
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024 1

Multi-Task Reinforcement Learning for Quadrotors
Jiaxu Xing, Ismail Geles, Yunlong Song, Elie Aljalbout, and Davide Scaramuzza

Abstract—Reinforcement learning (RL) has shown great ef-
fectiveness in quadrotor control, enabling specialized policies
to develop even human-champion-level performance in single-
task scenarios. However, these specialized policies often struggle
with novel tasks, requiring a complete retraining of the policy
from scratch. To address this limitation, this paper presents
a novel multi-task reinforcement learning (MTRL) framework
tailored for quadrotor control, leveraging the shared physical
dynamics of the platform to enhance sample efficiency and task
performance. By employing a multi-critic architecture and shared
task encoders, our framework facilitates knowledge transfer
across tasks, enabling a single policy to execute diverse maneu-
vers, including high-speed stabilization, velocity tracking, and
autonomous racing. Our experimental results, validated both
in simulation and real-world scenarios, demonstrate that our
framework outperforms baseline approaches in terms of sample
efficiency and overall task performance.
Video: https://youtu.be/HfK9UT1OVnY.

Index Terms—Reinforcement Learning, Machine Learning for
Robot Control, Aerial Systems: Perception and Autonomy

I. INTRODUCTION

REAL world quadrotor applications typically involve mul-
tiple tasks and skills. For example, in search and rescue

scenarios or inspection, quadrotors are required to perform
a range of specific tasks within a single mission, such as
tracking moving objects, maintaining stable hover positions,
and precisely following designated paths or targets. To meet
these diverse demands, a generalist control policy that can ef-
fectively manage these tasks can greatly enhance the versatility
and adaptability of quadrotors, making them more effective
in real-world applications. However, developing a generalist
controller for multiple tasks is a challenging problem since
different tasks often have different objectives and state spaces.
For instance, in quadrotor control, the objective for hovering is
to stabilize the vehicle by reducing its velocity to zero, whereas
quadrotor racing requires maximizing speed while avoiding
collisions with gates. These tasks inherently conflict with their
goals and demand different observations and strategies.

In this work, we tackle the multi-task quadrotor control
problem using deep reinforcement learning (RL), which offers
the advantage of automatically optimizing parametric con-
trollers through trial and error. RL is particularly effective

Manuscript received: September 3, 2024; Revised November 6, 2024;
Accepted November 26, 2024.

This paper was recommended for publication by Editor Giuseppe Loianno
upon evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, and Department of Neuroinformatics,
University of Zurich and ETH Zurich, Switzerland (http://rpg.ifi.uzh.ch).
This work was supported by the European Union’s Horizon Europe Re-
search and Innovation Programme under grant agreement No. 101120732
(AUTOASSESS) and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Digital Object Identifier (DOI): see top of this page.

Fig. 1: The proposed approach performs three distinct tasks
for quadrotor control in the real world. The resulting single
MTRL policy can (Top) stabilize the quadrotor from high
speed, (Middle) autonomously race through a fixed track, and
(Bottom) track randomly generated velocities.

in handling highly non-linear dynamical systems and non-
convex, non-differentiable objectives—challenges that are typ-
ically difficult for conventional optimization-based methods
such as Model Predictive Control (MPC) [1], [2]. RL has
demonstrated significant success in different domains of agile
quadrotor control, ranging from time-optimal drone racing to
obstacle avoidance [1], [3], [4].

State-of-the-art RL approaches have demonstrated special-
ization with great performance, even reaching the human-
champion level in single-task scenarios such as drone rac-

https://youtu.be/HfK9UT1OVnY
http://rpg.ifi.uzh.ch

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

ing [5]. However, these specialized policies often struggle
to perform novel, out-of-distribution tasks and require re-
training from scratch when faced with even minor changes
in task configuration [6]. Consequently, the commonly used
task-specific training approach is unsuitable for multi-task
scenarios, making developing a multi-task RL policy for
quadrotors a significant challenge. A natural solution to MTRL
problems is to train a network jointly on all tasks to uncover
shared structures that can improve efficiency and performance
beyond what individual task solutions can achieve. However,
learning multiple tasks simultaneously often poses a challeng-
ing optimization problem involving conflicting objectives [7],
sometimes resulting in poorer overall performance and data
efficiency compared to individual task learning.

Despite these challenges, previous work on MTRL has
demonstrated the potential of integrating shared task structures
to perform various manipulation skills, such as lifting and
pick-and-place, particularly in fixed-base manipulation scenar-
ios [8]–[11]. While MTRL has shown promise in manipulation
on a simulation benchmark [12], its application for quadrotors
remains largely unexplored.

