection head.

Token reactivation as needed. In addition to preserv-
ing them, reactivating pruned tokens in the backbone on de-
mand can improve model performance by adapting to layer-
wise attention and recovering mis-pruned tokens for better
robustness. A token once pruned has the flexibility to be
reused at any subsequent layer, including the immediately
succeeding one.

Pruning with a dynamic rate. The concept of a dy-
namic pruning rate, previously introduced for classification
tasks in [19, 32, 63], optimizes model performance within
the same computation resource by allocating more tokens
for complex images and fewer for simple images. It gains

1The most related work on dense tasks is an extended version [43] of
DynamicViT. However, it focuses on skipping MLPs in hierarchical mod-
els for dense tasks.

additional efficacy when integrated with token reactivation
on dense prediciton tasks.

2-layer MLP is sufficient. A lightweight MLP is suf-
ficient to select which tokens should be pruned, deliver-
ing almost the same accuracy as more complex gating net-
works [32, 44] used for classification.

We evaluate these design choices and build upon them
to introduce a straightforward model to selectively prune
tokens, which we refer to as SViT. We demonstrate that
this model surpasses previous state-of-the-art token pruning
models by reducing loss in mAP from∼1.5 to∼0.3 for both
boxes and masks, and accelerates the inference speed of the
dense counterpart by up to 34% for the whole network and
46% for the backbone.

2. Related Work

Vision Transformer Originating in the NLP com-
munity [3, 15, 36, 42], Transformers [52] have lately ac-
quired popularity also in the field of computer vision for
their ability to capture long-range relations [23, 29]. The
seminal work on Vision Transformers (ViTs) [16] demon-
strated state-of-the-art classification performance, when
pre-trained on large-scale datasets.

Since then, several improvements have been proposed to
the ViT architecture, including improved tokens’ aggrega-
tion schemes [24, 27, 51, 66], multi-scale hierarchical de-
signs [7,13,37,56–59], and hybrid architectures combining
CNNs [65, 70, 71] . Apart from design improvements, re-
searchers have also investigated their use in more complex
vision tasks [9,33,37,64,72,73]. This paper fits in between
these two lines of research, as we not only focus on archi-



tecture design choices, but also extend their usage to dense
prediction tasks such as object detection and instance seg-
mentation.

Transformer Acceleration Various methods have
been explored for optimizing Transformers’ high compu-
tational cost, including designing alternative lightweight
attention formulations [11, 28, 31, 46, 50, 54, 68], remov-
ing unnecessary network modules [17, 40, 53] approximat-
ing attention multiplications with low-rank decompositions
[6, 12, 55], distilling knowledge into a more efficient stu-
dent network [48, 51, 69], and extending network quantiza-
tion techniques for Transformers [1,18,30,49,67]. Further-
more, acceleration techniques specific to ViTs have been
proposed [19, 34, 41, 44, 47, 61, 63] by exploiting the redun-
dancy in the input patches to early drop tokens for saving
computation.

Input Space Pruning As not all regions in the in-
put image are equally important, pruning redundant areas
can save computation without apparent accuracy loss. Spa-
tially ACT [20] prunes pixels for CNNs. Numerous token
pruning methods for ViTs have been developed on classifi-
cation, including using gating networks [32, 39, 44], atten-
tion scores [19,34,61], reinforcement learning [41] and oth-
ers [2, 47, 63]. Among them, ToMe [2] proposes to merge
tokens rather than remove them. A few works also consider
dense tasks: SparseViT [8] prunes coarse windows for pyra-
mid transformers, while we prune finer-grained tokens for
isotropic transformers. SparseDETR [45] focuses on im-
proving the efficiency of DETR [4] architecture, while we
focus on improving transformer-based backbones. STViT-
R [5] sparsifies tokens by repeatedly clustering them into
a few semantic tokens and restoring the spatial resolution,
while we keep the spatial resolution with detailed position
information.

3. Token Pruning on dense prediction tasks

3.1. Revisit prior token pruning approaches

We review the majority of token pruning techniques by
illustrating the high-level distinctions in their workflows.
As shown in Table 1, these approaches can be classified
along four dimensions: the selection module, use of dy-
namic pruning rate, preservation of pruned tokens, and re-
activation of pruned tokens.

The overall workflow of token pruning is depicted in Fig-
ure 2 and can be summarized as follows: initially, the input
image is partitioned into non-overlapping patches, which
are linearly transformed into tokens and subsequently pro-
cessed by the initial ViT blocks to obtain comprehensive
enough feature representations. Then, token selection mod-
ules are introduced to identify tokens for pruning, conse-
quently accelerating computations due to the reduced num-
ber of tokens. Note that, here, acceleration comes out-of-

the-box as self-attention can adaptively process fewer num-
ber of tokens without any modification.

3.2. Insights and Observations

Preserve pruned tokens within feature maps. A notable
distinction between classification and dense prediction tasks
is how the pruned tokens should be treated. In classification,
token pruning methods often remove tokens permanently
because pruned tokens will no longer influence the result, as
the classification solely depends on the class token, which
is always kept.

