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Robotics meets Fluid Dynamics: A Characterization
of the Induced Airflow below a Quadrotor as a

Turbulent Jet
Leonard Bauersfeld,1 Koen Muller,2 Dominic Ziegler,2 Filippo Coletti,2 Davide Scaramuzza1

Abstract—The widespread adoption of quadrotors for diverse
applications, from agriculture to public safety, necessitates an
understanding of the aerodynamic disturbances they create.
This paper introduces a computationally lightweight model for
estimating the time-averaged magnitude of the induced flow
below quadrotors in hover. Unlike related approaches that rely
on expensive computational fluid dynamics (CFD) simulations
or drone specific time-consuming empirical measurements, our
method leverages classical theory from turbulent flows. By
analyzing over 16 hours of flight data from drones of varying
sizes within a large motion capture system, we show for the
first time that the combined flow from all drone propellers is
well-approximated by a turbulent jet after 2.5 drone-diameters
below the vehicle. Using a novel normalization and scaling,
we experimentally identify model parameters that describe a
unified mean velocity field below differently sized quadrotors.
The model, which requires only the drone’s mass, propeller size,
and drone size for calculations, accurately describes the far-
field airflow over a long-range in a very large volume which is
impractical to simulate using CFD. Our model offers a practical
tool for ensuring safer operations near humans, optimizing
sensor placements and drone control in multi-agent scenarios. We
demonstrate the latter by designing a controller that compensates
for the downwash of another drone, leading to a four times lower
altitude deviation when passing below.
Video: https://youtu.be/-erfmxWTzPs

Index Terms—Aerial Systems: Applications; Calibration and
Identification; Robust/Adaptive Control

I. INTRODUCTION

IN recent years, quadrotors have gained popularity for a
wide variety of tasks in academia [1]–[3] as well as in

industry where companies develop drones for filming [4],
mapping [5], inspection [6], and public safety [7]. Shared
across these diverse applications is the need to understand and
characterize the strong downwash generated by the vehicle’s
propellers as this enables informed decisions on the allowed
proximity of a quadrotor to an object or person, ultimately
leading to safer autonomous drones.
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Fig. 1. Smoke visualization of the flow (left) and corresponding measured
velocity field (right) of the Kolibri drone at hover. The individual propellers
flows are separated close to the drone. After 2.5 motor-to-motor distances
l the individual flows merge into one turbulent jet (far-field) for which the
velocity field and half-width (distance where the velocity is half the centerline
velocity) can be calculated with our proposed method.

In mapping and inspection tasks this helps predicting when
aerodynamic interactions with close-by structures such as
bridges, powerlines [8], or ships [9] occur. When drones are
operated for agricultural purposes, it is critical to know how far
the aerodynamic disturbances caused by the drone extend for
plant spraying and protection [10]. When deployed for filming
and in public spaces, quadrotors are often operated in the
vicinity of people where minimizing the presence of intrusive
flows in the scene is important. In scenarios where multiple
drones are operated together, a flow model can be used to
improve planning such that individual vehicles dynamically
avoid each other’s downwash and show an improved response
to external disturbances [11]. Finally, a better understanding
of the flow can be important for sensor and scientific instru-
mentation placement [12]–[16]. This paper presents a com-
putationally lightweight approach to model the time-averaged
magnitude of the induced flow below a quadrotor at hover.

Detailed computation of the induced flow around a drone
is a challenging problem as it requires expensive and time-
consuming computational fluid dynamics (CFD) simulations.
To limit the computational demand, CFD simulations typically
focus on millisecond time scales and simulate the airflow
only close to the vehicle [17]–[19]. Such a simulation-based
methodology is suitable to assess the drone flight performance,
but not efficient in analyzing the far-field which extends over
many meters away from the drone where one needs to rely
on turbulence modeling [14], [16]. Additionally, slow CFD
simulations are not usable in a real-time planner or controller
to dynamically coordinate a fleet of quadrotors, such that the
vehicles minimize interference with each other.

Orthogonal to the simulation approach, fluid dynamics re-

https://youtu.be/-erfmxWTzPs
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search has a century-old history of heavily relying on empirical
measurement. However, experimentally characterizing each
drone with thousands of measurements in the entire 3D space
around it is a tedious process requiring a large, wind-free
measurement domain. Additionally, a proper measurement
technique needs to be selected. For example particle-image-
velocimetry (PIV) [20] is well suited, but generally presents
challenges in large-scale real-world deployments [21], [22].

