
This paper has been accepted for publication at Robotics: Science and Systems, 2024.

Demonstrating Agile Flight from Pixels
without State Estimation

Ismail Geles∗, Leonard Bauersfeld∗, Angel Romero, Jiaxu Xing, Davide Scaramuzza

Robotics and Perception Group, University of Zurich, Switzerland

Abstract—Quadrotors are among the most agile flying robots.
Despite recent advances in learning-based control and computer
vision, autonomous drones still rely on explicit state estimation.
On the other hand, human pilots only rely on a first-person-
view video stream from the drone onboard camera to push the
platform to its limits and fly robustly in unseen environments.
To the best of our knowledge, we present the first vision-
based quadrotor system that autonomously navigates through
a sequence of gates at high speeds while directly mapping
pixels to control commands. Like professional drone-racing
pilots, our system does not use explicit state estimation and
leverages the same control commands humans use (collective
thrust and body rates). We demonstrate agile flight at speeds
up to 40 km/h with accelerations up to 2 g. This is achieved by
training vision-based policies with reinforcement learning (RL).
The training is facilitated using an asymmetric actor-critic with
access to privileged information. To overcome the computational
complexity during image-based RL training, we use the inner
edges of the gates as a sensor abstraction. This simple yet
robust, task-relevant representation can be simulated during
training without rendering images. During deployment, a Swin-
transformer-based gate detector is used. Our approach enables
autonomous agile flight with standard, off-the-shelf hardware.
Although our demonstration focuses on drone racing, we believe
that our method has an impact beyond drone racing and
can serve as a foundation for future research into real-world
applications in structured environments.

SUPPLEMENTARY MATERIAL

A narrated video with real-world experiments is available at:
https://youtu.be/a1MSkTD-Tl8

I. INTRODUCTION

Over fifteen years after the first autonomous, vision-based
quadrotor flight [1], today’s most agile autonomous vision-
based quadrotors still rely on explicit state estimation [2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12]. This approach requires powerful,
specialized hardware to perform all sensing and computation
on board, as the fusion of visual and inertial information
requires consistent and extremely low latencies [13]. This
starkly contrasts with professional human pilots, who instead
control the drone only based on a first-person-view (FPV)
video stream from the drone’s onboard camera. These pilots
display impressive robustness and agility as they rely on very
low-level commands: collective thrust and body rates.

The ability to control agile autonomous drones directly from
image pixels without explicit state estimation and without
access to IMU measurements opens tremendous possibilities.
First and foremost, it enables shifting the computations to a

b) Onboard camera view

a) Experimental setup

onboard camera

c) Image abstraction

d) Figure 8 racetrack

video transmitter

Fig. 1. Our autonomous quadrotor can fly through a racetrack purely based on
images from an onboard camera, without explicit state estimation. a) overview
of our experimental setup consisting of racing gates, a quadrotor equipped with
an onboard camera, and a video transmitter, b) onboard view from the camera,
c) image abstraction used by the policy, d) overview over the racetrack.

powerful ground-station PC (or the cloud), raising the oppor-
tunity to run complex algorithms and large neural networks in
real time without being constrained by the computationally-
limited hardware onboard the drone. Secondly, not requiring
specialized hardware makes a one-to-one replacement of hu-
man pilots possible, thus yielding a very scalable approach for
industrial applications.

Prior work on learning agile drone flight from visual input
has focused on a setting where an explicit state estimate was
input to the navigation policy [10, 11, 12]. In this same setting,
an autonomous drone flown by a neural-network controller

https://youtu.be/a1MSkTD-Tl8

trained with RL beat the human world champions of drone
racing in a head-to-head race [12]. In the context of learning
a navigation policy purely from image pixels, prior works rely
on the presence of a stabilizing onboard controller providing
attitude and velocity estimates, severely limiting the achievable
agility to below 2 m/s [14, 15].

Despite the recent achievements in reinforcement learning
for mobile robotics control [12, 16, 17, 18, 19, 20] and the
recent advances in deep visual odometry [21, 22, 23, 24],
applying RL to learn agile-flight policies directly from pixels
remains a challenging endeavor due to multiple factors. First,
RL acquires knowledge through millions of trial-and-error in-
teractions with the environment. For vision-based RL, sample
efficiency is particularly important, as (i) the dimensionality
of observations will be greatly increased, making exploration
more challenging, and (ii) if image rendering is required
during the interactions, it will significantly raise computational
costs. Therefore, the task of exploring and learning efficiently
in vision-based RL becomes more challenging. Second, in
contrast with ground robots, flying robots capture images
from very different viewpoints. Their ability to move freely
in 3D space and the lack of constraints on the environment’s
appearance lead to diverse sensory information, exacerbating
the difference between simulation and real-world deployment.
Third, motion blur and rolling shutter effects degrade image
quality at high speeds. Fourth, the simulation-to-reality gap
is widened by highly nonlinear aerodynamic forces and the
variability of environments, affecting both vehicle dynamics
and sensory feedback. Fifth, quadrotors are unstable systems
and the critical interdependence of perception and action
necessitates rapid response times.

A. Contributions

To our knowledge, we demonstrate the first agile vision-
based autonomous quadrotor flight in the real world without
explicit state estimation in a structured environment featuring
known racing gate landmarks. Our drone successfully flies a
racing track (Fig. 1d) at speeds up to 40 km/h and accelerations
up to 2 g’s while only relying on a video stream transmitted
by the drone’s onboard camera (see Fig. 1a,b) to an offboard
ground-station PC. We achieve a transmission latency of 33 ms
at a rate of 60 Hz (1280× 720 resolution).

The key enablers of this breakthrough are as follows. First,
directly training vision-based policies from scratch is instru-
mental in ensuring robust control policies that explore large
regions of the observation and action spaces during training.
Reinforcement learning directly from pixels is made possible
by our Atari-game-inspired [25] pixel-level abstraction (see
1c): inner gate edges are both task-relevant and efficient to
simulate during training. Second, our reinforcement learning
framework leverages an asymmetric actor-critic, where the
critic has access to privileged information about the full state
of the drone. Third, robust gate detections in the real world
are achieved by a Swin-transformer-based [26] gate-detector
trained on both rendered and real-world images but do not
require real-world data from the deployment environment.