However, on dense prediction tasks, the pruned tokens
can still be utilized by subsequent detection heads, even if
they are no longer updated in the backbone. Therefore, it is
beneficial to keep the already computed features for pruned
tokens for later use. When pruned tokens are not preserved,
we recover a dense feature map by placing remaining tokens
in their original location, and zero-pad the pruned ones [62].
Preserving pruned tokes, instead, built the feature map in-
crementally, each time replacing updated tokens, but keep-
ing pruned ones unchanged. Preserving pruned tokens can
be as fast as removing them (see Table 2), and improves
model performance on various models on dense tasks.

Reuse preserved tokens on demand. As pruned tokens
are preserved within feature maps, it is natural to consider
whether they should be used again. In the scope of this pa-
per, ”token preserving” refers to the utilization of pruned
tokens only by detection heads, whereas ”token reactiva-
tion” implies that these tokens can also be reintroduced
into the backbone for subsequent layers. A counterargu-
ment to token reactivation may say that ViT should prior-
itize allocating computing resources to informative tokens
as much as possible [61], and reactivating pruned tokens
may potentially undermine this principle. However, the
definition of ”informative” may vary across different lay-
ers since ViT could concentrate on distinct regions at each
layer, see supplementary material. Thus, the ability to reac-
tivate pruned tokens accommodates the distinct attentions of
various ViT layers, enabling the model to prioritize its cur-
rent focus before returning to other relevant tokens in subse-
quent blocks. Additionally, this makes pruning more robust,
as mis-pruned tokens have the opportunity to become active
again, see Figure 5b. Ultimately, these advantages lead to a
more effective overall utilization of tokens under the same
token usage per block. In Section 4, we allow the model
to learn whether and when to reuse pruned tokens by itself,
and show that this ability can improve model accuracy by a
0.4 box AP and 0.3 mask AP.

A 2-layer MLP can substitute complex gating networks
for pruning tokens. Prior token pruning approaches tend



Selection Module
Dynamic
Pruning

Rate

Preserve
Pruned
Tokens

Reactivate
Pruned
Tokens

Model

gating module ✓ ✓ ✓ SViT (Ours)
gating module ✗ ✗ ✗ DynamicViT [44]
attention-based ✓ ✗ ✗ ATS [19]
attention-based ✗ ✓ ✗2 Evo-ViT [61]
attention-based ✗ ✗ ✗ EViT [34]

2 While Evo-ViT is theoretically capable of reusing tokens by design, it tends to use the same
tokens throughout the network, details in the supplementary material.

Table 1. A high-level examination of token pruning techniques. The gating module refers to an auxiliary compact network, designed to
predict the tokens to be pruned. Attention-based selection involves pruning tokens that receive minimal attention from the class token.

(a) Two-layer gating network (b) Gating network used in DynamicViT
Figure 3. Different types of gating networks for predicting tokens to be pruned. (a) is used by SViT, and (b) is used by DynamicViT [44].
Normalization and activation functions are omitted for conciseness. C represents the dimension of tokens.

to employ complex gating networks for predicting the to-
kens to be pruned. In DynamicViT [44], several MLPs are
utilized in conjunction with mean and concatenation opera-
tions to learn both token-specific and global information for
determining which tokens should be pruned, as illustrated
in Figure 3b. SPViT [32], introduces a more intricate gat-
ing network that incorporates an additional head branch to
calculate score weights for each individual head. However,
in Section 4.1, our study shows that a simple 2-layer MLP in
Figure 3a works equally well and simplifies the architecture
design.

A dynamic pruning rate is better than a fixed prun-
ing rate. Several studies [19, 32, 63] in the context of
classification have implemented dynamic pruning rates,
adaptively pruning varying numbers of tokens based on
the input images during inference. We further validate
its effectiveness in the context of object detection and
instance segmentation, and show it is one key components
to achieve optimal performance in Section 4.

3.3. SViT: Selective Vision Transformer

In light of the insights, we introduce the Selective Vision
Transformer (SViT), a simple yet effective token pruning
model, which seamlessly integrates all prior findings.

SViT is depicted in Figure 1. For the selection module,
we employ a 2-layer perceptron followed by Gumbel Soft-
max [26, 38] to make the discrete decision differentiable,

as shown in Eq (1). By placing this selection module be-
fore the entire ViT block, we facilitate acceleration for both
self-attention and the MLP in the transformer encoder:

p = Softmax(MLP(x)) ∈ RN×2, x ∈ RN×C

M = GumbelSoftmax(p) ∈ {0, 1}N ,

x←M⊙ ViTBlock(x,M) + (1−M)⊙ x

(1)

where x represents the input tokens, p is the intermediate
sampling probability, M signifies token masks, and ⊙ is
Hadamard product. The MLP transforms token dimensions
from C to C

4 , and C
4 to 2. The ViTBlock takes in the masks

M and eliminates the influence of pruned tokens on other
tokens during training by setting the corresponding columns
in the attention matrix to 0. During inference, we simply
gather the active tokens, feed them to the current ViT Block,
and then scatter them back to the previous feature map.

