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What is Visual Odometry (VO) ?

VO is the process of incrementally estimating the pose of the vehicle by
examining the changes that motion induces on the images of its onboard
cameras

input output

.........................................................

Image sequence (or video stream)
from one or more cameras attached to a moving vehicle RO1 le ) Ri
to, Ly, b

Camera trajectory (3D structure is a plus):

—
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Assumptions

» Sufficient illumination in the environment

» Dominance of static scene over moving objects

» Enough texture to allow apparent motion to be extracted

» Sufficient scene overlap between consecutive frames

Is any of these scenes good for VO? Why?
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Why VO ?

» Contrary to wheel odometry, VO is not affected by wheel slip in
uneven terrain or other adverse conditions.

» More accurate trajectory estimates compared
to wheel odometry
(relative position error 0.1% — 2%)

» VO can be used as a complement to
= wheel odometry
= GPS
= inertial measurement units (IMUs)
= laser odometry

A RTK GPS
! '_k-— Visual Odometry

z(m)
I o

» In GPS-denied environments,
such as underwater and aerial,
VO has utmost importance
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Working Principle
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VO Flow Chart

» VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization
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VO Drift

» The errors introduced by each new frame-to-frame
motion accumulate over time

~ This generates a drift of the
estimated trajectory from the real path

The uncertainty of the camera pose at C, is a combination of
the uncertainty at C,_, (black solid ellipse) and the uncertainty
of the transformation T}, ,_, (gray dashed ellipse)

Copyright of Davide Scaramuzza - davide.scaramuzza@ieee.org - https://sites.google.com/site/scarabotix/



VO or Structure from Motion (SFM) ? (1/2)

» SFM is more general than VO and tackles the problem of 3D reconstruction of
both the structure and camera poses from unordered image sets

» The final structure and camera poses are typically refined with an offline
optimization (i.e., bundle adjustment), whose computation time grows with the
number of images

This video can be seen at

Reconstruction from 3 million images from Flickr.com
Cluster of 250 computers, 24 hours of computation!
Paper: “Building Rome in a Day”, ICCV’'09
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http://youtu.be/kxtQqYLRaSQ
http://youtu.be/kxtQqYLRaSQ

VO or Structure from Motion (SFM) ? (2/2)

» VO is a particular case of SFM

» VO focuses on estimating the 3D motion of the camera
sequentially (as a new frame arrives) and in real time.

» Bundle adjustment can be used (but it's optional) to refine the
local estimate of the trajectory

» Terminology: sometimes SFM is used as a synonym of VO
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VO vs. Visual SLAM (1/2)

» The goal of SLAM in general is to obtain a global, consistent estimate of
the robot path. This is done through identifying loop closures. When a
loop closure is detected, this information is used to reduce the drift in both
the map and camera path (global bundle adjustment).

» Conversely, VO aims at recovering the path incrementally, pose after
pose, and potentially optimizing only over the last m poses path
(windowed bundle adjustment)
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Before loop closing After loop closing
Image courtesy of Clemente et al. RSS’07
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VO vs. Visual SLAM (2/2)

» VO only aims to the local consistency of the
trajectory

» SLAM aims to the global consistency of the

trajectory and of the map

[T T
B N T e H
L L
] g

» VO can be used as a building block of SLAM

Visual odometry
» VO is SLAM before closing the loop!

» The choice between VO and V-SLAM depends or
the tradeoff between performance and
consistency, and simplicity in implementation.

~ VO trades off consistency for real-time
performance, without the need to keep track of -,
all the previous history of the camera.

Visual SLAM
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Outline

» Brief history of VO

» Problem formulation

» Camera modeling and calibration

» Motion estimation

» Robust estimation

» Error propagation

» Camera-pose optimization (bundle adjustment)

» Discussion
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Brief history of VO

1996: The term VO was coined by Srinivasan to define motion orientation
in honey bees.