II. RELATED WORK

A. Reinforcement Learning from Pixels

Deep reinforcement learning (RL) algorithms have achieved
remarkable feats in simplified environments, such as games,
providing efficient simulation platforms to benchmark the
capabilities and limitations of AI agents [27]. This success is
evident in surpassing human performance in Atari games [25]
and mastering complex games like Go [28]. However, these
environments, primarily offering discrete actions, pose chal-
lenges for continuous control tasks. The DeepMind Control
Suite [29] addresses this gap, by presenting diverse environ-
ments for continuous control tasks. Yet, even in simulation,
learning purely from pixels in these scenarios proves less
sample-efficient, often yielding suboptimal performance com-
pared to state-based learning. Recent efforts aim to improve
this by refining low-dimensional visual representations along-
side RL agents. Works such as SAC-AE [30], PlaNet [31],
and CURL [32] explore techniques, including auto-encoders,
future predictions, and contrastive unsupervised representa-
tions to bridge the performance-gap pixel-based to state-based
policy performance gap.

Addressing the challenge of learning complex behaviors
efficiently and robustly from pixels, some algorithms focus
on data augmentation [33, 34]. Despite substantial progress
in learning directly from pixels, these methods often cater to
simulation benchmarking environments.

Diverging from the prevalent trend of simulation-centric
methodologies, [35] adopts a model-based RL framework with
a latent state-space model to learn from images, employing
the Dreamer algorithm [36]. The learned tasks involve vision-
based pick-and-place object manipulation and 2D maneuvering
with a wheeled robot. The authors emphasize the challenges of
mastering real-world application complexities with pixel-based
control as already their quadrupedal robot relies on explicit
state information.

Sensorimotor policies, mapping camera observations to ac-
tions, are predominantly learned through extensive training
data simulation, incorporating domain randomization, dynam-
ics randomization, or additional pose information like joint
angles [37, 38, 39]. Tasks of higher complexity in robotics
often necessitate expert demonstrations, prompting a shift
towards imitation learning (IL) methodologies as a prevalent
choice, as opposed to the paradigm of learning from scratch
using RL, showcased by recent works such as [40].

B. Vision-based flight

There has been a series of works that aim to fly a drone
by using pixel-to-high-level commands from visual data [41,
14, 42, 43, 44]. These approaches are not trained through
reinforcement learning and are more focused on the general
navigation task, and therefore are far from demonstrating agile
flight. In [10], the authors demonstrate low-level commands
directly from feature representations in the image plane to
perform aggressive flight maneuvers learning control policies
via imitation learning.

Leaving the vision-based aspect aside, RL has been applied
to low-level control of quadrotors [45, 46] and has been
demonstrated to be superior to classical methods. In state-
based agile flight, and more particularly, drone racing, RL
methods have recently demonstrated high-speed flight [47, 48],
even being able to outperform the state-of-the-art in model-
based control for drone racing [20]. Furthermore, the versa-
tility of RL-based controllers has allowed their adoption in
autonomous, vision-based flight and several recent works have
been showing ever-growing success.

One of the first uses of RL for quadrotor navigation is [49],
where the authors train a vision-based RL policy using a
CAD model to produce discrete ’forward’, ’left’, or ’right’
velocity commands directly from pictures. However, this was
only possible due to the drone’s stabilizing onboard controller
and VIO pipeline. Very recently, an autonomous quadrotor
combining vision-based state estimation and RL-based control
has beaten the human world champions of drone racing [12].
While this represents a milestone for robotics, the drone
requires highly specialized hardware to run the state estimation
and control onboard the vehicle and shows very limited
robustness, crashing in 40 % of the races against human pilots.
Additionally, to finetune the control policies of the racetrack, a
motion-capture system is required for data collection, leading
to reduced versatility.

In this work, we aim to overcome the limitation of spe-
cialized hardware and onboard computation by flying like
professional human drone pilots—only from a video stream.
This also increases the robustness of the system as much more
complex algorithms can be run on an offboard ground station.

III. METHODOLOGY

We consider the task of vision-based agile quadrotor flight
directly from pixels. The goal is to navigate through a se-
quence of gates (see Fig. 1) in the correct order as quickly as
possible while only relying on a video stream from an onboard
camera. In this section, we first describe the learned controller,
its observation and action space, and its training procedure.
Then, we detail the simulation environment for policy training,
and finally, we discuss the gate detector, which is an essential
part of successful real-world deployment.

A. Neural Controller

The neural controller has access to pixel observations from
an onboard camera which are pre-processed in the form
of a gate segmentation mask. Based on these observations,
the controller has to infer control commands comprising a
collective thrust and body rates (CTBR). By relying on the
CTBR control modality, the drone’s agility is maximized [50].

We consider the standard RL setting, consisting of an agent
acting in an environment in discrete time steps within the
Markov Decision Process (MDP) formulation. The MDP is
described by the tuple (O,A, p, p0,R, γ) with observation
space O, action space A, transition probabilities between states
p, initial state distribution p0 and rewards R with discount
factor γ.

1) Action Space: At each timestep t, the policy needs to
output an action at, also referred to as the control command,
which is four-dimensional. It consists of a mass-normalized
collective thrust c (the acceleration of the drone) and a body
rate setpoint ωB,ref. These commands are then mapped to the
individual motor speeds by a low-level controller onboard the
drone. This control modality is also used by expert human
pilots [12, 51] and, in contrast to high-level control commands
such as linear velocities, ensures maximal agility [50]. Fur-
thermore, the low-level controller on the drone is not required
to estimate the state (e.g. position, attitude, velocity) of the
vehicle with this control modality.

2) Observation Space of the Actor: To compute the action,
the policy has access to an observation ot to infer the action
at. In this work, the observation consists of a continuous pixel-
level gate-segmentation mask (see Fig. 1). Here, continuous
refers to a non-binary segmentation where the mask value cor-
responds to a confidence estimate. Our choice of observation is
motivated by two aspects: first, inner gate edges are a highly
task-relevant abstraction that encodes information about the
task (fly through gates) as well as about the current state of the
vehicle (how the gates are seen depends on where the drone is
and how it is oriented). Second, during training, the inner gate
edges can be obtained using perspective projection without the
need to render the complete image, leading to a significant
speedup. Taking inspiration from [25], we downsample our
observations to a resolution of 84× 84 pixels.

In addition to the pixel observations, the control policy has
access to a history of three past actions. This enables the policy
to produce smooth control commands, as the controller is not
purely reactive and aware of the past commands.

3) Observation Space of the Critic: To train the control
policies with PPO we leverage an asymmetric critic that has
access to privileged information. In addition to the observa-
tions provided to the actor, the critic also has access to the full
simulation state. We define this full simulation state be the 20-
dimensional vector s = [p, R̃,v,ω, i,d], where p ∈ R3 is the
position of the drone, R̃ ∈ R6 is a vector consisting of the first
two columns of the RWB [52], v ∈ R3 and ω ∈ R3 denote
the linear and angular velocity of the drone, and d ∈ R3 is the
position of the next gate center relative to the current drone
position.