Contributions

In this paper, we propose the first MTRL framework
for learning various quadrotor control tasks efficiently. A
key advantage of MTRL is its ability to share knowledge
across different tasks, thereby enhancing learning efficiency.
Although the reward objectives of RL may vary between tasks,
the underlying physical dynamics of the quadrotor, such as
mass, inertia, and other physical properties, remain constant
throughout the learning process. Leveraging these invariant
conditions, our framework efficiently utilizes information shar-
ing to learn multiple tasks within a single policy.

The reinforcement learning framework employs a multi-
critic setup, and we propose a shared task encoder for observa-
tions containing dynamical information while handling task-
specific observations using task-specific encoding networks.
By sharing common information and isolating task-specific
data, we have developed a high-performance policy capable of
executing maneuvers such as stabilization, velocity tracking,
and racing.

We validate our MTRL policy in both simulation and real-
world settings. We demonstrate that our framework outper-
forms baseline approaches in terms of sample efficiency and
overall task performance. We believe this advancement is
an important step toward developing a generalist quadrotor
control policy, which could enable robots to handle diverse
tasks in real-world scenarios more effectively.

II. RELATED WORKS

A. Reinforcement Learning for Quadrotor Control

In recent years, Reinforcement Learning (RL) has gained
significant attention for the control of quadrotors. The
work [13] is one of the first successful applications of RL
to quadrotor control by tracking waypoints and recovering
from challenging initial conditions. In [14], the performance
gains of using RL for low-level control over classical meth-
ods are demonstrated. Besides obstacle avoidance [15], [16],

drone racing represents an important benchmark task for agile
quadrotor flight, where the impact of reinforcement learning
is very significant [1], [5], even outperforming state-of-the-
art model-based control [1]. By optimizing several aspects of
the training framework, in [17] it is demonstrated RL policies
may be trained within seconds. Several works focus on vision-
based flight with reinforcement learning, such as [18], which
uses a CAD model to produce discrete velocity commands di-
rectly from pictures. In [19], it is shown how RL bootstrapped
imitation learning [3] benefits vision-based agile flight. In [5],
the combination of vision-based state estimation and RL-based
control enabled surpassing human world champions in drone
racing. In [20], RL is used to learn drone racing from pixels
without explicit state estimation.

B. Multi-task Reinforcement Learning for Robotics

In [8], a large-scale collective robotic learning system,
can rapidly acquire diverse skills by sharing exploration,
experience, and representations across tasks, improving overall
performance and capabilities. The work [9] demonstrates using
MTRL to perform complex robotic skills like in-hand ma-
nipulation autonomously, significantly reducing the need for
human resets during training sessions. In [21], modularization
in network design is explored to facilitate MTRL, improving
both sample efficiency and the performance of robotic tasks
by dynamically configuring network modules according to the
task requirements. In [22], a sequential multi-task learning
scenario where a robot incrementally learns various tasks is
demonstrated, using experiences from previous tasks to reduce
the need for relearning and improve efficiency. Recently multi-
task world models in proposed in [11], leveraging language
model embeddings as task representations for model-based
reinforcement learning of multiple robotic tasks. However,
most existing MTRL research focuses on manipulation tasks
with varying underlying dynamics across tasks, limiting oppor-
tunities for knowledge sharing. In contrast, our work leverages
the consistent dynamics of the quadrotor, enabling us to
propose a novel framework that enhances knowledge sharing
for more efficient multi-task learning.

III. METHODOLOGY

A. Notation

In this manuscript, we define two reference frames. The
first W is the fixed world frame with its z-axis aligned with
gravity. The second frame B is the quadrotor body frame.
These reference frames are illustrated in Fig. 2. Vectors and
matrices are represented as bold quantities, with capital letters
denoting matrices. Vectors include a suffix indicating the frame
in which they are expressed and their endpoint. For example,
the quantity pWB represents the position of the body frame
B relative to the world frame W . The rotation matrix that
transforms a vector from frame B to W is denoted by RWB .