1980: First known stereo VO real-time implementation on a robot by Moraveck
PhD thesis (NASA/JPL) for Mars rovers using a sliding camera. Moravec invented a
predecessor of Harris detector, known as Moravec detector

1980 to 2000: The VO research was dominated by NASA/JPL in preparation of
2004 Mars mission (see papers from Matthies, Olson, etc. From JPL)

2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity

2004. VO was revived in the academic environment
by Nister «Visual Odometry» paper.
The term VO became popular.




Outline

» Brief history of VO

> Problem formulation

» Camera modeling and calibration

» Motion estimation

» Robust estimation

» Error propagation

» Camera-pose optimization (bundle adjustment)

» Discussion

Copyright of Davide Scaramuzza - davide.scaramuzza@ieee.org - https://sites.google.com/site/scarabotix/



Problem Formulation

> An agent is moving through an environment and taking images with a
rigidly-attached camera system at discrete times k

» In case of a monocular system, the set of images taken at times k is
denoted by

lon = o, o) In}

~ In case of a stereo system, there are a left and a right image at
every time instant, denoted by

Il,O:n = {11,01 LN Il,n}*
Ir,O:n = {Ir,OJ ey Ir,n}

~ In case of a stereo system, without loss of generality, the coordinate
system of the left camera can be used as the origin
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Problem Formulation

> TwWO camera positions at adjacent time instants k — 1 and k are related
by the rigid body transformation

Ry w1 Crp-
Tk:!kgl k,x{,1

> The set Ty., = {T4, ..., T,} contains all subsequent motions all subsequent
motions.

~ Finally, the set of camera poses
Con = {Co, ..., Cp} cOntains the
transformations of the camera
with respect to the initial
coordinate frame at k =0
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Problem Formulation

> The current pose C,, can be computed by concatenating all the
transformations Ty, k = 1...n, and, therefore,

Cp = Cp1Ty

with C, being the camera pose at the instant k = 0, which can be set
arbitrarily by the user
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Problem Formulation

> The main task in VO is to compute the relative transformations Tj
from the images I, and I,_; and then to concatenate the
transformations to recover the full trajectory C,.,, of the camera.

» This means that VO recovers the path incrementally, pose after
pose.

> An iterative refinement over last m poses can be performed after
this step to obtain a more accurate estimate of the local trajectory.

m — poses windowed bundle adjustment
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Outline

» Brief history of VO

> Problem formulation

» Camera modeling and calibration

» Motion estimation
» Robust estimation
» Error propagation
» Camera-pose optimization (bundle adjustment)

» Discussion
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Thin Lens Model
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Thin Lens Model
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The Pin-Hole Approximation
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The Pin-Hole Approximation

r "0

o

Single effective viewpoint

Image plane
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Omnidirectional Camera Model

® <

Single effective viewpoint

Image plane
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Equivalence between Perspective and Omnidirectional Model

[G
)
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Equivalence between Perspective and Omnidirectional Model
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Equivalence between Perspective and Omnidirectional Model:
The Spherical Model

~ Always possible after the camera has been calibrated!
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Equivalence between Perspective and Omnidirectional
Model: The Spherical Model

» For convenience, points are projected on the unit sphere. Why?

» In the perspective case, is it better to use the perspective or the
spherical model?

Points Rays

Image courtesy of Micusik & Pajdla, ACCV’'04
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Outline

» Brief history of VO
» Problem formulation

» Camera modeling and calibration

» Motion estimation

» Robust estimation
» Error propagation
» Camera-pose optimization (bundle adjustment)

» Discussion

Image sequence

Feature detection

Feature matching

Motion estimation

2D-2D

3D-3D

3D-2D

Local optimization
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Motion Estimation

> Motion estimation is the core computation step performed for
every image in a VO system

» It computes the camera motion T, between the previous and the
current image:

Ry -1 trx-
Tk:[kgl k,l{l]

» By concatenation of all these single movements, the full trajectory
of the camera can be recovered

v
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Appearance-based or Featured-based ?

There are two main approaches to compute the relative motion T,

» Appearance-based methods use the intensity information of all the
pixels in the two input images

» Feature-based methods only use salient and repeatable features
extracted (or tracked) across the images

Makadia et al. «Correspondence-free structure from motion», IJCV’'07 ) ) ) )
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Appearance-based or Featured-based ?