For controlling the number of pruned tokens, similar to
[32], we use a dynamic pruning ratio loss during training as
in Eq (2):

Ldynamic =
1

L

∑
l∈L

((
1

BN

∑
b∈B

∑
n∈N

Mb,l
n )− tl)2,

Ltotal = Ltask + λLdynamic

(2)

where Mb,l
n denotes the mask at batch b and layer l for

the n-th token, tl represents the target keeping ratio at
layer l, and λ is a hyper-parameter to weight losses. It is



Figure 4. SViT learns to allocate computation to visually more important tokens. The token usage heatmap shows the number of layers
used for each token and reflects computational distribution over the input space, which highly align with fine-grained object contours. More
visualizations and dataset-level statistics are in the supplementary material.

worth noting that the token usage, i.e averaged mask val-
ues: 1

BN

∑
b∈B

∑
n∈N Mb,l

n , is averaged not only across
all tokens but also across images in a batch, making the loss
aware of the trade-off between token usage and accuracy,
resulting in more tokens allocated for complex images and
fewer tokens for simpler images. For a comparison with a
fixed pruning ratio loss, see Section 4.1.

4. Experiments

We conduct experiments on the COCO 2017 object de-
tection and instance segmentation dataset [35], which con-
sists of 118K training images and 5K validation images, and
provide experiments on ImageNet-1K [14] classification in
the supplementary material A. We use Mask R-CNN [25] as
our object detection framework, and employ ViT-Adapter
[9] to wrap a ViT as the backbone. The dense backbone uti-
lizes DeiT [51] with global self-attention, while the sparse
backbone adopts one of the token pruning models (Dynam-
icViT, EViT, EvoViT, ATS, SViT) with a reduced number
of tokens. By default, SViT incorporates nine gating mod-
ules, ranging from the 4-th to the 12-th layer to prune tokens
from the dense model, and adheres to the target keeping ra-
tio of [70%, 70%, 70%, 49%, 49%, 49%, 34.3%, 34.3%,
34.3%] following conventions [34, 44]. For training, we
follow the settings of ViT-Adapter [9] to train the dense

model with a 3x schedule (36 epochs). Then we finetune
each sparse model for 6 and 4 epochs for tiny and small
models, respectively, with an initial learning rate of 1e-5
and the loss hyper-parameter λ = 4 . In the following, we
first present experiments for each insight, and then compare
the derived SViT with other state-of-the-art token pruning
models on object detection and instance segmentation. Fi-
nally, we analyse the pattern of pruning and reactivation by
providing qualitative and quantitative results.

4.1. Evaluation of the insights and observations

Preserve pruned tokens within feature maps We evalu-
ate the difference between removing and preserving pruned
tokens on four state-of-the-art models: EViT [34], Evo-
ViT [61], DynamicViT [44] and ATS [19]. Some of these
models prune tokens via the attention score from the class
token, which does not naturally exist on dense tasks, and
we insert an artificial class token and find it still works well
for these models. As shown in Table 2, Evo-ViT, which in-
herently preserves pruned tokens, performs the best among
the original models. In addition, by enabling preserving
tokens, EViT and ATS both get small increase in perfor-
mance, and DynamicViT has a boost increase, as gating
networks learned end-to-end are sensitive to gradient in-
formation kept in pruned tokens, and the gradients cannot



be back-propagated to the backbone if pruned tokens are
dropped. Owing to this factor, DynamicViT-S experiences
training divergence, as indicated in 5.

Reuse preserved tokens at demand We evaluate the in-
fluence of reusing / reactivating pruned tokens on SViT in-
stead of the previous models, as models utilizing attention-
based selection cannot really reuse tokens. Attention-
based selection happens after Multi-Head Self-Attention
(MHSA), and reusing tokens in such case requires all to-
kens to participate in MHSA, leading to no computational
savings. To construct our baseline that is restricted not to
reuse pruned tokens, we multiply the mask at l-th layer by
its previous mask at l − 1-th layer following [44]: Ml ←
Ml ⊙Ml−1. This implies that active tokens will consis-
tently be a subset of previous active tokens, and pruned to-
kens cannot be used again. As the set of active tokens is
strictly decreasing, we merge selection modules with the
same keeping ratios into one selection module. Table 3
shows that by reusing pruned tokens, SViT-T gets +0.4 box
AP and +0.3 mask AP. Reactivation ratio and visualizations
samples are in Figure 5.

Dynamic pruning rate outperforms fixed pruning rate
To evaluate the influence of dynamic pruning rate vs. fixed
pruning rate, we create a baseline by changing the dynamic
ratio loss Ldynamic from equation (2) to the fixed ratio loss
Lfixed [44] as follows:

Lfixed =
1

LB

∑
l∈L

∑
b∈B

((
1

N

∑
n∈N

Ml
b,n

)
− tl

)2

, (3)

This loss does not average token usage across images
within a batch, thereby penalizing each image towards the
same keeping ratio. As indicated in Table 3, employing just
a dynamic pruning rate yields a gain of +0.2 in both box
AP and mask AP for SViT-T. When further augmented with
token reactivation, these improvements escalate to +0.4 for
box AP and +0.5 for mask AP. This substantiates both the
efficacy of implementing a dynamic pruning rate in dense
tasks and the added benefits of its integration with token
reactivation. We also provide throughput experiments with
different batch sizes in the supplementary material.

A 2-layer MLP performs as good as complex gating net-
works We evaluate the designs of the different gating
modules, as shown in Figure 3, and experiment with both
tiny and small models. Table 4 shows that using a 2-layer
MLP to predict tokens for pruning achieves the same box
AP and only -0.1 mask AP for tiny models, and -0.1 box
AP and the same mask AP for small models. This verifies
the role of 2-layer MLP as an effective and simple selection
module.