B. Quadrotor Dynamics

Let pWB , qWB , and vWB represent the position, ori-
entation, and linear velocity of the quadrotor, respectively,
expressed in the world frame W . Let ωB denote the angular

XING et al.: MULTI-TASK REINFORCEMENT LEARNING FOR QUADROTORS 3

4

2

1

3

xB

yB
zB

xW

yW

zW

Fig. 2: Diagram of quadrotor model with the world and body
frames and propeller numbering convention.

velocity of the quadrotor expressed in the body frame B.
Additionally, let c = Σici represent the body’s collective
thrust, where ci is the thrust produced by the i-th motor, and
let c =

[
0 0 c

]⊺
denote the collective thrust vector. Here,

m represents the mass of the quadrotor, and gW is the gravity
vector. Finally, let J be the diagonal moment of inertia matrix,
and τB the body’s collective torque. The quadrotor’s dynamic
model is

ẋ =

ṗWB

q̇WB

v̇WB

ω̇B

 =

vWB

1
2Λ(ωB) · qWB

qWB ⊙ c/m+ gW
J−1(τB − ωB × J · ωB)

 . (1)

C. Policy Learning

1) Problem Formulation: In the MTRL setting, we have N
tasks T = {T1, · · · , Ti, · · · , TN}, where each task Ti has a
specific reward function ri. Each task is defined by a Markov
Decision Process (MDP) Mi = (Si,Ai,Pi,Ri, γi), where Si

is the state space, Ai is the action space, Pi is the transition
probability, Ri is the reward function, and γi is the discount
factor. In the MTRL setting, the goal is to learn a policy π that
maximizes the expected return J(π) across all tasks. Given
uniformly sampled tasks, the optimization objective is defined
as

J(π) =
1

N

N∑
i=1

Eπ

[∞∑
t=0

γt
iri(st, at)

]
. (2)

In our work, our multi-task configurations are primarily dis-
tinguished by the reward settings R as model dynamics P
remain identical due to the unchanging physical properties
of the drones. In the following sections, we detail the tasks
considered in this work and the policy learning approach.

2) Autonomous Racing: The autonomous racing task can
be formulated as an optimization problem that aims to min-
imize the time required for an agile quadrotor to navi-
gate through a predefined sequence of gates [23], as shown
in Fig. 5. In this task, we use the observations o =[
p, R̃,v,ω, aprev, δp1, δp2

]
, where p ∈ R3 denotes the

drone’s position, R̃ ∈ R6 is a vector comprising the first
two columns of RWB [24], v ∈ R3 and ω ∈ R3 denote the
linear and angular velocity of the drone, aprev represents the
previous action from the actor policy, δp1 ∈ R12 represents

the relative position differences of the four upcoming gate
corners on the race track with respect to the drone agent,
with each corner specified by a 3D position in the world
frame. Similarly, δp2 ∈ R12 represents the relative position
differences of the corners from the next gate to the gate after
that. Here δp1 represents the difference of the 4 corners of
the next gate to pass between the current quadrotor position.
And δp2 represents the positional difference of the corners
between the next gate to pass and the gate after the next gate
to pass on the race track. The RL policy training rewards are
adjusted based on [1]. The reward at time t, denoted as rt, is
defined as the sum of various components

rracingt = rprogt + rperct + ractt + rbrt + rpasst + rcrasht , (3)

where rprogt encourages progress towards the next gate to be
passed [1], rperct encodes perception awareness by adjusting
the quadrotor’s attitude such that the optical axis of its camera
points towards the next gate’s center, ractt penalizes action
changes from the last time step, rbrt penalizes body rates and
consequently reduces motion blur, rpasst is a binary reward
that is active when the robot successfully passes the next gate,
rcrasht is a binary penalty that is only active when a collision
happens, which also ends the episode. The reward components
are formulated as follows

rprogt = α1(dGate(t− 1)− dGate(t)),

rperct = α2 exp(α3 · δ4cam),
ractt = α4∥ut − ut−1∥,
rbrt = α5∥ωB,t∥,

rpasst = α6 if robot passes the next gate,

rcrasht = α7 if robot crashes (gates, ground).

(4)

3) Stabilization from High Speed: In the stabilization task,
the quadrotor is expected to recover to the static status, given
randomized poses and high initial velocities. Here, successful
stabilization is defined as achieving near-zero velocities around
a predefined height zd, starting from random initial positions
and velocities. In this setting, the quadrotor is initialized with a
random position, orientation, and linear and angular velocities.
The observation contains oh = [p, R̃,v,ω, aprev, p̈WB , zd].
Here p̈WB is defined as the acceleration of the quadrotor agent
in the world frame, and zd represents a predefined constant
height in meters to stabilize at. The reward function rstabilizet

is defined as

rstabilizet = rheightt +rattitudet +rvelocityt +rbrt +ractt +rsuccesst .
(5)

Here rheightt rewards the quadrotor for maintaining a constant
height, rattitudet rewards the quadrotor for maintaining a con-
stant orientation, rvelocityt and rangulart penalizes the non-zero
linear and angular velocities, ractt penalizes the non-smooth
actions, and rsuccesst is a discrete reward when the quadrotor
is stabilized. All the rewards are formulated here using the L2

norm multiplied by a corresponding constant coefficient. The

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

Shared Observation[
p, R̃,v,ω, aprev

] ..
.