» Global methods are less accurate than feature-based methods and
are computationally more expensive.

~ Feature-based methods require the ability to match (or track)
robustly features across frames but are faster and more accurate
than global methods. Therefore, most VO implementations are
feature based.

Image courtesy of Makadia et al., IJCV’07
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Motion estimation

Motion Estimation

Depending on whether the feature correspondences f;_; and f; are
specified in 2D or 3D, there are three different cases:

» 2D-to-2D: both f;,_; and f;, are specified in 2D image coordinates

» 3D-to-3D: both f;,_; and f;, are specified in 3D To do this, it is
necessary to triangulate 3D points at each time instant, for
instance, by using a stereo camera system

> 3D-to-2D: f;,_; are specified in 3D and f; are their corresponding
2D reprojections on the image I,
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Motion estimation

2D-to-2D
Motion from Image Feature Correspondences IR | R A

Both f;_, and f; are specified in 2D
The minimal-case solution involves 5-point correspondences

The solution is found by determining the transformation that
minimizes the reprojection error of the triangulated points in each image

T, = Rik-1 tik-1] _ arg min ||p};—g(Xi,Ck)||2
0 1 X .G x

Cy
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3 D -to -3 D Motion estimation
2D-2D | 3D-3D | 3D-2D

Motion from 3D-3D Point Correspondences

Both f;_; and f; are specified in 3D
To do this, it is necessary to triangulate 3D points (e.g. use a stereo

camera)
The minimal-case solution involves 3 non-collinear correspondences

The solution is found by determining the aligning transformation that
minimizes the 3D-3D distance

R _ t _ . ~ ~
Tk=[ ket kot argnﬁn;||x,z—nx/z_ln

1
>0
F‘— — Z
i I [
2
Y1
X1 \ e X2

Ty
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3 D -to -3 D Motion estimation
2D-2D | 3D-3D | 3D-2D

Motion from 3D-3D Point Correspondences

Both f;_; and f; are specified in 3D
To do this, it is necessary to triangulate 3D points (e.g. use a stereo

camera)
The minimal-case solution involves 3 non-collinear correspondences

The solution is found by determining the aligning transformation that
minimizes the 3D-3D distance

_ |Rik-1 Tig-1]| _ arg min X —T.X!
Tk—[ 0 1 |= ng;”k Xl
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Motion estimation
3 D 't0'2 D oD-2D | 3D-3D | 3D-2D

Motion from 3D Structure and Image Correspondences

fr—1 is specified in 3D and f; in 2D

This problem is known as camera resection or PnP (perspective from

n points)
The minimal-case solution involves 3 correspondences

The solution is found by determining the transformation that
minimizes the reprojection error

Ryp—1 trrk-
Tk:[kgl k,!{l

| = argmin}® 1o} — i 1P
Cd
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3D-to-2D

Motion from 3D Structure and Image Correspondences

Motion estimation

2D-2D

3D-3D

3D-2D

In the monocular case, the 3D structure needs to be triangulated
from two adjacent camera views (e.qg., I,_, and I,_;) and then

matched to 2D image features in a third view (e.qg., I;).
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Motion estimation

2D-to-2D
Motion from Image Feature Correspondences IR | R A

Both f;_, and f; are specified in 2D
The minimal-case solution involves 5-point correspondences

The solution is found by determining the transformation that
minimizes the reprojection error of the triangulated points in each image

Ry k-1 trk-1 : i i )
T, = ’ ’ = are min —o(X'.C
o= e gXI,’Ck[_XJ:,Hpk 8(X', Gl
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2D-to-2D
Motion from Image Feature Correspondences

\_'

Ry k—1 k-
Tk:[kgl k,11c1]=?
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2D-2D

3D-3D

3D-2D




2D-to-2D
Motion from Image Feature Correspondences

Ry k—1 k-
Tk:[kgl k,11c1 _»
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2D-2D