4.2. Comparison with state-of-the-art models

In this section, we compare SViT with prior art prun-
ing models adapted for dense tasks. We evaluate inference
speeds on a NVIDIA A100 GPU for both the backbones and
the entire networks. As illustrated in Table 5, sparse models
exhibit comparable relative speed gains under identical total
pruning rates, with the exception of ATS. The latter incurs
computational overhead in its inverse transform sampling
module for dealing with a large number of tokens in dense
tasks. Among sparse models, SViT gets the highest perfor-
mance for both tiny and small models. SViT-S significantly
surpasses all baseline models, narrowing the performance
drop with respect to the dense model from a range of -1.3 to
-1.8 in box AP and -1.2 to -1.7 in mask AP, down to a mere
-0.3 for both metrics. This performance advantage is con-
sistently observed in SViT-T as well. In comparison with
the dense counterpart, SViT-S improves inference speed by
∼34% and ∼46% for the entire network and the backbone,
respectively, with negligible -0.3 drop in both box AP and
mask AP.

4.3. Additional Analysis

Qualitative Results We show qualitative results of the to-
ken pruning in SViT in Figure 4, and refer to supplementary
material for more examples. The token-usage heatmap, cre-
ated by quantifying the number of active layers for each to-
ken position, distinctly highlights not only the objects them-
selves but also their fine-grained contours. For example, the
zebra’s feet and the contour of the donuts stand out clearly
against their respective backgrounds. In the case of back-
ground tokens, uniform areas such as the ground in the ze-
bra image are more prone to be pruned, whereas textured
backgrounds near objects are kept processed more. We also
present the averaged token-usage heatmap on COCO vali-
dation set in Figure 6. The heatmap reveals a higher fre-
quency of token usage in the central regions of images, due
to the common photographic tendency to place objects at
the center.

Different pruning rates We adjust the pruning rate for
SViT-S from the default 0.7 to {0.5, 0.6, 0.8, 0.9} and plot
the mAP vs. pruning rate in Figure 7. As shown in the plot,
SViT consistently achieves better speed-accuracy trade-off
than DeiT. However, we observe noticeable AP drop when
base pruning rate is as low as 0.6 or 0.5, due to too aggres-
sive pruning rates in the last three ViT blocks, i.e., 0.216
and 0.125, which is consistent with findings from classifi-
cation [44].

Reactivation distribution To further understand the be-
havior of reactivation across transformer layers, we plot the
reactivation ratio at each layer averaged on COCO valida-



DynamicViT EViT ATS Evo-ViT
remove prsv. remove prsv. remove prsv.

APbox 41.2 44.1 44.5 44.7 43.9 44.1 44.8
APmask 37.1 39.3 39.8 39.9 39.1 39.3 39.9
FPS 23.10 22.95 22.76 22.81 16.41 16.52 22.12

Table 2. Effectiveness of removing tokens vs. preserving tokens on COCO 2017. Evo-ViT inherently preserves tokens, and performs the
best among these models; Similarly, preserving tokens in feature maps increases the performance of the other three models. As anticipated,
the token removal or preservation process has a negligible impact on inference speeds; scattering updated tokens onto either a zero feature
map or the previous feature map consumes equivalent computational time.

(a) reactivation ratio per layer (b) reactivation example
Figure 5. (a) Reactivation ratio at different layers, averaged on COCO validation set. (b) Visualization of reactivated tokens. Cyan tokens
will be reactivated in later layers, while white tokens are not. Reactivated tokens are visually more important tokens.

Model dynamic reactivation APbox APmask

SViT-T ✓ ✓ 45.5 40.7
SViT-T ✗ ✓ 45.1 40.2
SViT-T ✓ ✗ 45.1 40.4
SViT-T ✗ ✗ 44.9 40.2

Table 3. The effects of dynamic pruning rate and reactivating
pruned tokens. Both can enhance performance individually, and
their combination results in a larger improvement.

Gating module
Tiny Small

APbox APmask APbox APmask

2-layer MLP 48.2 48.5 45.5 40.7
complex gating network 48.2 48.6 45.6 40.7

Table 4. Evaluation of designs for the gating module on SViT-T
and SViT-S. A simple MLP can achieve similar performance with
complex gating network, simplifying model design.

tion set in Figure 5a. In the scope of this paper, the reacti-
vation ratio at a layer (cyan colored) is defined as the ratio
of current pruned tokens that are reused in at least one later
layer in the backbone. As shown in the plot, most pruned
tokens in early layers are reused in later layers. This indi-
cates that it is harmful to fully drop tokens in early layers,
and the model chooses to recover them in succeeding layers

Figure 6. Averaged token-usage heat map of SViT-T showing
the number of active layers for each token position, averaged on
COCO [35] validation set. The resolution is interpolated to 50 x
80 tokens for all images.

to alleviate the loss. In deeper layers, although the prun-
ing rate is higher, the reactivation ratio is not apparently
increased, as it is more tolerant to drop tokens. We also ob-
serve that over 50% of reactivated tokens are immediately
reused in the succeeding layer. This observation aligns with
the notion that the utility of a token diminishes if it remains
unused for an extended period, given that feature character-
istics often vary between deep and shallow layers.