..
.

..
.

..
.

a = [c,ω⊺
B]Shared

Encoder

z0

zN

32

32

6432

zs

h0

hN

Shared
Actor

Task-specific
Observation otN

Task N
Encoder

⊕

Task-specific
Observation o0

Task-specific
Observation oN

Task 0
Encoder

Task i
Critic

⊕

zs ⊕ zi

⊕ Concatenation

Fig. 3: Our MTRL framework utilizes a shared encoder for observations related to the quadrotor dynamics across all tasks.
The embedding output from the shared encoder is then merged with the task-specific observation (e.g., the gate observation
from the racing task and the desired velocity from the tracking task) to create a task-specific embedding. The policy uses both
the concatenated embedding (64) from the shared embedding (32) and the task-specific embedding (32) to generate control
commands. A separate critic function is used for each task, which is not employed during deployment.

detailed rewards are defined as

rheightt = β1∥zt − zd∥,
rattitudet = β2∥Rt∥,
rvelocityt = β3∥vt∥,

rbrt = β4∥ωB,t∥,
ractt = β5∥ut − ut−1∥,

rsuccesst = β6 if robot remains hovering.

(6)

During training, we applied a curriculum to gradually increase
the difficulty of the tasks. We increase the initial speed of the
quadrotor in the x, y, and z axes by 10% for every 100,000
data samples. The curriculum will stop once the predefined
upper limits in each direction are reached.

4) Velocity Tracking: In the velocity tracking task,
the quadrotor is required to track a randomly gener-
ated velocity profile. The observation contains ov =
[p, R̃,v,ω, aprev,vd, p̈WB], where vd represent the desired
linear velocity. The reward function rtrackingt is defined as

rtrackingt = rvelocityt + rbrt + ractt , (7)

where rvelocityt rewards the quadrotor for tracking the desired
velocity, rbrt penalizes the quadrotor for non-zero angular
velocities, and ractt penalizes the quadrotor for excessive
actions. All the rewards are formulated here using the L2 norm
multiplied by a corresponding constant coefficient,

rvelocityt = λ1∥vt − vd(t)∥,
rbrt = λ2∥ωB,t∥,
ractt = λ3∥ut − ut−1∥.

(8)

During training, we implemented a curriculum to progressively
increase the difficulty of the tasks. The desired speed of
the quadrotor in the x, y, and z axes was increased by
1ms−1 for every 100,000 data samples. This gradual increase
will continue until the predefined upper-speed limits in each
direction are achieved.

D. Multi-task Learning Framework

Since the control or navigation tasks are typically not
contact-rich for a fixed quadrotor platform, we generally do
not expect changes in the dynamics equations (see Eq. 1),
whether during different phases of a single task or across
various tasks. Many previous works also present this valid
assumption, from agile drone racing to obstacle avoidance [1],
[4], [5]. Hence, in the quadrotor setting, we can utilize the
consistent physical property to simplify the multi-task scenario
by assuming an identical transition probability across all tasks.
This assumption serves as the primary motivation for our
proposed information-sharing structure in the MTRL setup,
allowing us to share data samples across tasks to efficiently
learn an encoding network for the observation information
related to the transition dynamics. To leverage the shared
information across tasks, we propose a multi-task learning
framework that consists of shared and task-specific modules.

As we aim to have a single policy capable of solving
multiple tasks, our actor needs to be common to all tasks.
As shown in the previous sections, the observation space in
different tasks shares some common features, namely the posi-
tion, orientation, linear and angular velocities, and the previous
action. The selection of the shared features is based on the
fact that these represent the essential dynamical properties
outlined in Eq. 1 , which remain consistent across different
tasks. Other features can be task-specific and have different
dimensions, which would lead to different tasks having differ-
ent policy input sizes. To distinguish observations from various
potential tasks, we use an identifier based on the task-specific
observation length, which allows us to incorporate one-hot
encoding into the task-specific observations. To overcome this,
we propose a feature encoding architecture including a shared
encoder network among different tasks to extract the shared
features from the observation. Meanwhile, we use task-specific
encoders to generate the task-specific policy inputs. Although
the task-specific observations’ dimensions vary from task to

XING et al.: MULTI-TASK REINFORCEMENT LEARNING FOR QUADROTORS 5

0 1 2 3
Steps ×107

0

50

100

150

A
ve

ra
ge

re
tu

rn

Racing

0 1 2 3
Steps ×107

−600

−400

−200

0

Stabilization

0 1 2 3
Steps ×107

−125

−100

−75

−50

−25

0
Velocity Tracking

Our MTRL Single-task RL MTRL-Actor MTRL-Separate

Fig. 4: Overview of the average return comparison of different tasks. It is clearly shown that our proposed MTRL approach
achieves a higher average return within the same number of training steps compared to single-task RL baselines. Notably,
single-task RL policies still perform comparably to the MTRL approach when only the actor network is shared.

task, the task-specific encoder is designed to map the specific
observation to the same latent space.