3D-3D

3D-2D




2D-to-2D
Epipolar Geometry

Motion estimation

2D-2D

3D-3D

3D-2D

P, =
P1, Py, T are coplanar: LJ

p; -(txp,")=0 = p, -(tx(Rp)) =0

— IOZT [t].Rp, =0 — [p; E p,=0  Epipolar constraint ]

l E = [’[]X R essential matrix I
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2 D -to -2 D Motion estimation

2D-2D 3D-3D

3D-2D

Epipolar Geometry

Pr=| Y P, =|Y, | Image coordinates on the Unit sphere

p, Ep,=0  Epipolar constraint

0 —t t

E=[tLR Essential matrix z v
[t]x=| ¢, 0 —t,

~t, t O

» The Essential Matrix can be computed directly from the image coordinates
(using SVD).
At least 5 points needed! [Kruppa, 1913]. The more points, the better!
The Essential Matrix can be decomposed into R and t (again using SVD)
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2 D -to -2 D Motion estimation

Computing the Essential Matrix 2D-2D | 3D-3D | 3D-2D

> The Essential matrix can be computed from 5 point correspondences
using [Nister’2003] algorithm (5-point algorithm)

~ The 5-p algorithm has become the standard for 2D-to-2D motion
estimation, however, its implementation is not straightforward

~ A simple and straightforward solution for n > 8 noncoplanar points is
the Longuet-Higgins’ 8-p algorithm, which is summarized here:

X1 X2
» Letp, = [Jﬁ y D2 = [J/Z be the coordinates one feature correspondence
Z1 Z2

> E=1€21 €32 €33

€31 €32 €33

€11 €12 313]

911]
€33

> P2T5P1 =0 = [x1X2 ¥1X2 21X X1Y2 V1Y2 Z1Y2 X1Z3 Y1Z3 Z1Z2]E =0
which can be solved with SVD
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2 D -tO '2 D Motion estimation

2D-2D

3D-3D

3D-2D

Algorithm

Algorithm 1: VO from 2D-to-2D correspondeces

I Capture new frame I,

2 Extract and match features between /| and I,

3 Compute essential matrix for image pair I;_ . I}

4 Decompose essential matrix into R; and #;, and form 7}
5 Compute relative scale and rescale #; accordingly

6 Concatenate transformation by computing C;, = C; T}
7 Repeat from 1

How do we compute the relative scale between [, _,,[;,_;, and [, ?
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2 D -tO '2 D Motion estimation

Relative Scale Computation 2D-2D | 3D-3D | 3D-2D

> The absolute scale of the translation cannot be computed from
two images.

~» However, it is possible to compute relative scales for the
subsequent transformations.

» One way of doing this is to triangulate 3D points X;_; and X, from
two subsequent image pairs. From corresponding 3D points, the
relative distances between any combination of two 3D points can
be computed.

» The proper scale can then be determined from the distance ratio r
between a point pair in X;,_; and a pairin X,

[ X1 — Xe—1,]
HXk,f_Xk,jH

r —

» For robustness, the scale ratios for many point pairs are
computed and the mean (or in presence of outliers the median) is
used
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Motion Estimation: Summary

Type of Monocular Stereo
correspondences

2D-2D X X
3D-3D X
3D-2D X X
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Triangulation and Keyframe Selection

~» Some of the previous motion estimation methods require
triangulation of 3D points

~ Triangulated 3D points are determined by intersecting
backprojected rays from 2D image correspondences of at least
two image frames

» In reality, they never intersect due to
= image noise,
= camera model and calibration errors,
= and feature matching uncertainty

» The point at minimal distance from all intersecting rays'can b
taken as an estimate of the 3D point position
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Triangulation and Keyframe Selection

~ When frames are taken at nearby positions compared to the scene
distance, 3D points will exibit large uncertainty

» Therefore, 3D-3D motion estimation methods will drift much
more quickly than 3D-2D and 2D-2D methods

» In fact, the uncertainty introduced by triangulation affects the motion
estimation. In fact, in the 3D-to-3D case the 3D position error is
minimized, while in the 3D-to-2D and 2D-to-2D cases is the image
reprojection error

¢ o
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Triangulation and Keyframe Selection

~ One way to avoid this consists of skipping frames until the average
uncertainty of the 3D points decreases below a certain threshold. The
selected frames are called keyframes

~ Keyframe selection is a very important step in VO and should always
be done before updating the motion

¢ X X
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Summary Considerations

~ In the Stereo vision case, 3D-2D method exhibits less drift than
3D-3D method

~ Stereo vision has the advantage over monocular vision that both
motion and structure are computed in the absolute scale. It also
exhibits less drift.