The vector i ∈ R2 encodes the gate index using a sine-
cosine encoding to account for the periodic nature of flying
multiple laps around the track. To avoid discontinuities when
a gate is passed, we use a continuous gate index. Let i
denote the (discrete) number of gates passed so far, and let
d = ||d|| denote the (scalar) distance to the next gate center.
The continuous gate index ic is given by

ic = i+
2

1 + exp(k · d) , (1)

where k = 5 is an empirical smoothing factor. From this, the
observation i can be computed as follows:

i =

[
exp(−ic) + cos(α · ic)
exp(−ic) + sin(α · ic)

]
, (2)

Training Phase

Actor
Encoded Image

Simulation State

3 Past Actions

Linear

84x84 (32, 8x8)
(64, 4x4)
(64, 3x3)

256

20

3x4

Action
4

Value
1

Gate Detector
&

Resize

384x384

C
N

N

Critic
512, 512

512, 512

Fig. 2. The architecture of our method consists of a gate detector, which is trained to segment the inner gate edges. The gate detection is downsampled to
a size of 84×84 and given as input to the three-layer CNN acting as a shared feature extractor for the asymmetric actor-critic framework. While training,
we efficiently simulate the detected gates instead of using the detector. Both, the actor and critic are 2 hidden layer MLPs with 512 neurons each. The actor
network has access to the current image encoding and the past three actions. The critic network, which is only used when training the policy, additionally
receives privileged information about the state of the simulation environment.

where nG is the total number of gates of the racetrack, and the
frequency factor is computed as α = 2π/nG. The decaying
exponential summand helps distinguish between the start of a
flight and the subsequent laps.

4) Rewards: Similar to our previous works on drone racing,
we use a dense reward to guide policy learning and encode
the task of navigating through the racetrack. At each timestep,
the reward rt is computed as

rt =rprog
t + rperc

t + rpass
t − rcmd

t − rcrash
t , (3)

where the individual components are calculated as follows:

rprog
t = λ1 (dt−1 − dt)

rperc
t = λ2 exp

(
−δ4cam

)
rcmd
t = λ3||at||+ λ4||at − at−1||2 (4)

rpass
t =

{
1.0− dt, if passed gate at current timestep
0, otherwise

rcrash
t =

{
−4.0, if pz < 0 or in collision with gate
0, otherwise

where δcam is the angle between the optical axis of the camera
and the vector pointing from the drone to the next gate center.
The hyperparameters λ1 = 0.5, λ2 = 0.025, λ3 = 0.0005, and
λ4 = 0.0002 are chosen empirically and trade-off speed and
smoothness of a policy. The progress reward rprog encourages
fast flight to maximize progress along the track, the perception
reward rperc encourages orienting the camera towards the next
gate to be passed, and the command smoothness penalty rcmd

penalizes large control actions as well as abrupt changes in the
control command. The sparse gate pass reward and collision
penalty guide the policy towards safe flight.

5) Network Architecture: The neural controller, shown in
Fig. 2, consists of two components: A convolutional neural
network (CNN) is used to extract a low-dimensional feature
embedding from the high-dimensional pixel gate segmentation
masks. Together with the last three actions, this embedding is
used as an input to the two-layer MLP actor network. For
training, the critic network has access to the CNN embedding
and the full simulation state described above.

The reasoning behind including the last three actions in the
MLP is to provide the controller with some information on

which commands were sent before; this short-term memory
enables smoother control commands.

B. Simulation

RL algorithms are known for being data-intensive to train.
However, data collection in real-world scenarios is often
impractical, especially considering the brittle nature of quadro-
tors. To circumvent this issue, we train our control policies
exclusively in simulated environments. This approach not only
protects the hardware but also allows for a more controlled
training process.

In vision-based RL, the training process involves simulating
not only the dynamics of quadrotors but also generating
sensory observations, such as pixel-based visual data. This is
a key distinction from state-based RL, where such a sensor
simulation is not necessary. When it comes to rendering
images for training an RL agent, there’s a trade-off to consider:
opting for lower-quality rendering can speed up the training
process but at the cost of less realistic images. On the other
hand, aiming for high-fidelity, photorealistic rendering results
in a reduced sim2real gap, but significantly slows down the
training due to the rendering complexity.

We overcome this obstacle through the use of inner gate
edges as a task-related abstraction. These segmentation masks
can be simulated very efficiently by projecting the gate edges
onto the image plane.

1) Gate Observation: To compute the pixel observations,
the simulation environment requires knowledge about the in-
trinsic parameters of the camera, which are obtained using the
popular Kalibr [53] calibration toolbox. The lenses available
for first-person-view drone racing cameras are not rectilinear
but exhibit strong barrel distortion. Consequently, we use a
double-sphere camera model for calibration [54], which is well
suited to capture the distortion of wide-angle lenses.

To simulate the pixel observations, all gate edges in view are
first sorted by their distance to the camera to correctly handle
occlusions. Next, each visible gate edge is discretized into 5
points which are projected into the image plane and connected
with a line. By subdividing each line into multiple segments
before projecting them, the resulting simulated observations
correctly account for lens distortion. To robustify the policy

to poor gate detections 10% of the edge segments are corrupted
and drawn at a random place in the image.

Our simulated gate observations are very efficient to com-
pute and take less than 100 µs per frame, a speed unattainable
with high-quality rendering.

2) Quadrotor Dynamics: In addition to the sensor observa-
tions, the simulator must compute the dynamics of the quadro-
tor. This section presents a brief overview of the simulator, but
the reader is referred to [55, 12] for an in-depth explanation.
The dynamics of the quadrotor are simulated as

ẋ =

ṗWB
q̇WB
v̇W
ω̇B
Ω̇

 =

vW

qWB ·
[

0
ωB/2

]
1
m

(
qWB ⊙ (fprop + faero)

)
+ gW

J−1
(
τprop + τaero − ωB × JωB

)
1

kmot

(
Ωss −Ω

)

, (5)

where ⊙ represents quaternion rotation, pWB, qWB, vW ,
and ωB denote the position, orientation quaternion, inertial
velocity, and bodyrates of the quadrotor, respectively. The
motor time constant is kmot and the motor speeds Ω and
Ωss are the actual and steady-state motor speeds, respectively.
The matrix J is the quadcopter’s inertia and gW denotes
the gravity vector. The force and torque contributions of
the propeller/motor unit as well as aerodynamic effects are
denoted by fprop, τprop and faero, τaero, respectively.