Model in
ViT-Adapter

Tiny Small

APbox APmask FPSw FPSb APbox APmask FPSw FPSb

DeiT [51] 45.8 40.9 18.45 27.61 48.5 42.8 11.70 14.20

EViT [34] 44.5 (-1.3) 39.8 (-1.1) 22.76 35.80 47.1 (-1.4) 41.6 (-1.2) 15.34 20.01
EvoViT [61] 44.8 (-1.0) 39.9 (-1.0) 22.12 34.33 47.2 (-1.3) 41.6 (-1.2) 15.48 20.26
ATS [19] 43.9 (-1.9) 39.1 (-1.8) 16.41 22.38 46.7 (-1.8) 41.1 (-1.7) 11.63 14.24
DyViT [44] 41.2 (-4.6) 37.1 (-3.8) 23.10 36.45 diverge diverge / /
DyViT+prsv. 44.1 (-1.7) 39.3 (-1.6) 22.95 36.38 47.2 (-1.3) 41.6 (-1.2) 15.66 20.79
SViT (Ours) 45.5 (-0.3) 40.7 (-0.2) 22.32 34.69 48.2 (-0.3) 42.5 (-0.3) 15.75 20.78

Table 5. Comparison of token pruning methods on COCO object detection and instance segmentation. DeiT is the dense model using all
tokens. FPSw and FPSb represents the inference speeds for the whole network and the backbone, respectively, which are measured with
batch size 1 on a single A100 GPU.

Figure 7. Trade-off between speed and accuracy across various
pruning rates in ViT-Adapter with dense DeiT and sparse SViT
configurations.

Reactivation areas In the previous section we analysed
the reactivation ratio for different model layers, and here we
show reactivation regions in images as visualized in Figure
5b. The token pruning is shown at middle layers of SViT. As
anticipated, background tokens are predominantly not reac-
tivated (white colored), while pruned tokens in interested
objects, such as person, soccer and computers, are selec-
tively reactivated (cyan colored). When faced with a high
pruning rate that necessitates the temporary removal of to-
kens associated with objects of interest, the model strategi-
cally reactivates these tokens at later layers. This approach
allows for a more expansive set of active tokens compared
to scenarios where token reactivation is not an option.

5. Limitations and Societal Impacts

Limitations The aim of our work is to bridge the gap of
token pruning between classification and dense tasks for
isotropic vision transformers. We do not focus on pyramidal
vision transformers, nor on exploring better pruning rates.
These topics are covered by some concurrent works and will
be further studied in future works.

Societal Impact The fintuning of sparse pruning is con-
ducted after the model is fully trained and will introduce
some additional energy consumption for training. How-
ever, this cost can be amortized once the model is deployed
with improved inference efficiency. The proposed method
predicts pruned tokens based on learned statistics from the
training dataset, any bias inherent in the training data will
be mirrored in the pruning process, and may result in the
model disregarding biased content and exacerbating fair-
ness issues.

6. Conclusions
In this work, we revisit the designs of token pruning for

vision transformers in the context of object detection and
instance segmentation. We provide four insights that can
enhance token pruning on dense tasks: the pruned tokens
should not be removed but preserved in feature maps; reac-
tivating pruned tokens at demand can boost model perfor-
mance; a dynamic pruning rate is helpful on dense tasks;
and a 2-layer MLP can be as effective as more complex gat-
ing networks. By incorporating these insights together, we
present a token pruning method that outperforms prior state-
of-the-arts by a significant margin and accelerates backbone
inference by ∼46% with negligible loss in accuracy. We
hope these insights and encouraging results can inspire fur-
ther research on ViT acceleration for dense prediction tasks
beyond image classification.

7. Acknowledgements
This work was supported by the National Centre of

Competence in Research (NCCR) Robotics (grant agree-
ment No. 51NF40-185543) through the Swiss National
Science Foundation (SNSF), and the European Research
Council (ERC) under grant agreement No. 864042 (AG-
ILEFLIGHT).



Supplementary Material

A Results on ImageNet-1K classification
Setup We also train and evaluate SViT-S on ImageNet-1K
[14]. We follow the training settings in DeiT [51] and ini-
tialize our model from public pre-trained weights of DeiT-
S. We use an AdamW optimizer to train the our model for
30 epochs and set the learning rate as batchsize

512 × 1e-5. The
model is trained on a single machine with 4 V100 GPUs
with a batch size of 1024.

Results We compare the throughput of SViT-S and the
dense counterpart DeiT-S in Table 6. SViT achieves
47% higher throughput than the dense counter part while
only sacrificing -0.4% accuracy, effectively improving the
accuracy-speed trade off. We also compare SViT-S with
other token pruning models in Table 7. Although SViT
is not originally targeted at classification tasks, it outper-
forms all models that use gating modules (DynamicViT
[44], SPViT [32], AdaViT [39]), the models using special
pruning techniques such as adaptive computation time [22]
(A-ViT [63]) and reinforcement learning (IA-RED2 [41]),
and a model that uses class token’s attention (Evo-ViT [61]).
However, when it comes to classification, EViT and ATS
demonstrate superior performance over SViT. This is pri-
marily due to their utilization of the class token, a feature
specifically designed for the classification task.