For the MTRL part, we employ a shared actor policy with
multiple individual critic networks, each corresponding to a
specific task. The actor policy takes the concatenated latent
features from the shared encoder and the task-specific encoder
as input and outputs the action, namely the collective thrust
and the body rates [4]. The overall architecture is shown in
Fig. 3. We train the shared actor policy to maximize the
expected return across all tasks, while the individual critic
networks are trained to evaluate the value function for each
task. In contrast, the task-specific critic networks take directly
the full observation as the input and output of the value
function for each task. Based on [25], we went for the choice
not sharing the policy feature encoder with the critic networks,
as it has been shown to improve the performance of the policy.

IV. EXPERIMENTS

Using the individual tasks described in the previous section,
we evaluate the performance of the proposed MTRL approach.
Our experiments are designed to answer the following research
questions: (i) How sample-efficient is our MTRL approach
compared to the single-task RL baselines? (ii) How does the
MTRL policy’s performance compare to the single-task RL
policies? (iii) How do different knowledge-sharing strategies
affect the MTRL performance? (iv) Does the result transfer to
a real-world scenario?

A. Training Configurations

For the policy training, we employ a policy network consist-
ing of a two-layer MLP, each layer containing 256 neurons,
with a final layer outputting a 4-dimensional vector using a
tanh activation function. In our experiments, for the shared
dynamic encoder, we use a three-layer MLP with 19 neurons
in the input layers and 128 neurons in the hidden layers to gen-
erate a 32-dimensional latent embedding. For the task-specific

encoder, we use a three-layer MLP with task-dependent input
dimensions and 128 neurons in the hidden layer to generate a
32-dimensional latent embedding. Table I shows the detailed
task reward parameters for the MTRL training. In our setting,
we optimized our hyperparameters solely based on the single-
task performance. For MTRL training, we employ model-
free reinforcement learning approach using Proximal Policy
Optimization (PPO) [26]. For the quadrotor platform used
for both training and deployment, we detail the information
regarding components and physical parameters in Table II.
We use the Flightmare simulator [27] for policy training in
simulation.

B. Baselines

In our experiments, we compare our approach with the
following baselines: (i) Single-task RL: We train a separate
policy for each task using the same RL algorithm as the MTRL
approach. (ii) MTRL-Actor: For this baseline, we keep the
Actor as the only network shared among different tasks. And
all the other encoder networks and critic networks are different
among all tasks. We train a shared actor policy with multiple
individual critic networks, each corresponding to a specific
task. (iii) MTRL-Seperate: To ablate the design choice of
fusing shared and task-specific observations, we train a shared
encoder and task-specific encoders, but the task encoder does

TABLE I: Reward parameters for MTRL training.

Param. Value Param. Value Param. Value

α1 0.5 β1 -2e-3 λ1 -2e-4
α2 0.025 β2 -2e-4 λ2 -1.2e-3
α3 -1.0 β3 -4e-5 λ3 -1e-4
α4 -2e-4 β4 -1e-5
α5 -5e-4 β5 -1e-4
α6 -5 β6 10
α7 -10

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

TABLE II: Overview of the drone parameters for both simu-
lation and real-world experiments.

Param. Agilicious Platform
Thrust-to-weight Ratio 5.78
Mass [kg] 0.6
Maximum Thrust [N] 20.00
Arm Length [m] 0.15
Inertia [gm2] [2.50, 2.51, 4.32]
Motor Time Constant [s] 0.033

not receive the shared observation as input. The observation
encoders are different for each task, and the shared actor policy
takes the latent embedding directly as input to output the
action. For all of the approaches, we performed 10 runs of
the same training configurations using different random seeds,
and we report the average evaluation metrics in this section.
Since the primary contribution of our approach is to enhance
learning efficiency and task performance of the RL policies
using MTRL, we have chosen not to include baselines that
rely solely on classical control approaches in our comparison.