To compute the force and torque contributions introduced
above, we utilize either a first-principles model or a data-
driven model. The first-principles model is based on blade-
element-momentum (BEM) theory [55, 56, 57] and while it
is very accurate, it is too slow to use for training the RL
controller. For this reason, we use the widespread quadratic
thrust and torque propeller model with a data-driven augmen-
tation similar to [12] to obtain an accurate and computationally
lightweight model. We refer to this simulation as our aug-
mented simulator and exclusively train the controller in this
setting.

C. Gate Detector

To deploy the control policies in the real world, we need
a gate detector that takes as input images from the onboard
camera and segments the inner gate edges. Compared to prior
work that leverages gate detections [58, 12], this work does
not rely on detected corners but uses a dense segmentation
mask as an input. Following the advances in computer vision,
the gate detector relies on a SwinTransformerV2 [26]. This
architecture has proven to achieve very high performance in
terms of accuracy while being very fast to compute on modern
GPU architectures.

Obtaining a robust gate detector that reliably segments gates
independent of the background, adverse lighting conditions,
motion blur, and rolling shutter effects is crucial for this work.
To ensure this, the gate detector is trained in a supervised
fashion until convergence on a diverse dataset (see Fig. 3)
comprising 80,000 labeled images. The dataset is composed
as follows:

Fig. 3. The gate detector is trained on data collected from real and synthetic
environments; however, it has never seen real images from environment 2, in
which the system is deployed (f).

• 25,000 real-world images, taken with a different camera
(Intel Realsense) to the one used in this work. They are
reprojected to match the FPV-camera’s intrinsics (Fig. 3a)

• 25,000 images are photorealistic renders with strong
motion blur based on digital twins of two environments
(Fig. 3b,c). Environment 2 corresponds to the deployment
environment.

• 25,000 images are generated by rendering the gates on a
diverse background obtained through randomly combin-
ing images from ImageNet [59] together (Fig. 3d)

• 5,000 real-world images from the FPV-camera are in-
cluded in the dataset (Fig. 3e).

Note that none of these images are obtained with the FPV
camera in the deployment environment, and consequently, the
gate detector is not trained on real images from the deployment
environment (Fig. 3f).

For deployment, the gate detector network is implemented
in C++ using TensorRT to achieve maximum performance.
The inference time of the gate detector (SwinV2-B model) is
only 4 ms when deployed on an RTX 3090.

D. Policy Training

The control policy is trained through model-free reinforce-
ment learning relying on PPO [60]. The training is entirely
done in simulation, where a policy is trained for 400 million
environment interactions.

To obtain a policy that is capable of zero-shot transfer
to the real world, it must explore a sufficiently large part
of the observation space as well as exhibit robustness to
a sim2real gap. To address these aspects, we employ an
improved sampling strategy that relies on an initial state buffer
as well as domain randomization techniques.

1) Initial State Buffer: Reinforcement learning can suffer
from catastrophic forgetting [61], where an agent becomes
very good at performing the task and then unlearns how

to recover from non-optimal states. This is caused by the
policy only seeing a very narrow observation once it performs
the task reliably and repeatedly. A strategy to mitigate this
problem is the use of an initial state buffer [62] from which
the environment samples a state when it resets itself after an
episode is terminated.

In this work, we use a simplified version. The state buffer
is used to store quadrotor states during training such that
episodes are started with physically plausible, yet diverse
states. We maintain a buffer of 10 possible initial states per
gate. At the start of the training, the states are all initialized,
such that the drone is positioned in the gate center and
flies forward at a velocity of 2 m/s. When the agent passes
a gate, its current state is added to the state buffer if it
passes the gate with a sufficient margin to the gate edges.
When the environment is reset, it samples a state from the
buffer and perturbs the position, attitude, velocity, and body
rate randomly. This effectively prevents mode collapse and
catastrophic forgetting.

2) Domain Randomization: Similar to the RL agents pre-
sented in previous works [20, 12], we employ domain ran-
domization to robustify a control policy against a sim2real
gap in the system dynamics. Despite having access to very
accurate models, drone-to-drone variation and complex non-
linear aerodynamic effects necessitate robust policies. Further-
more, domain randomization prevents a policy essentially from
memorizing a sequence of control commands and forces it to
react to the environment.

During training, we vary the drone dynamics by ±20%
in the thrust, body drag, and inertia parameters. The mass is
randomized by ±5%. The starting pose of the drone undergoes
uniform sampling around the starting point, with ±0.8m
variations in the x−y plane, ±0.6m in the z axis, and ±20 deg
in attitude. The initial velocity is sampled within ±0.8m/s,
and initial body rates are randomized in ±45 deg/s. To better
generalize to uncertainties in gate positions, we also randomize
the gate position by ±5 cm in each axis (x, y, z).

Therefore, the domain randomization procedure affects not
only the drone’s physical dynamics but also the environment
conditions. It is thus fully incorporated into the full simulation
state, which is used by the privileged critic and state-based
policies.

IV. EXPERIMENTS

After presenting the methodology in the previous section,
we now aim to quantitatively evaluate the performance of our
proposed system. The metrics used during this comparison
will be (i) the success rate, quantifying how many runs
successfully finish a three-lap race, (ii) the mean-gate-passing-
error quantifying how far from the gate center the drone passes
the gate, and (iii) the lap-time, measuring how agilely the
control policy flies. Leveraging these metrics, we want to
answer the following three research questions: (i) how does our
pixel-based agent compare to a state-based agent on different
track layouts, (ii) how sensitive is our agent to variations in

the track layout and (iii) is our method able to robustly fly in
the real world.

A. Simulation & HIL Experiments

To obtain reproducible results, we conduct the first part
of our analysis in simulation as well as using hardware-in-
the-loop (HIL) experiments. During such HIL experiments
the physical drone is controlled in the real world, however,
instead of using the gate detector for segmentation, we use our
simulated pixel-observations. This is possible since a motion-
capture system gives us access to the pose of the drone in real
time. This HIL approach enables differentiating between gate-
detector performance and the performance of the RL agent.

To assess the effectiveness of our approach, we conduct a
comparative analysis between our pixel-based policy and two
baselines. The first baseline is a pixel-based policy which we
have trained with a symmetric architecture, e.g. omitting the
privileged information in the critic. The second baseline is
a state-based policy where both actor and critic are trained
exclusively on the full simulation state. Figure 4 visualizes
the training rewards of the three approaches together with
the corresponding racetrack. From these plots, it is already
obvious that the symmetric pixel-based agent is not able to fly
the drone. The state-based agents learn much faster, thanks to
the smaller and hightly task relevant observation space. This
speed difference is especially pronounced when comparing
training times, as the state-based agent is also eight times faster
to train. However, given enough environment interactions, our
asymmetric pixel-based agent performs similarly. For results
on racetracks where no laps are flown (i.e. start to finish only),
see appendix VI-A.