Model Top-1 Accuracy GFLOPS images/s
DeiT-S [51] 79.8 4.6 1524
SViT-S 79.4 3.0 2246

Table 6. Model Performance of DeiT-S and SViT-S. Throughput
is measured on a single A100 GPU with batch size 512.

Model epochs GFLOPS Top-1 Acc(%)

DeiT-S [51] - 4.6 79.8
DynamicViT ‡ [44] 30 3.0 79.3 (-0.5)
EViT [34] 30 3.0 79.5 (-0.3)
Evo-ViT [61] 300 * 3.0 79.4 (-0.4)
Evo-ViT [61] 30 † 3.0 79.2 (-0.6)
A-ViT [63] 100 3.6 78.6 (-1.3)
ATS [19] 30 3.0 79.7 (-0.1)
AdaViT [39] 150 2.3 77.3 (-2.5)
IA-RED2 [41] 90 3.2 79.1 (-0.7)
SPViT ‡ [32] 60 2.7 79.3 (-0.5)
SViT (Ours) 30 3.0 79.4 (-0.4)

Table 7. Model performance on ImageNet-1K. * means training
from scratch. † indicates experiments trained by us. ‡ uses addi-
tional knowledge distillation. Note that EViT, Evo-ViT and ATS
depend on the class token, designed specifically for classification,
to help improve their performance. On the other hand, SViT tar-
gets more general tasks and does not rely on the attention map of
the class token for token pruning.

B Influence of Batch Size on Throughput

It is not straightforward to do batch inference with dif-
ferent number of tokens per image, as the tensor cannot be
easily arranged in a regular shape, therefore, we use pytorch
nested tensor2 to efficiently process the varying-length se-
quences of tokens. The tokens to be processed are first
gathered into a nested tensor, then passed to a ViT block
constructed with nested tensor operations, and finally un-
nested and scattered back to the feature map.

We test the throughput of SViT and DeiT on ImageNet-
1k for varying batch sizes as follows: for each batch size,
we randomly fetch 30 batches from the validation set, and
for each batch we run the inference for 50 times and take
the average throughput as the speed for this batch. Then we
calculate the mean and standard deviation over the speeds
of the batches. As seen in Figure 8, proportional throughput
gains can be obtained from increased batch sizes for SViT,
which verifies that nested tensor could be a promising way
of handling the varying-sized tensors in the dynamic sce-
nario. However, note that the nested tensor is not fully de-
veloped and is still in a prototype stage, and leads to some
overhead when the batch size is small.

In the case of object detection and instance segmenta-
tion, we abstain from using nested tensors due to the diffi-
culties associated with creating a large batch size for high-
resolution images. Consequently, we centered our efforts
on inference with a batch size of 1 for these dense tasks.
Future advancements in this technique, along with other
related breakthroughs, may facilitate additional speedups.
These improvements could be readily integrated into SViT,
as previously demonstrated in classification tasks.

Figure 8. Throughput vs. Batch Sizes of SViT-S and DeiT-S on
ImageNet-1K.

2https://pytorch.org/docs/1.13/nested.html

https://pytorch.org/docs/1.13/nested.html


C ViT has different layer-wise attention
Vision Transformers do not always attend to the same

set of tokens, even for the important ones. An illustrated
in the example in Figure 9, the dense DeiT-S [51] first at-
tends to the background tokens in the 1st layer, and then
attends to joint regions of the human face and the rabbit in
the next three layers. After that, the human face, rabbit eyes,
and rabbit ears are attended in different layers, respectively.
This inspired us to reactivate previously pruned tokens, as
each layer can have its customized preference on tokens.

D Discussion on Prior-Art Token Pruning
Methods

Since the class token does not originally exist for ViT
models on dense tasks, we append a randomly initialize a
class token for attention-based token pruning models (EViT
[34], ATS [19], and Evo-ViT [61]), which can help them
prune tokens reasonably on dense tasks.

Among these models, Evo-ViT is unique because it pre-
serves pruned tokens in the feature map. However, it has a
tendency to converge to a consistent set of tokens and thus
does not reuse pruned tokens, as shown in Figure 10. We
conjecture this is because Evo-ViT uses a moving average

to update the attention scores of processed tokens, which in
turn is used to select tokens to be pruned. Since updating
the scores is only done for processed tokens, the pruned
tokens do not have a chance to change their scores, and
thus causing the model to consistently use the same selec-
tion scheme. As Figure 10 illustrates, Evo-ViT consistently
selects bottom-left tokens from its first layer onward, even
though they are irrelevant background tokens. In contrast,
our model can dynamically choose different tokens for each
layer, and reuse important ones.

E Qualitative Examples
We provide more visualizations of SViT-S on COCO in

Figure 11. To better understand the token selection of SViT,
we split the tokens into two sets: object tokens and back-
ground tokens, according to the prediction mask. Then we
compute the token usage for them separately. The first ob-
servation is that SViT uses a larger ratio of foreground to-
kens than background tokens. When the proportion of the
object in the image is small, the foreground token usage can
be as high as 90%. In cluttered images, such as the sheep
example in the 4th row, not all foreground tokens are es-
sential; less discriminative foreground tokens can still be
pruned without affecting performance.