» When the distance to the scene is much larger than the stereo
baseline, stereo VO degenerates into monocular VO

» Keyframes should be selected carefully to reduce drift

» Regardless of the chosen motion computation method, local
bundle adjustment (over the last m frames) should be always
performed to compute a more accurate estimate of the trajectory.
After bundle adjustment, the effects of the motion
estimation method are much more alleviated (as long as the
initialization is close to the solution)
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Outline

» Brief history of VO
» Problem formulation
» Camera modeling and calibration

» Motion estimation

» Robust estimation

» Error propagation
» Camera-pose optimization (bundle adjustment)

» Discussion

Image sequence

Feature detection

Feature matching

Motion estimation

2D-2D

3D-3D

3D-2D

Local optimization

Copyright of Davide Scaramuzza - davide.scaramuzza@ieee.org - https://sites.google.com/site/scarabotix/




Robust Estimation

» Matched points are usually contaminated by outliers, that is, wrong
data associations

» Possible causes of outliers are
= image noise,
= occlusions,

= blur,

= changes in view point and illumination for
which the mathematical model of the
feature detector or descriptor does not
account for

» For the camera motion to be
estimated accurately, outliers must be
removed

> This is the task of Robust Estimation
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80 E

y (meters)

Influence of Outliers on Motion Estimation

» Error at the loop closure: 6.5 m
» Error in orientation: 5 deg
> Trajectory length: 400 m

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 20 40 60 80 100 120 140
x (meters)
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RANSAC Example: Line Extraction
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RANSAC Example: Line Extraction
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RANSAC Example: Line Extraction

e Select sample of 2
points at random

e Calculate model
parameters that fit the
data in the sample
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RANSAC Example: Line Extraction

e Select sample of 2
points at random

e Calculate model
parameters that fit the
data in the sample

e Calculate error
function for each data
point

e Select data that
support current
hypothesis
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RANSAC Example: Line Extraction

e Select sample of 2
points at random

e Calculate model
parameters that fit the
data in the sample

e Calculate error
function for each data
point

e Select data that
support current
hypothesis

e Repeat sampling
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RANSAC Example: Line Extraction

e Select sample of 2
points at random

e Calculate model
parameters that fit the
data in the sample

e Calculate error
function for each data
point

e Select data that
support current
hypothesis

e Repeat sampling
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RANSAC Example: Line Extraction

ALL-INLIER SAMPLE
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RANSAC [Fishler & Bolles, 1981]

Has been established as the standard method for motion estimation

in the presence of outliers




RANSAC [Fishler & Bolles, 1981]

Has been established as the standard method for motion estimation

in the presence of outliers

. Randomly select a minimal set of point
correspondences

. Compute motion and count inliers

. Repeat from 1



RANSAC [Fishler & Bolles, 1981]

Has been established as the standard method for motion estimation

in the presence of outliers

. Randomly select a minimal set of
point correspondences

2. Compute motion and count inliers
3. Repeat N times

The number of iterations needed
grows exponentially with the
outliers

~ 1000 iterations!
\_ J




RANSAC Algorithm

Algorithm 1: RANSAC

1) Initial: let A be a set of N feature correspondences

2) repeat

2.1) Randomly select a sample of s points from A

2.2) Fit a model to these points

2.3) Compute the distance of all other points to this model
2.4) Construct the inlier set (i.e. count the number of points
whose distance from the model < d)

2.5) Store these inliers

2.6) until maximum number of iterations reached

3) The set with the maximum number of inliers 1s chosen as
a solution to the problem

4) Estimate the model using all the inliers
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How many iterations of RANSAC ?