Table I shows a detailed evaluation of the agents’ per-
formance on all three racetracks. We conduct the evaluation
both in the BEM simulator, our augmented simulator (training
environment), as well as in the real world with hardware-in-
the-loop simulation. The simulation evaluation is conducted
by simulating policy rollouts in each setting using 64 environ-
ments with slightly perturbed starting positions and 1000 time
steps. For hardware in the loop, we run the policy multiple
times and fly three laps during each run.

The results clearly show that the asymmetric critic is crucial
for the method’s success. Furthermore, our asymmetric pixel-
based agents come very close to the performance of the
state-based agents in all metrics. Most notably, it achieves a
100% success rate during hardware-in-the-loop deployment of
multiple experiments.

In addition, we can notice that a state-based policy trained
using the methodology of Song et al. [63] is superior in
terms of lap time. However, these policies complete the tracks
independently of their viewing direction, which gives them
the advantage of not necessarily looking toward the gates
the drone has to pass through. Moreover, the actions are not
as regularized as our approach, resulting in more aggressive
maneuvers, sharper turns, and noticeably higher mean-gate-
passing-errors (MGE). The MGE can be interpreted as a
measure of the safety margin when passing gates, as a higher

0 100 200 300 400
Steps (M)

−50

0

50

100

150

A
ve

ra
ge

re
w

ar
d

State-based
Pixel-based (symmetric)
Pixel-based (asymmetric)

0 100 200 300 400
Steps (M)

−25

0

25

50

75

100

125

A
ve

ra
ge

re
w

ar
d

State-based
Pixel-based (symmetric)
Pixel-based (asymmetric)

0 100 200 300 400
Steps (M)

−25

0

25

50

75

100

125

A
ve

ra
ge

re
w

ar
d

State-based
Pixel-based (symmetric)
Pixel-based (asymmetric)

Ellipse Figure-8 Glasses

Fig. 4. The top row shows the three different racetracks with trajectories flown by the pixel-based policy in the augmented simulator, while the bottom row
shows the reward progress during training. With the asymmetric actor-critic architecture, the average reward of our pixel-based agent converges to a similar
value as the state-based agent. Excluding the privileged information for the critic network results in unsuccessful learning. The training process requires
roughly 3 hours for the state-based policy, while the pixel-based policies take approximately one day to train for 400 million steps.

TABLE I
Simulation and HIL results. We compare the success rate (SR), mean-gate-passing-error (MGE), and the lap-time (LT) of our asymmetric pixel-based

policy against four baselines. Three different racetracks are evaluated in simulation and HIL experiments, each with three laps. Pixel-based policies trained
with our asymmetric actor-critic architecture perform significantly better than the symmetric architecture. We compare against the state-based approach of

Song et al. [63] and a modified version, denoted by +Perc, which uses the same observations as [63] but with our perception-aware reward design. The best
state-based result is underlined and the best pixel-based result is bold.

BEM Augmented HIL

SR MGE LT SR MGE LT SR MGE LT
Racetrack Observation [%] [m] [sec] [%] [m] [sec] [%] [m] [sec]

State-based (Song et al. [63]) 100.00 0.516 2.800 100.00 0.531 2.731 100.00 0.540 2.816
State-based (Song et al. [63]) +Perc 100.00 0.199 2.810 100.00 0.196 2.729 100.00 0.221 2.817

Ellipse State-based (ours) 100.00 0.296 2.846 100.00 0.219 2.756 100.00 0.389 2.570
Pixel-based (sym.) (ours) 0.00 0.328 - 0.00 0.268 - 0.00 - -
Pixel-based (asym.) (ours) 93.75 0.350 3.072 90.60 0.154 2.902 100.00 0.381 3.318

State-based (Song et al. [63]) 100.00 0.446 3.600 100.00 0.438 3.588 100.00 0.414 3.648
State-based (Song et al. [63]) +Perc 100.00 0.190 4.819 100.00 0.180 4.727 100.00 0.184 4.900

Figure-8 State-based (ours) 100.00 0.200 4.833 100.00 0.190 4.741 100.00 0.367 4.703
Pixel-based (sym.) (ours) 0.00 0.409 - 0.00 0.378 - 0.00 - -
Pixel-based (asym.) (ours) 100.00 0.198 4.626 95.30 0.186 4.644 100.00 0.238 4.777

State-based (Song et al. [63]) 100.00 0.471 3.479 100.00 0.451 3.497 100.00 0.455 3.570
State-based (Song et al. [63]) +Perc 100.00 0.119 5.065 100.00 0.121 5.018 100.00 0.163 5.090

Glasses State-based (ours) 100.00 0.151 5.102 100.00 0.163 4.985 100.00 0.191 5.157
Pixel-based (sym.) (ours) 0.00 0.402 - 0.00 0.396 - 0.00 - -
Pixel-based (asym.) (ours) 100.00 0.240 5.267 89.10 0.209 5.162 100.00 0.273 5.586

deviation from the center of the gates makes crashes more
likely but yields faster lap times. If we add the proposed
perception-aware reward and action regularization to [63],
then the overall performance of [63] is comparable to our
state-based policy (see +Perc entries). The remaining lap-time
difference to the pixel-based policies is caused by [63]+Perc
being deployed with state-based information from a motion-
capture system.

1) Sensitivity to Gate Positions: Next, we investigate the
sensitivity of our pixel-based policy to slightly changed gate
positions. By introducing gate position randomization, we aim

to assess the generalizability of our policies across varying sce-
narios. This ablation provides valuable insights into how well
our pixel-based approach adapts to changes in gate positions.
In Figure 5, the results are visualized. At the beginning of each
simulation experiment, the gates are randomly displaced by up
to 50 cm in each direction. Consistent with the methodology
employed in previous simulation experiments, each metric is
derived from the average of 64 environment rollouts, each
spanning 1000 time steps. Notably, even without explicit
gate position information, our pixel-based approach achieves
successful flights, demonstrating resilience in the face of

0 10 20 30 40 50
Pertubation [cm]

0

20

40

60

80

100
Su

cc
es

s
ra

te
[%

]

State-based
Pixel-based

0 10 20 30 40 50
Pertubation [cm]

0

20

40

60

80

100

Su
cc

es
s

ra
te

[%
]

State-based
Pixel-based

0 10 20 30 40 50
Pertubation [cm]

0

20

40

60

80

100

Su
cc

es
s

ra
te

[%
]

State-based
Pixel-based

Ellipse Figure-8 Glasses

Fig. 5. The rate of successful trials in the augmented simulator ablated by perturbing the gate position in positive and negative x, y, z direction by a uniform
distribution. While the state-based policy benefits from direct access to gate position information, the pixel-based policy demonstrates robustness by effectively
inferring gate position solely from image observations, even in scenarios deviating from the training environment.

substantial gate-position perturbations. The state-based policy
is superior because its input directly contains the ground-truth
relative position of the next gate to be passed.