Figure 9. The first row: the attention from the 1st layer to the 6th layer; the second row: the attention maps from the 7th layer to the 12th

layer. Compared to the dense DeiT-S model, SViT-S keeps the most important features for each layer, especially the human face, the rabbit
eyes, and the rabbit ear. Since ViT’s attentions can be different across different layers, SViT does not keep the same tokens across different
layers. The attention maps are visualized as the mean of the attention from class token’s heads.

Figure 10. Top: token pruning for Evo-ViT-T. Bottom: token pruning for SViT-T. Evo-ViT has the same keep ratio per layer, and tends to
use the same set of tokens for all its pruning layers, so the selection largely depends on its first pruning layer, which may not be optimal.
SViT can prune tokens independently for each layer, which is learned by the gating MLPs, and can reuse tokens according as needed.



Figure 11. More visualizations of SViT-S on COCO validation set. The token usage heat map shows the number of used layers per token.
The tokens are further split into two sets: foreground tokens and background tokens, and token usages are computed for them separately.



References
[1] Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,

Vivek Menon, Sun Choi, Kushal Datta, and Vikram Sale-
tore. Efficient 8-bit quantization of transformer neu-
ral machine language translation model. arXiv preprint
arXiv:1906.00532, 2019. 3

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. To-
ken merging: Your ViT but faster. In Int. Conf. Learn.
Representations (ICLR), 2023. 3

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020. 2

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In Eur. Conf.
Comput. Vis. (ECCV), 2020. 1, 3

[5] Shuning Chang, Pichao Wang, Ming Lin, Fan Wang,
David Junhao Zhang, Rong Jin, and Mike Zheng Shou. Mak-
ing vision transformers efficient from a token sparsification
view. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 6195–6205, 2023. 3

[6] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri
Rudra, and Christopher Ré. Scatterbrain: Unifying sparse
and low-rank attention approximation. arXiv preprint
arXiv:2110.15343, 2021. 3

[7] Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Re-
gionvit: Regional-to-local attention for vision transformers.
arXiv preprint arXiv:2106.02689, 2021. 2

[8] Xuanyao Chen, Zhijian Liu, Haotian Tang, Li Yi, Hang
Zhao, and Song Han. Sparsevit: Revisiting activation spar-
sity for efficient high-resolution vision transformer. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2023. 3

[9] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter
for dense predictions. In Int. Conf. Learn. Representations
(ICLR), 2023. 1, 2, 5

[10] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. Advances in Neural Information Processing Systems,
34:17864–17875, 2021. 1

[11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019. 3

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 3

[13] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021. 2

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2009. 5, 9

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In Int. Conf. Learn. Representations (ICLR), 2021. 1,
2

[17] Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout. arXiv
preprint arXiv:1909.11556, 2019. 3

[18] Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Herve Jegou, and Armand Joulin.
Training with quantization noise for extreme model com-
pression. arXiv preprint arXiv:2004.07320, 2020. 3

[19] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Juergen Gall. Adaptive token sampling for efficient vision
transformers. In Eur. Conf. Comput. Vis. (ECCV), 2022. 1,
2, 3, 4, 5, 8, 9, 10

[20] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li
Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2017. 1, 3

[21] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing for
faster inference. In Int. Conf. Comput. Vis. (ICCV), 2021. 1

[22] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016. 9

[23] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing
Xu, Yixing Xu, et al. A survey on vision transformer. IEEE
Trans. Pattern Anal. Mach. Intell., 45(1):87–110, 2022. 1, 2

[24] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances in
Neural Information Processing Systems, 34:15908–15919,
2021. 2

[25] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Int. Conf. Comput. Vis. (ICCV), 2017.
5

[26] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In Int. Conf. Learn.
Representations (ICLR), 2017. 4

[27] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun
Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens
matter: Token labeling for training better vision transform-
ers. Advances in neural information processing systems,
34:18590–18602, 2021. 2



[28] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In Proc. Int. Conf. Mach.
Learning (ICML), pages 5156–5165. PMLR, 2020. 3

[29] Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1–41, 2022. 1, 2

[30] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Ma-
honey, and Kurt Keutzer. I-bert: Integer-only bert quanti-
zation. In Proc. Int. Conf. Mach. Learning (ICML), pages
5506–5518. PMLR, 2021. 3

[31] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020. 3

[32] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao Tang, and
Yanzhi Wang. Spvit: Enabling faster vision transformers
via soft token pruning. In Eur. Conf. Comput. Vis. (ECCV),
2022. 1, 2, 3, 4, 9

[33] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In Eur. Conf. Comput. Vis. (ECCV), pages 280–296,
2022. 1, 2

[34] Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue
Wang, and Pengtao Xie. EViT: Expediting vision trans-
formers via token reorganizations. In Int. Conf. Learn.
Representations (ICLR), 2022. 1, 3, 4, 5, 8, 9, 10

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Eur.
Conf. Comput. Vis. (ECCV), 2014. 5, 7

[36] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 2

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Int. Conf. Comput. Vis. (ICCV), 2021. 1, 2

[38] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In Int. Conf. Learn. Representations
(ICLR), 2017. 4

[39] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan,
Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit:
Adaptive vision transformers for efficient image recognition.
In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2022.
1, 3, 9

[40] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen
heads really better than one? Advances in neural information
processing systems, 32, 2019. 3