Contribution
Our main contribution is a unified, computationally

lightweight model to calculate the mean velocity of the
induced flow below a drone at hover. Or, put differently,
we answer the question: ‘How much wind does a drone
generate when hovering or flying slowly in a near-hover state?’
The unified model is inspired by decades of well-established
research on turbulent jets [23]. The advance in this work is
enabled by joining methodologies from fluid dynamics and
robotics research. Recording over 16 h of drone flight data
with six differently sized drones ranging from 230 g to 6.3 kg
we perform pointwise flow measurements in a very large
motion capture system [24]. Through the use of appropriate
normalization and the introduction of a characteristic drone
length-scale the model is unified and can be applied to
quadrotors of different mass and size.

Our methodology is computationally lightweight as it does
not rely on CFD simulations. Instead, it uses available closed-
form analytic flow solutions. All calculations only require
knowledge of the vehicle’s mass, the vehicle’s dimensions,
and the propeller size. We summarize our model in a pen-and-
paper algorithm that calculates the downwash velocity field,
making it easy to apply our findings to tasks in other domains,
such as agriculture and public safety.

Additionally, to demonstrate the applicability of our simple
method to real-world robotics applications, we integrate it
into a controller that automatically compensates for downwash
when passing below another drone, yielding a four times
smaller altitude tracking error.

II. RELATED WORK

For control and simulation tasks the primary goal of a model
is to predict the motion of the vehicle given a certain actuation,
that is, predict the forces and torques acting on its body.
The most widespread models are rotor-based quadratic thrust
and drag models [25]–[27] and more advanced models that
are based on blade-element-momentum (BEM) theory which
calculates the lift and drag at a propeller based on airfoil the-
ory [28]–[34]. However, these approaches focus on estimating
the aerodynamic forces and torques of the individual rotors but
do not compute the combined total induced volumetric flow.

In contrast to the above models, computational fluid dy-
namics simulations do calculate the three-dimensional flow
around the vehicle. Such approaches are typically used to
determine and improve the efficiency of the design of a single
propeller [35], [36], but have also been applied to simulate
entire quadrotors [18], [19], and larger hexacopters [14], [37].
While such simulations achieve results that are highly accurate
and manage to capture real-world effects [38], [39], they
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Fig. 2. Diagram for the drone and the flow coordinate system and geometry.
The bodyframe B of a quadrotor is such that the x-axis faces forward, and
the z-axis upwards in thrust direction. The flow coordinate system is oriented
such that its longitudinal axis ŝF is aligned with flow direction (i.e., points
in negative ẑB direction). The flow is described in cylindrical coordinates
[s r θ]> by its longitudinal (axial), radial, and azimuthal velocity components
U , V and W , respectively. The vehicle’s propeller radius rprop, diameter d
and motor-distance l are defined as depicted.

require large amounts of computation. Additionally, they do
not easily generalize to other vehicles, in principle requiring
a new analysis for each and every drone design.

In contrast to a purely simulation-based approach, a few
works perform real-world experiments. For example, [12]
performed flow probe measurements on a hexacopter that seem
to find overall agreement with later CFD work [14]. In [40] the
authors present experimental data to understand the influence
of the quadrotor on atmospheric temperature and pressure
measurements. In [41] the authors focus on the development of
a Schlieren-photography method to qualitatively visualize the
flow around drones. In [13] the authors performed outdoor
smoke visualization, and in [42] the authors applied PIV to
smoke visualizations to estimate the velocity field around a
quadrotor model in ground effect.

Only a few other studies have applied PIV to drones. For
example, in [43] the interaction between propellers under
different configurations has been studied, and in [44] the near
field flow of a quadrotor model in forward flight is analyzed
using wind tunnel experiments. Most recently [10] performed
PIV in a different application and recovered the spreading rate
of spray droplets in the drone’s downwash. Apart from [13],
[40], all of these works performed measurements in tethered
flight, presenting actual limitations in recovering the true free
flight physics. To the authors’ best knowledge, no studies have
looked into a comprehensive analysis of the flow below drones
in hover while focusing on a scaling analysis, and on closed-
form solutions from turbulent flows.