B. Real-World Experiments

In a final setup of experiments, we deploy our pixel-based
policy together with the gate detector in the real world on
the Figure 8 track. We use a modification of the Agilicious
platform [64] for the real-world deployment. On this modified
platform, the onboard computer is replaced with an RF re-
ceiver which receives the control commands from the ground
station. The RF receiver is connected to the flight controller1,
which then executes the transmitted collective thrust and body
rate commands. Additionally, the quadrotor is equipped with
a low-latency video transmission system which sends the
live video stream to the base computer. This configuration is
similar to the one used by professional drone racing pilots and
we measure at video stream latency of 33 ms. The gate detector
is run directly on the images sent to the ground station.

Table II summarizes the real-world flights. For a more
dynamic impression, the reader is advised to watch the sup-
plementary video showcasing these experiments. We achieve
direct zero-shot simulation-to-reality transfer of our pixel-
based control policies. The success rate across 6 runs and a
total of 20 flown laps is 100%. Compared to the state-based
policy, the asymmetric pixel-based policy exhibits a slightly
larger gate-passing error but flies a similar lap-time.

This result means that we have demonstrated agile flight
directly from pixels without explicit state estimation, as our
asymmetric pixel-based agent robustly navigates the track at
speeds up to 40 km/h and accelerations up to 2 g.

1https://www.betaflight.com

TABLE II
Results in the real world flying without state estimation for 6 trials with 3

laps each on the Figure-8 racetrack. We compare the success rate (SR),
mean-gate-passing-error (MGE), and the lap-time (LT) in the real-world

using state-based and pixel-based observations.

SR MGE LT
Observation [%] [m] [sec]

State-based 100.00 0.367 4.703
Pixel-based (asym.) 100.00 0.491 4.683

V. DISCUSSION AND CONCLUSION

In this paper, we presented, to our knowledge, the first
vision-based, agile quadrotor system that learns to directly map
pixels to low-level control commands without explicit state
estimation or access to IMU. This combination of observation
and action space has been a long-standing milestone for visuo-
motor robotic intelligence. Through extensive experiments in
simulation and real-world drone racing at speeds up to 40 km/h
with accelerations up to 2 g, our methodology showcases the
direct transfer of policies from simulation to reality with
the appropriate abstractions of the visual input feed, akin to
professional human drone pilots.

As shown in the experiments, the asymmetric actor-critic
architecture plays a vital role in the approach’s success. By
leveraging privileged information about the drone’s state in
the environment, the critic network enhances its precision in
assessing the actions taken by the actor, particularly in the
context of pixel observations. This framework enables perfor-
mance similar to a state-based policy, achieving comparable
but marginally lower success rates in our evaluations. The
inner gate edge abstraction enables training policies with up
to 400 million environment interactions within a day. This
makes it possible to train a pixel-based agent directly with
RL, contributing to the robustness of the agent.

At present, a primary limitation of our approach is the
limited memory of the neural controller, only considering three
past actions. When the drone is oriented so that no gate is
visible for multiple frames, the success rate drops drastically
as our architecture’s relatively short action history hinders

https://www.betaflight.com

recovery. This challenge can be effectively addressed by
incorporating a recurrent architecture, allowing for prolonged
memory retention. Furthermore, enhancing sample efficiency
could be achieved by employing specialized algorithms tai-
lored for learning from pixels.

While this work exclusively demonstrates autonomous
vision-based flight without state-estimation for the task of
drone racing, we believe that it has broader implications
and will serve as a foundation for more application-oriented
extensions. In tasks like autonomous indoor navigation or ship
inspection, salient landmarks like doorways or manholes could
be used instead of gates as their positions are known and
their appearance is relatively consistent. Here, employing a
separate the vision-encoder and RL-controller is beneficial as
the landmark detector can be trained independently of the
navigation policy. The latter can be trained in a simulation
with access to a floorplan or blueprint of the deployment
environment, potentially enabling diverse inspection tasks.

Another potential application of our method is to overcome
situations where IMU information is not reliable, such as
a straight-line flight at a constant speed. This flight profile,
prevalent during powerline inspection, renders the IMU bias
drift in a state-estimation pipeline unobservable. Our method
on the other hand could rely on detecting powerline pylons and
always fly towards the next visible pylon, effectively traversing
along the powerline.

We realize that future research dedicated to obstacle avoid-
ance, dynamic objects and unforseen changes to the environ-
ment is required for many real-world applications. Neverthe-
less, we believe that our work represents a major step forward
in the development and understanding of fully autonomous
robots that rely solely on visual data.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Hori-
zon Europe Research and Innovation Programme under grant
agreement No. 101120732 (AUTOASSESS) and the European
Research Council (ERC) under grant agreement No. 864042
(AGILEFLIGHT). The authors thank Chunwei Xing for his
assistance in the development of the Swin-transformer-based
gate detector.

REFERENCES

[1] Michael Bloesch, Stephan Weiss, Davide Scaramuzza, and
Roland Siegwart. Vision based mav navigation in unknown
and unstructured environments. In 2010 IEEE International
Conference on Robotics and Automation, pages 21–28, 2010.

[2] Giuseppe Loianno and Davide Scaramuzza. Special issue
on future challenges and opportunities in vision-based drone
navigation. Journal of Field Robotics, 37(4):495–496, June
2020. ISSN 1556-4959. doi: 10.1002/rob.21962.

[3] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay
Kumar. Vision-based state estimation and trajectory control
towards high-speed flight with a quadrotor. In Robotics: Science
and Systems (RSS), 2013.

[4] Sikang Liu, M. Watterson, S. Tang, and V. Kumar. High speed
navigation for quadrotors with limited onboard sensing. In IEEE
Int. Conf. Robot. Autom. (ICRA), pages 1484–1491, 2016.

[5] G. Loianno, C. Brunner, G. McGrath, and V. Kumar. Estima-
tion, control, and planning for aggressive flight with a small
quadrotor with a single camera and IMU. IEEE Robot. Autom.
Lett., 2017.

[6] Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide
Scaramuzza. Aggressive quadrotor flight through narrow gaps
with onboard sensing and computing using active vision. In
2017 IEEE international conference on robotics and automation
(ICRA), pages 5774–5781. IEEE, 2017.