> The number of iterations N that is necessary to guarantee that a
correct solution is found can be computed by

_ log(1-p)
log(1- (1-¢)°)
~ s is the number of points from which the model can be instantiated

~ &£ is the percentage of outliers in the data
» p is the requested probability of success

> Example: p =99%, s=5, e=50% = N = 145
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How many iterations of RANSAC ?

> RANSAC is an iterative method and is non deterministicin that it
exhibits a different solution on different runs; however, the
solution tends to be stable when the number of iterations grows

~ For the sake of robustness, in many practical implementations N is
usually multiplied by a factor of 10

» More advanced implementations of RANSAC estimate the fraction
of inliers adaptively, iteration after iteration (like in your exercise
today)
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RANSAC iterations

> N is exponential in the number of data points s necessary to estimate
the model

» Therefore, there is a high interest in using a minimal
parameterization of the model

Number ot points (s): 8 7 6 5 4 2 1
Number of iterations (NV): 1177 587 292 145 71 16 7

Number of RANSAC iterations
1000 ‘ . . .

—p— Histogram voting
800 —©6— 1-point
—&— 2-point
—&#— 5-point

600 -

400 -

Num. of iterations

200 -

0 10 20 30 40 50 60 70 80 90
Copyright of | Fraction of outliers (num. outliers)/(num. points) (%) ym/site/scarabotix/



What is the minimum number of points to estimate motion ?

To estimate the motion of a calibrated camera in 6 DoF,

we need 5 points

|Kruppa, 1913]

Why ?
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What is the minimum number of points to estimate motion ?

In 6 DoF we would need 6 points ...

... but the scale is unobservable ...

... and therefore we only need 6 — 1 = 5 points

1“5-Point RANSAC”, Nister, 2003]

General rule:

Minimum number of points = Ny, -1
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What is the minimum number of points to estimate motion ?

The “5-Point RANSAC” typically needs ~1000 iterations

To reduce the number iterations, we should use a smaller number of points (< 5)

[s this possible?

Yes, if we exploit motion constraints!
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What is the minimum number of points to estimate motion ?

For planar motion, only 3 parameters need to be estimated
6, ¢, p => 3 DoF

and therefore only 2 points are needed

[“2-Point RANSAC”, Ortin, 2001]

Can we use an even smaller number of points?

Yes, if we exploit the vehicle non-holonomic constraints
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Exploiting Vehicle’s Non-Holonomic Constraints ?

» Wheeled vehicles follow locally circular motion about the Instantaneous Center
of Rotation (ICR)

L _ ‘
' I X ICR
yr [0V | ’

R\CR |

Example of Ackerman steering principle



Exploiting Vehicle’s Non-Holonomic Constraints ?

» Wheeled vehicles follow locally circular motion about the Instantaneous Center
of Rotation (ICR)

*

L _ ‘
' I X ICR
yr [0V | i

R\CR |

Example of Ackerman steering principle Locally circular motion

¢ = 0/2 => only 2 parameters (60, p) need to be estimated

and therefore only 1 point is needed

This is the smallest parameterization possible and results in
the most efficient algorithm for removing outliers

D. Scaramuzza. 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints. International Journal of Computer Vision, Volume 95, Issue 1, 2011

D. Scaramuzza. Performance Evaluation of 1-Point-RANSAC Visual Odometry. Journal of Field Robotics, Vol. 28, issue 5, 2011



1-Point RANSAC algorithm

Car = N

[ ] - L

[ ] L] Lo
T T

Mum. of points
[ ]
o ]
Lo |
T

—

Compute 6 for
every point 0
correspondence

1001

The most efficient algorithm for
removing outliers, up to 800 Hz

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF




Comparison of RANSAC algorithms

1000 [ T T [ [
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Number of ~1000 ~100 1
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Our proposed method
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This video can be seen at
http://lyoutu.be/t7TUKWZtU|CE
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Comparison between visual odometry and ground truth
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Considerations about RANSAC