C. Sample Efficiency Analysis
To evaluate the sample efficiency of our MTRL approach,

we compare the return curves of the MTRL approach with the
aforementioned baselines. All the policies are trained using the
same hyperparameters and the same number of training steps.
The number of training steps in our setting is 40M, where
all the policies’ performances converge. As shown in Fig. 4,
the MTRL approach outperforms the single-task RL baselines
in all three different tasks. The MTRL approach achieves a
higher average return in the same number of training steps
than single-task RL baselines. Notably, the single-task RL
policies still perform closely to the MTRL approach when
only sharing the actor network. This highlights the necessity
of information sharing in our framework. However, although
information sharing is beneficial, the MTRL-Seperate cannot
fly at all in the racing task. This is likely because if we do not
fuse the shared information with task-specific information, it
becomes difficult when the task requirements are conflicting,
e.g. racing and stabilization from high speed. The policy
will then prefer learning the rather easier task. Hence, this
highlights the importance of fusing the shared and task-specific
information in the MTRL framework.

D. Individual Task Performance of MTRL Policy
In this section, we showcase the individual task performance

of our MTRL policy. We evaluate the performance of the
MTRL policy in three different tasks: stabilization from high
speed, racing, and velocity tracking. The MTRL policy is
trained using the same hyperparameters as the single-task RL
policies.

1) Racing Performance: In the racing task, we evaluate the
performance of the MTRL policy by racing on a predefined
race track. The race track contains 6 gates, and the quadrotor
is required to pass these gates in a fixed order. The policy
is evaluated in 64 different starting positions in uniformly
sampled starting positions. Fig. 5 visualizes one sample rollout
that successfully completes the race track.

2) Stabilization Performance: As shown in Fig. 6 (a),
we evaluate the high-speed stabilization task by randomly
initializing the quadrotor with various positions, orientations,
and velocities. The initial speeds in the x and y directions are
randomly sampled from [−20, 20] m s−1, while the velocity in
the z direction is sampled from [−4, 4] m s−1. To prevent the
quadrotor from crashing into the ground when the initial z-
direction velocity is high and negative, we adjust the initial
height accordingly to ensure the quadrotor will not crash
within one second, even if no control input is applied. From
the results, we observe that the MTRL policy can successfully
stabilize the quadrotor in the hovering condition from high
speed task within seconds, even when the initial conditions are
challenging; the maximum initial speed from our experiments
is 82.57 kmh−1. This demonstrates the robustness of the
MTRL policy in stabilization from high-speed tasks.

3) Velocity Tracking Performance: In the tracking task, we
evaluate the performance of the MTRL policy by tracking
a randomly generated velocity command, where we apply
random walks in the acceleration space. We randomize the
velocity references in x and y directions up to 54kmh−1 and
18kmh−1 in z direction. As shown in Fig. 6 (b), the MTRL
policy can successfully track the challenging commanded
velocities, where they can go up to 50 kmh−1 in a very
short time, and we did not even include the non-holonomic
constraints of the quadrotor to generate velocity command.

E. Quantitative Analysis

1) Evaluation Metrics: For the autonomous racing task, we
use three evaluation metrics: success rate (SR), mean-gate-
passing-error (MGE), and lap time (LT). SR is the ratio of
completed laps to total trials. MGE measures the distance
between the drone’s position and the gate center when passing
through; here, the inner gate size used for experiments is 1.5m.
LT indicates the duration of completing a full race track and
flying through all gates. For the stabilization task, we employ
two evaluation metrics, namely thalf and tfull, to evaluate the
time usage of the RL controller to stabilize the quadrotor. Here

−5

0

5

−5

0

5

0

2

1

2

3

4

5

6

7

x [m]

y [m]

z [m]

v
[m

s−
1
]

Fig. 5: Illustration of one racing policy rollout. The policy
successfully completes a Figure-8 race track, which consists
of six gates, with a 100% success rate.

XING et al.: MULTI-TASK REINFORCEMENT LEARNING FOR QUADROTORS 7

TABLE III: Individual task performance after 20M and 40M training samples. For the stabilization task, we evaluate the time
to reduce the velocity to half the initial velocity (thalf) and to hovering (tfull). For velocity tracking, we report the tracking
error ev . For racing, we report the success rate (SR), the mean gate passing error (MGE), and the lap time (LT).

Methods
20M Samples 40M Samples

Racing Stabilization Tracking Racing Stabilization Tracking
SR [%] MGE [m] LT [s] thalf [s] tfull [s] ev [ms−1] SR [%] MGE [m] LT [s] thalf [s] tfull[s] ev[ms−1]

Single-task RL 95 0.224 6.23 0.50 4.20 2.15 100 0.163 5.83 0.41 3.53 1.18
MTRL-Actor 94 0.231 6.09 0.61 4.57 2.22 100 0.159 5.88 0.39 3.29 1.44

MTRL-Separate 0 crash crash 0.59 4.29 2.04 0 crash crash 0.91 4.12 1.93
Ours 100 0.187 5.92 0.41 3.77 1.69 100 0.152 5.80 0.35 3.26 1.21

−20

0

20

V
el

.x
[m

/s
]

−10

0

10

V
el

.y
[m

/s
]

0 1 2 3 4 5
t [s]

−5

0

5

V
el

.z
[m

/s
]

−5

0

5

V
el

.x
[m

/s
]

0

10

V
el

y
[m

/s
]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t [s]

−10

0

10

V
el

z
[m

/s
]

Actual Vel. Commanded Vel.