[7] Kartik Mohta, Michael Watterson, Yash Mulgaonkar, Sikang
Liu, Chao Qu, Anurag Makineni, Kelsey Saulnier, Ke Sun,
Alex Zhu, Jeffrey Delmerico, Konstantinos Karydis, Nikolay
Atanasov, Giuseppe Loianno, Davide Scaramuzza, Kostas Dani-
ilidis, Camillo Jose Taylor, and Vijay Kumar. Fast, autonomous
flight in gps-denied and cluttered environments. Journal of Field
Robotics, 35(1):101–120, 2018.

[8] Yi Lin, Fei Gao, Tong Qin, Wenliang Gao, Tianbo Liu, William
Wu, Zhenfei Yang, and Shaojie Shen. Autonomous aerial
navigation using monocular visual-inertial fusion. Journal of
Field Robotics, 35(1):23–51, 2018.

[9] Yingjian Wang, Jialin Ji, Qianhao Wang, Chao Xu, and Fei
Gao. Autonomous flights in dynamic environments with on-
board vision. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1966–1973, 2021.
doi: 10.1109/IROS51168.2021.9636117.

[10] Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias
Müller, Vladlen Koltun, and Davide Scaramuzza. Deep drone
acrobatics. In Proceedings of Robotics: Science and Systems,
Corvalis, Oregon, USA, July 2020.

[11] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias
Müller, Vladlen Koltun, and Davide Scaramuzza. Learning
high-speed flight in the wild. Science Robotics, 6(59), 2021.

[12] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio,
Matthias Müller, Vladlen Koltun, and Davide Scaramuzza.
Champion-level drone racing using deep reinforcement learning.
Nature, 620(7976):982–987, Aug 2023. ISSN 1476-4687.

[13] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified
temporal and spatial calibration for multi-sensor systems. In
2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1280–1286, 2013.

[14] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and
Davide Scaramuzza. Dronet: Learning to fly by driving. IEEE
Robotics and Automation Letters, 3(2):1088–1095, 2018.

[15] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real single-
image flight without a single real image. In Robotics: Science
and Systems (RSS), pages 48–55, 2017.

[16] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47):eabc5986,
2020.

[17] Gabriel Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and
Pulkit Agrawal. Rapid locomotion via reinforcement learning.
In Robotics: Science and Systems, 2022.

[18] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Well-
hausen, Vladlen Koltun, and Marco Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild.
Science Robotics, 7(62):eabk2822, 2022.

[19] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-
body control: Learning a unified policy for manipulation and
locomotion. In Karen Liu, Dana Kulic, and Jeff Ichnowski,
editors, Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Research,
pages 138–149. PMLR, 14–18 Dec 2023.

[20] Yunlong Song, Angel Romero, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. Reaching the limit in au-
tonomous racing: Optimal control versus reinforcement learn-
ing. Science Robotics, 8(82):eadg1462, 2023.

[21] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. Advances in Neural
Information Processing Systems, 34:16558–16569, 2021.

[22] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch visual
odometry. arXiv preprint arXiv:2208.04726, 2022.

[23] Shunkai Li, Wang Xin, Yingdian Cao, Fei Xue, Zike Yan, and
Hongbin Zha. Self-supervised deep visual odometry with online
adaptation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6338–6347, 06 2020.

[24] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni.
DeepVO: Towards end-to-end visual odometry with deep recur-
rent convolutional neural networks. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 2043–
2050. IEEE, 2017.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin
Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, February 2015.
ISSN 0028-0836, 1476-4687.

[26] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan
Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and
Baining Guo. Swin transformer v2: Scaling up capacity and
resolution. In International Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[27] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The
arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47:253–279,
June 2013. ISSN 1076-9757.

[28] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioan-
nis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, January 2016. ISSN 1476-4687.
Number: 7587 Publisher: Nature Publishing Group.

[29] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe
Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki,
Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. DeepMind Control Suite, January 2018. URL http:
//arxiv.org/abs/1801.00690. arXiv:1801.00690 [cs].

[30] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos,
Joelle Pineau, and Rob Fergus. Improving sample efficiency
in model-free reinforcement learning from images. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(12):
10674–10681, May 2021. ISSN 2374-3468, 2159-5399.

[31] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 2555–2565.
PMLR, 2019.

[32] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL:
Contrastive unsupervised representations for reinforcement
learning. In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
pages 5639–5650. PMLR, 13–18 Jul 2020.

[33] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter
Abbeel, and Aravind Srinivas. Reinforcement learning with
augmented data. In Hugo Larochelle, Marc’Aurelio Ranzato,

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, ed-
itors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[34] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto.
Mastering visual continuous control: Improved data-augmented
reinforcement learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

[35] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter
Abbeel, and Ken Goldberg. Daydreamer: World models for
physical robot learning. In Conference on Robot Learning
(CoRL). PMLR, 2022.

[36] Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors by latent
imagination. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020.

[37] Andrei A. Rusu, Matej Vecerı́k, Thomas Rothörl, Nicolas Heess,
Razvan Pascanu, and Raia Hadsell. Sim-to-real robot learning
from pixels with progressive nets. In 1st Annual Conference on
Robot Learning, CoRL 2017, Mountain View, California, USA,
November 13-15, 2017, Proceedings, volume 78 of Proceedings
of Machine Learning Research, pages 262–270. PMLR, 2017.

[38] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2017, Vancouver, BC,
Canada, September 24-28, 2017, pages 23–30. IEEE, 2017.

[39] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel.
End-to-end training of deep visuomotor policies. J. Mach.
Learn. Res., 17:39:1–39:40, 2016.

[40] Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile aloha:
Learning bimanual mobile manipulation with low-cost whole-
body teleoperation. In arXiv, 2024.

[41] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Doso-
vitskiy, Vladlen Koltun, and Davide Scaramuzza. Deep drone
racing: Learning agile flight in dynamic environments. In
Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto,
editors, Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pages
133–145. PMLR, 29–31 Oct 2018.

[42] Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose, and
Sergey Levine. GNM: A General Navigation Model to Drive
Any Robot. In International Conference on Robotics and Au-
tomation (ICRA), 2023. URL https://arxiv.org/abs/2210.03370.

[43] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz,
Kevin Black, Noriaki Hirose, and Sergey Levine. ViNT: A foun-
dation model for visual navigation. In 7th Annual Conference on
Robot Learning, 2023. URL https://arxiv.org/abs/2306.14846.

[44] Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey
Levine. NoMaD: Goal Masked Diffusion Policies for Navi-
gation and Exploration. arXiv pre-print, 2023. URL https:
//arxiv.org/abs/2310.07896.

[45] William Koch, Renato Mancuso, Richard West, and Azer
Bestavros. Reinforcement learning for uav attitude control.
ACM Transactions on Cyber-Physical Systems, 3(2):1–21, 2019.