[41] Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang
Wang, Rogerio Feris, and Aude Oliva. Ia-red2:
Interpretability-aware redundancy reduction for vision trans-
formers. In Advances in Neural Information Processing
Systems, volume 34, pages 24898–24911, 2021. 3, 9

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training. 2018. 2

[43] Yongming Rao, Zuyan Liu, Wenliang Zhao, Jie Zhou, and
Jiwen Lu. Dynamic spatial sparsification for efficient vi-
sion transformers and convolutional neural networks. IEEE
Trans. Pattern Anal. Mach. Intell., 2023. 2

[44] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicVit: Efficient vision
transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems, 2021. 1, 2, 3, 4,
5, 6, 8, 9

[45] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Sae-
hoon Kim. Sparse detr: Efficient end-to-end object detection
with learnable sparsity. In Int. Conf. Learn. Representations
(ICLR), 2022. 3

[46] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
Grangier. Efficient content-based sparse attention with
routing transformers. Transactions of the Association for
Computational Linguistics, 9:53–68, 2021. 3

[47] Michael S Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: What can
8 learned tokens do for images and videos? arXiv preprint
arXiv:2106.11297, 2021. 3

[48] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019. 3

[49] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao,
Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Q-
bert: Hessian based ultra low precision quantization of bert.
In AAAI Conf. Artificial Intell., volume 34, pages 8815–
8821, 2020. 3

[50] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-
Cheng Juan. Sparse sinkhorn attention. In Proc. Int. Conf.
Mach. Learning (ICML), pages 9438–9447. PMLR, 2020. 3

[51] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers & distillation through at-
tention. In Proc. Int. Conf. Mach. Learning (ICML), July
2021. 1, 2, 3, 5, 8, 9, 10

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017. 1, 2

[53] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. Analyzing multi-head self-attention: Spe-
cialized heads do the heavy lifting, the rest can be pruned. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5797–5808, Florence,
Italy, July 2019. Association for Computational Linguistics.
3

[54] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret.
Fast transformers with clustered attention. Advances in
Neural Information Processing Systems, 33:21665–21674,
2020. 3



[55] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 3

[56] Wenxiao Wang, Wei Chen, Qibo Qiu, Long Chen, Boxi Wu,
Binbin Lin, Xiaofei He, and Wei Liu. Crossformer++: A
versatile vision transformer hinging on cross-scale attention.
arXiv preprint arXiv:2303.06908, 2023. 2

[57] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In Int. Conf. Comput. Vis.
(ICCV), pages 568–578, 2021. 2

[58] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):415–424, 2022. 2

[59] Wenxiao Wang, Lulian Yao, Long Chen, Binbin Lin, Deng
Cai, Xiaofei He, and Wei Liu. Crossformer: A versatile
vision transformer hinging on cross-scale attention. In Int.
Conf. Learn. Representations (ICLR), 2021. 2

[60] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 1

[61] Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke
Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and
Xing Sun. Evo-vit: Slow-fast token evolution for dynamic
vision transformer. In AAAI Conf. Artificial Intell., 2022. 1,
3, 4, 5, 8, 9, 10

[62] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and
Xilin Chen. Joint feature learning and relation modeling for
tracking: A one-stream framework. In Eur. Conf. Comput.
Vis. (ECCV), 2022. 3

[63] Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-ViT: Adaptive tokens
for efficient vision transformer. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2022. 2, 3, 4, 9

[64] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen
Lu, and Jie Zhou. Pointr: Diverse point cloud completion
with geometry-aware transformers. In Int. Conf. Comput.
Vis. (ICCV), 2021. 2

[65] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei
Yu, and Wei Wu. Incorporating convolution designs into vi-

sual transformers. In Int. Conf. Comput. Vis. (ICCV), pages
579–588, 2021. 2

[66] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Int. Conf. Comput. Vis. (ICCV),
2021. 2

[67] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS),
pages 36–39. IEEE, 2019. 3

[68] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big
bird: Transformers for longer sequences. Advances in neural
information processing systems, 33:17283–17297, 2020. 3

[69] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin
Xiao, Jianlong Fu, and Lu Yuan. Minivit: Compressing vi-
sion transformers with weight multiplexing. In Int. Conf.
Comput. Vis. (ICCV), 2022. 3

[70] Qinglong Zhang and Yu-Bin Yang. Rest: An efficient
transformer for visual recognition. Advances in Neural
Information Processing Systems, 34:15475–15485, 2021. 2

[71] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, and
Tomas Pfister. Aggregating nested transformers. arXiv
preprint arXiv:2105.12723, 2(3):5, 2021. 2

[72] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Int. Conf. Comput.
Vis. (ICCV), 2021. 2

[73] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose estima-
tion with spatial and temporal transformers. In Int. Conf.
Comput. Vis. (ICCV), 2021. 2

[74] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic seg-
mentation from a sequence-to-sequence perspective with
transformers. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2021. 1

[75] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1


	. Introduction
	. Related Work
	. Token Pruning on dense prediction tasks
	. Revisit prior token pruning approaches
	. Insights and Observations
	. SViT: Selective Vision Transformer

	. Experiments
	. Evaluation of the insights and observations
	. Comparison with state-of-the-art models
	. Additional Analysis

	. Limitations and Societal Impacts
	. Conclusions
	. Acknowledgements