Is it really better to use minimal sets in RANSAC?
~ If one is concerned with certain speed requirements, YES

» However, might not be a good choice if the image
correspondences are very noisy: in this case, the motion
estimated from a minimal set wil be inaccurate and will exhibit
fewer inliers when tested on all other points

» Therefore, when the computational time is not a real concern and
one deals with very noisy features, using a non-minimal set
may be better than using a minimal set
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Outline

» Brief history of VO

» Problem formulation

» Camera modeling and calibration
» Motion estimation

» Robust estimation

» Error propagation

» Camera-pose optimization (bundle adjustment)

» Discussion

Image sequence

Feature detection

Feature matching

Motion estimation

2D-2D

3D-3D

3D-2D

Local optimization
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Error Propagation

The uncertainty of the camera pose C, is a combination of the
uncertainty at C,_, (black-solid ellipse) and the uncertainty of the
transformation T, (gray dashed ellipse)

Cx = f(Ck-1,Tx)

The combined covariance 2,is

X1 0 T
>, = J J
¢ [ 0 ZA.A—J

T T
= Jz X Jz J7 X 1J7
Co =k—1G T eI

The camera-pose uncertainty is always increasing when concatenating
transformations. Thus, it is important to keep the uncertainties of the
individual transformations small
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Outline

» Brief history of VO

» Problem formulation

» Camera modeling and calibration
» Motion estimation

» Robust estimation

» Error propagation

» Camera-pose optimization (bundle adjustment)

Image sequence

» Discussion

Feature detection

Feature matching

Motion estimation

2D-2D

3D-3D

3D-2D

Local optimization

Copyright of Davide Scaramuzza - davide.scaramuzza@ieee.org - https://sites.google.com/site/scarabotix/




Windowed Camera-Pose Optimization

v

So far we assumed that the transformations are between consecutive
frames

Transformations can be computed also between non-adjacent frames
Te,; and can be used as additional constraints to improve cameras

poses by minimizing the following

Z |Ci — Tﬂ‘uCiHj

[ i Jl

For efficiency, only the last m keyframes are used
Levenberg-Marquadt can be used
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Windowed Bundle Adjustment (BA)

A
v

Similar to pose-optimization but it also optimizes 3D points

arg mm):llm g(X".C) P
C 1.k

In order to not get stuck in local minima, the initialization should
be close the minimum
Levenberg-Marquadt can be used
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Loop Detection

Loop constraints are very valuable constraints for pose graph
optimization

These constraints form graph edges between nodes that are usually far
apart and between which large drift might have been accumulated.

Events like reobserving a landmark after not seeing it for a long time or
coming back to a previously-mapped area are called loop detections

Loop constraints can be found by evaluating visual similarity between
the current camera images and past camera images.

Visual similarity can be computed using global image descriptors or
local image descriptors (see lecture about Visual SLAM)

: ~ L o
; i — - e . A o ) .,,_,-b-’\
- . ’ JYRY . &L

First observation

——
-

Image courtesy of Cummins & Newman, |[JRR’08

Second observation after a loop
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Considerations about Bundle Adjustment

» Windowed BA reduces the drift compared to 2-view VO because
incorporates constraints between several frames

~ More precise than camera-pose optimization

~ The choise of the window size m is governed by computational
reasons

~ The computational complexity of BA is 0((gN + lm)3) with N being
the number of points, m the number of poses, and g and m the
number of parameters for points and camera poses
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Improving the Accuracy of VO

» Other sensors can be used such as
= IMU (called inertial VO)
= Compass
= GPS
= Laser

> An IMU combined with a single camera allows the estimation of
the absolute scale. Why?