[46] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey
Levine, Roberto Calandra, and Kristofer SJ Pister. Low-level
control of a quadrotor with deep model-based reinforcement
learning. IEEE Robotics and Automation Letters, 4(4):4224–
4230, 2019.

[47] Robin Ferede, Christophe De Wagter, Dario Izzo, and
Guido CHE de Croon. End-to-end reinforcement learn-
ing for time-optimal quadcopter flight. arXiv preprint
arXiv:2311.16948, 2023.

http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://arxiv.org/abs/2210.03370
https://arxiv.org/abs/2306.14846
https://arxiv.org/abs/2310.07896
https://arxiv.org/abs/2310.07896

[48] Jonas Eschmann, Dario Albani, and Giuseppe Loianno. Learn-
ing to fly in seconds. arXiv e-prints, pages arXiv–2311, 2023.

[49] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-
image flight without a single real image. arXiv preprint
arXiv:1611.04201, 2016.

[50] Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza.
A benchmark comparison of learned control policies for agile
quadrotor flight. In 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022.

[51] Christian Pfeiffer and Davide Scaramuzza. Human-piloted
drone racing: Visual processing and control. IEEE Robotics
and Automation Letters, 6(2):3467–3474, 2021.

[52] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 5745–5753. Computer Vision Foundation / IEEE,
2019.

[53] Luc Oth, Paul Furgale, Laurent Kneip, and Roland Siegwart.
Rolling shutter camera calibration. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1360–1367,
2013.

[54] Vladyslav C. Usenko, Nikolaus Demmel, and Daniel Cremers.
The double sphere camera model. 2018 International Confer-
ence on 3D Vision (3DV), pages 552–560, 2018.

[55] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun,
and Davide Scaramuzza. Neurobem: Hybrid aerodynamic
quadrotor model. RSS: Robotics, Science, and Systems, 2021.

[56] Raymond W Prouty. Helicopter performance, stability, and
control. Krieger Pub Co, 1995.

[57] Rajan Gill and Raffaello D’Andrea. Propeller thrust and drag in
forward flight. In 2017 IEEE Conference on Control Technology
and Applications (CCTA), pages 73–79. IEEE, 2017.

[58] Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus
Cieslewski, Mathias Gehrig, Manasi Muglikar, and Davide
Scaramuzza. Alphapilot: Autonomous drone racing. Au-
tonomous Robots, 46(1):307–320, 2022.

[59] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms.
arXiv e-prints, 2017.

[61] Prakhar Kaushik, Alex Gain, Adam Kortylewski, and Alan
Yuille. Understanding catastrophic forgetting and remembering
in continual learning with optimal relevance mapping, 2021.

[62] Nico Messikommer, Yunlong Song, and Davide Scaramuzza.
Contrastive initial state buffer for reinforcement learning, 2023.

[63] Yunlong Song, Angel Romero, Mathias Mueller, Vladlen
Koltun, and Davide Scaramuzza. Reaching the limit in au-
tonomous racing: Optimal control versus reinforcement learn-
ing. Science Robotics, page adg1462, 2023.

[64] Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka,
Sihao Sun, Leonard Bauersfeld, Thomas Laengle, Giovanni
Cioffi, Yunlong Song, Antonio Loquercio, and Davide Scara-
muzza. Agilicious: Open-source and open-hardware agile
quadrotor for vision-based flight. Science Robotics, 7(67):
eabl6259, 2022.

Fig. 6. Comparison of multiple rollouts with different initial conditions on an acyclic racetrack. From left to right: rollouts with a state-based policy, a
pixel-based symmetric actor-critic policy, and the proposed pixel-based asymmetric architecture. The symmetric pixel-based policy is not able to learn this
racetrack successfully.

VI. APPENDIX

A. Acyclic racetrack

In a drone-racing scenario, it is a common assumption that
the race lasts multiple laps; thus, the task becomes cyclic.
However, outside of drone racing, a drone might be confronted
with an acyclic task consisting of flying from one point to
another. To underline that our method also allows for this
type of mission, we also evaluate it on an acyclic racetrack,
where the episode terminates after the last gate. Besides this
change, the observations, rewards, and actions remain the
same. A racecourse without cycles demonstrates that this
method is not limited to drone racing and can, therefore,
generalize beyond other maps that are used for vision-based
navigation. Notice that the symmetric actor-critic architecture
failed to complete this track entirely. In contrast, the proposed
asymmetric architecture successfully navigated the track in
multiple runs with varying starting positions, similar to the
state-based policy, see Figure 6.

The corresponding average reward while training the acyclic
track is visualized in Figure 7. Since the episode terminates
after the last gate with a terminal reward of rterm

t = 10,
the total reward is lower than the previously discussed cyclic
racetracks reported in Figure 4, where episodes could go up to
30 seconds (assuming no collision before) with a simulation
step frequency of 50 Hz.

B. Hyperparameters

We train our state- and vision-based policies using Proximal
Policy Optimization (PPO), simulating 100 environments in
parallel to collect rollouts. The hyperparameters listed in
Table III are used to train all the policies. The only exception
is the acyclic track, which requires a lower discount factor
γ = 0.98 for robust learning, since the episodes are sig-
nificantly shorter than tracks where the drone may complete
multiple laps in up to 30 seconds.

0 100 200 300 400
Steps (M)

−10

−5

0

5

10

15

20

25

A
ve

ra
ge

re
w

ar
d

State-based
Pixel-based (symmetric)
Pixel-based (asymmetric)

Fig. 7. Reward progress over the number of simulation time-steps for the
acyclic track. The symmetric actor-critic is not able to complete the whole
track.

TABLE III
PPO hyperparameters to train state- and vision-based policies.

Parameter Value

learning rate 3e-4 linear decay to 1e-5
discount factor 0.995
GAE-λ 0.95
learning epochs 10
clip range 0.2
entropy coefficient 0.001
batch size 25000
policy network MLP [512, 512]
value network MLP [512, 512]
CNN-encoder latent dimension 256

	Introduction
	Contributions

	Related Work
	Reinforcement Learning from Pixels
	Vision-based flight

	Methodology
	Neural Controller
	Action Space
	Observation Space of the Actor
	Observation Space of the Critic
	Rewards
	Network Architecture

	Simulation
	Gate Observation
	Quadrotor Dynamics

	Gate Detector
	Policy Training
	Initial State Buffer
	Domain Randomization

	Experiments
	Simulation & HIL Experiments
	Sensitivity to Gate Positions

	Real-World Experiments

	Discussion and Conclusion
	Appendix
	Acyclic racetrack
	Hyperparameters