(a) Stabilization Performance (b) Tracking Performance

Fig. 6: Visualizations of the MTRL policy on individual task performance. (a) The MTRL policy successfully stabilizes the
quadrotor in a hover within seconds, even from high-speed tasks and challenging initial conditions. (b) The MTRL policy
successfully tracks the commanded velocity, even for challenging trajectories with speeds reaching up to 50 kmh−1.

thalf is the time usage to reduce the actual velocity to half of the
initial velocity, and tfull is the time usage to control a quadrotor
to hover condition; in our experiment, we determine this when
the quadrotor’s linear velocity is smaller than 0.5m s−1. For
the velocity tracking task, we simply use a tracking error
metric ev , which computes the averaged velocity difference
over time.

2) Analysis: In Table III, we present a quantitative com-
parison of our approaches with the baselines. To demonstrate
the effectiveness of the policy trained with different numbers
of samples, we list the performance of the MTRL policies in
two different timesteps, namely 20M and 40M. First of all,
for the policy trained with 20M steps, our MTRL approach
demonstrates a much better task performance than all of the
baseline approaches. This strongly demonstrates the sample ef-
ficiency of our approach. Secondly, when the policy is trained
till convergence, the policy’s performance of our approach is
still not worse than learning individually in all the tasks and all
the metrics. This further indicates the claim of our approach:
our MTRL framework could learn multiple tasks efficiently

without trading off performance.

F. Real World Performance

To demonstrate the effectiveness of our policy improve-
ments, we conducted validation tests in real-world scenarios.
We utilized an Agilicious quadrotor platform [28] with the
identical properties presented in I with state estimation pro-
vided by a VICON motion capture system to feed accurate
inputs to the policy. For low-level control, the BetaFlight2
firmware was employed to track the commanded collective
thrusts and body rates. We conducted five individual runs for
each task, varying the starting conditions in each run. Remark-
ably, our MTRL policy achieved a 100% success rate across
all tasks in these real-world experiments, as illustrated in
Fig. 1. These results clearly indicate that our policy effectively
transfers to and performs reliably in real-world scenarios. The
detailed evaluation results are presented in Table IV. The
metrics for each task indicate that our policy consistently
delivers stable performance both in simulation and the real
world using identical configurations.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

TABLE IV: Comparison of our MTRL policy’s task perfor-
mance between simulation and real world.

Methods Racing Stabilization Tracking
SR [%] Error [m] Time [s] tfast [s] tslow [s] ev [ms−1]

Simulation 100% 0.152 5.80 0.15 1.03 0.99
Real-world 100% 0.189 5.94 0.17 1.19 0.95

G. Discussion
Our experiments thoroughly evaluated the proposed MTRL

framework, addressing its critical performance aspects. First,
we demonstrated that the MTRL approach significantly im-
proves sample efficiency and task performance compared to
single-task RL baselines. After training for half the amount of
total samples (20M), our MTRL method reduced stabilization
time by 18% (thalf) and gate passing error (MGE) by 16%
compared even to individual RL methods. Furthermore, even
when trained to convergence, our MTRL approach consistently
performs better than, or as well as other baseline methods.
Notably, it achieved a 6.7% reduction in gate passing error in
racing tasks compared to the next best approach. In contrast,
the MTRL-Separate baseline without the integration of shared
and task-specific information resulted in a 0% success rate
in the racing task, as it could not even complete the task.
This failure underscores the importance of properly integrating
shared and task-specific elements within our MTRL frame-
work. Finally, the deployment of our MTRL policy in real-
world scenarios confirmed its robustness, with performance
closely matching that observed in simulations.

V. CONCLUSIONS

In this work, we introduced the first Multi-Task Reinforce-
ment Learning (MTRL) framework specifically designed for
quadrotor control, addressing the challenges posed by diverse
task requirements in real-world scenarios. By leveraging the
shared physical dynamics of the quadrotor and employing a
novel multi-critic setup with a shared task-agnostic observa-
tion encoder, our approach successfully integrates information
across different tasks while maintaining high performance.
The experimental results, both in simulation and real-world
applications, demonstrated the effectiveness and efficiency
of our method, particularly in enhancing sample efficiency
when learning different tasks while maintaining strong task
performance. This advancement paves the way for more ver-
satile quadrotor control systems capable of performing a wide
range of tasks within a single mission, thereby significantly
contributing to the broader application of quadrotors in critical
areas like search and rescue and infrastructure inspection.