» Make sure that you have many points (thoudsands) which cover
the image uniformly
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VO Applications

VO has successfully been applied within various technological fields

» Space exploration:
= Planetary lander furing descent phase
= Spirit and Opportunity Mars-exploration rovers

= Since 2004, used VO in addition to dead-reckoning for
about 6 Km

= Especially in preence of wheel slip

» MAV navigation
= European project SFLY

= Vision-based MAVs at the Robotics and Perception Group
(see http://rpg.ifi.uzh.ch/research mav.html )

» Underwater vehicles :
The sFly video can be seen at

http://youtu.be/ -p08o o0TO4

» Automotive industry
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VO Applications

-
World-first mouse scanner "".' DQCUdQ
Currently distributed by LG: SmartScan LG LSM100

This video can be seen at
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Software and Dataset

SOFTWARE AND DATASETS

Author

Description

Link

Willow Garage

Willow Garage

Willow Garage

Henrk Stewenius et
al.

Changchang Wu et al.
Nico Comelis et al.
Christopfer Zach

Edward Rosten

OpenCV: A computer vision library maintained by Willow
Garage. The library includes many of the feature detectors
mentioned in this tutorial (e.g., Harmis, KLT, SIFT, SURF,
FAST, BRIEF, ORB). In addition, the library contains the
basic motion-estimation algorithms as well as stereo-matching
algorithms.

ROS (Robot Operating System): A huge library and mid-
dleware maintained by Willow Garage for developing robof
applications. Contains a visual-odometry package and many
other computer-vision-related packages.

PCL (Point Cloud Library): A 3D-data-processing library
maintained from Willow Garage, which includes useful algo-

rithms to compute transformations between 3D-point clouds.

5-point algorithm: An implementation of the 5-point algo-
rithm for computing the essential matrix.

S5iftGPU: Real-time implementation of SIFT.
GPUSurf: Real-time implementation of SURE
GPU-KLT: Real-time implementation of the KLT tracker.

Original implementation of the FAST detector.

http:/lopencv.willowgarage.com

http:/f'www.ros.org

http://pointclouds.org

http:/fwww.vis.uky.edu/~stewe/FIVEPOINT/

http://cs.unc.edw/~coww/siftgpu
http://homes_esat_kuleuven_be/~ncomeli/gpusurf
http:/fwww.inf ethz.ch/personal/chzach/opensource. . html

http:/l'www.edwardrosten.com/work/fast. html
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Software and Dataset

Michael Calonder
Leutenegger et al.
Jean-Yves Bouguet

Davide Scaramuzza

Christopher Mei
Mark Cummins

Friedrich Fraundorfer

Manolis Lourakis
Christopher Zach

Rainer Kuemmerle et
al.

RAWSEEDS EU
Project

SFLY EU Project

Davide Scaramuzza

Original implementation of the BRIEF descriptor.
BRISK feature detector.
Camera Calibration Toolbox for Matlab.

OCamCalib: Omnidirectional Camera Calibration Toolbox for
MATLAB.

Omnidirectional Camera Calibration Toolbox for MATLAB
FAB-MAP: Visual-word-based loop detection.

Vocsearch: Visual-word-based place recognition and image
search.

SBA: Sparse Bundle Adjustment
SS5BA: Simple Sparse Bundle Adjustment

G20: Library for graph-based nonlinear function optimiza-
tion. Contains several variants of SLAM and bundle adjust-
ment.

RAWSEEDS: Collection of datasets with different sensors
(lidars, cameras, IMUs, etc.) with ground truth.

SFLY-MAV dataset: Camera-IMU dataset captured from an
aerial vehicle with Vicon data for ground truth.

ETH OMNI-VO: An omnidirectional-image dataset captured
from the roof of a car for several kilometers in a urban
environment. MATLAB code for visual odometry is provided.

http://cvlab.epfl.ch/software/brief/
http://'www.asl.ethz.ch/people/lestefan/personal/BRISK
http: fwww_vision.caltech.edu/bouguetj/calib_doc

https://sites. google.com/site/scarabotix/ocamcalib-toolbox

http://home pages.laas.fr/~cmet/index. php/ Toolbox
http:/fwww_robots.ox_ac.uk/~mjc/Software. htm

http:/iwww.inf.ethz.ch/personal/fraundof/page2. html

http://www.1cs.forth. gr/~lourakis/sba

http://www.inf e thz.ch/personal/chzach/opensource. html

http://openslam.org/g2o

http://www.rawseeds.org

http:/fwww.sfly.org
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