REFERENCES

[1] Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, p. adg1462, 2023.

[2] J. Xing, G. Cioffi, J. Hidalgo-Carrió, and D. Scaramuzza, “Autonomous
power line inspection with drones via perception-aware mpc,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2023, pp. 1086–1093.

[3] J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza, “Con-
trastive learning for enhancing robust scene transfer in vision-based
agile flight,” in 2024 IEEE international conference on robotics and
automation (ICRA). IEEE, 2024.

[4] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark
comparison of learned control policies for agile quadrotor flight,” in
International Conference on Robotics and Automation (ICRA), 2022.

[5] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug 2023.

[6] H. Wang, J. Xing, N. Messikommer, and D. Scaramuzza, “Environ-
ment as policy: Learning to race in unseen tracks,” arXiv preprint
arXiv:2410.22308, 2024.

[7] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-averse gradi-
ent descent for multi-task learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 878–18 890, 2021.

[8] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski,
C. Finn, S. Levine, and K. Hausman, “Scaling up multi-task robotic
reinforcement learning,” in Conference on Robot Learning, 2022.

[9] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. De-
vlin, and S. Levine, “Reset-free reinforcement learning via multi-task
learning: Learning dexterous manipulation behaviors without human
intervention,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6664–6671.

[10] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Sharing
knowledge in multi-task deep reinforcement learning,” International
Conference on Learning Representations, 2020.

[11] E. Aljalbout, N. Sotirakis, P. van der Smagt, M. Karl, and N. Chen,
“Limt: Language-informed multi-task visual world models,” arXiv
preprint arXiv:2407.13466, 2024.

[12] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in Conference on robot learning, 2020.

[13] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[14] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. Pister, “Low-level control of a quadrotor with deep model-based
reinforcement learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4224–4230, 2019.

[15] G. Zhao, T. Wu, Y. Chen, and F. Gao, “Learning speed adaptation for
flight in clutter,” IEEE Robotics and Automation Letters, 2024.

[16] Z. Huang, Z. Yang, R. Krupani, B. Şenbaşlar, S. Batra, and G. S.
Sukhatme, “Collision avoidance and navigation for a quadrotor swarm
using end-to-end deep reinforcement learning,” in IEEE International
Conference on Robotics and Automation (ICRA), 2024.

[17] J. Eschmann, D. Albani, and G. Loianno, “Learning to fly in seconds,”
IEEE Robotics and Automation Letters, 2024.

[18] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without
a single real image,” in Robotics: Science and Systems (RSS), 2017.

[19] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza, “Bootstrapping
reinforcement learning with imitation for vision-based agile flight,”
Conference on Robot Learning, 2024.

[20] I. Geles, L. Bauersfeld, A. Romero, J. Xing, and D. Scaramuzza,
“Demonstrating agile flight from pixels without state estimation,” in
Proceedings of Robotics: Science and Systems, 2024.

[21] R. Yang, H. Xu, Y. Wu, and X. Wang, “Multi-task reinforcement learning
with soft modularization,” Advances in Neural Information Processing
Systems, vol. 33, pp. 4767–4777, 2020.

[22] A. Xie and C. Finn, “Lifelong robotic reinforcement learning by retain-
ing experiences,” in Conference on Lifelong Learning Agents, 2022.

[23] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021.

[24] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of
rotation representations in neural networks,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[25] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, et al.,
“What matters in on-policy reinforcement learning? a large-scale empir-
ical study,” arXiv preprint arXiv:2006.05990, 2020.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv, 2017.

[27] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[28] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza,
“Agilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, 2022.

	Introduction
	Related Works
	Reinforcement Learning for Quadrotor Control
	Multi-task Reinforcement Learning for Robotics

	Methodology
	Notation
	Quadrotor Dynamics
	Policy Learning
	Problem Formulation
	Autonomous Racing
	Stabilization from High Speed
	Velocity Tracking

	Multi-task Learning Framework

	Experiments
	Training Configurations
	Baselines
	Sample Efficiency Analysis
	Individual Task Performance of MTRL Policy
	Racing Performance
	Stabilization Performance
	Velocity Tracking Performance

	Quantitative Analysis
	Evaluation Metrics
	Analysis

	Real World Performance
	Discussion

	Conclusions
	References