III. THEORY

This section gives an overview of the relevant notation,
overall drone thrust and propeller downwash in hovering flight,
and introduces the concept of a turbulent jet flow. Finally,
we introduce several normalizations enabling the analysis to
generalize across a wide variety of drones.

A. Coordinate System and Notation
Figure 2 shows the quadrotor-centered bodyframe coor-

dinate system B, with vector xB = [x y z]>. In the
bodyframe the x̂B-axis points forward, the ŷB-axis points
to the left, and the ẑB-axis points upwards. Since we only
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consider the quadrotor at hover, the ẑB-axis is opposing the
gravity vector at all times and no rotation due to the roll
and pitch of the vehicle needs to be considered. We also
introduce a flow coordinate system F with xF = [s r θ]> in
cylindrical coordinates along the downward flow direction ŝF .
The longitudinal coordinate s is aligned with the downwash
and the radial coordinate r points outwards as shown in
Fig. 2. In this coordinate system the velocity vector U with
components U, V,W is defined as shown in Fig. 2.

B. Propeller-Induced Flow
In a steady-state hover, the multicopter must produce

enough thrust to support its weight. This means that, con-
sidering a quadrotor, the NP = 4 propellers must produce a
thrust force that is equal to mg where m is the mass and g is
the gravitational acceleration.

A propeller produces lift force by accelerating air down-
wards. Assuming that the air above the propeller is at rest and
that the air is accelerated in a virtual flow tube around the
propeller a momentum balance across the propeller yields the
induced-velocity UH at hover [28]:

UH =

√
TH

2ρAprop
=

√
mg

2ρπr2propNP
, (1)

where TH is the hover thrust and ρ is the air density. For
the definition above, we assume that the flow tube has the
same width as the propeller diameter, e.g. the induced velocity
is calculated directly below the propeller. This model is an
oversimplification and, for example, does not capture the true
velocity profile of the flow below the propeller. However, as
the model represents an overall momentum balance it can be
interpreted as an average velocity across the flow tube close
to the propeller [28], [29], [33].

The air-density ρ is computed according to the ideal gas
law [45] to account for the local temperature ϑ and absolute
pressure p as

ρ = pM/(Rϑ) (2)

where M = 28.966 g/mol the molar mass of dry air and
R = 8.3144 J/(K ·mol) is the universal gas constant.

C. Turbulent Jet Flow
The key idea of our simple quadrotor aerodynamic model is

to approximate the combined rotor-induced flow as a turbulent
jet [23]. Because the airflow is turbulent, we do not consider
the instantaneous flow values, instead, we focus on time-
averaged flow variables denoted by the averaging brackets 〈·〉.

For a turbulent jet, the mean longitudinal flow velocity 〈U〉
along the radial and flow-direction coordinates r, s is given by
the similarity profile [23]:

〈U〉(ξ) =
UC(s)(

1 +
(√

2− 1
)
ξ2
)2 . (3)

Here UC describes the centerline velocity at r = 0 as a function
of the distance s away from its exit nozzle, here below the
rotor plane. For a jet with half-width r1/2, the rescaled radial
position ξ is given by:

ξ = r / r1/2(s) . (4)

The jet centerline velocity is known to scale inversely propor-
tional to the distance from its exit. It is given by

UC(s) = UJ
B d

s− s0
, (5)

where UJ is initial jet velocity, d the jet exit diameter, B an
empirical constant, and s0 is the flow development-length. In
addition, the jet half-width spreads linearly as

r1/2(s) = S(s− s0) , (6)

where S is the spreading rate that relates to the jet opening
angle θ = 2 arctan (S).

A key characteristic of the turbulent jet is that the spreading
angle is commonly around 12 deg and is weakly dependent on
the flow Reynolds number Red = ρUd/µ that describes the
relative importance between inertial and viscous forces [23].
This makes the model applicable to a wide range of drone
flow and geometry, and independent of the air-viscosity µ. We
remark that we do not consider propeller swirl in the analysis
as the rotors counter-rotate, and we assume that all other flow
components are entrained (drawn/sucked into the flow from
the side) downstream.

D. Normalization
To develop a generalized model of the airflow around

different drones, the most important physical properties of
those drones must be taken into account. We achieve this by
introducing a velocity and a spatial normalization based on
the theoretical considerations described previously.

Velocity Normalization: From (3) and (5) we observe that
the overall scaling of the jet velocity is given by the jet-exit
velocity UJ. The jet exit velocity describes how fast a jet exits
a nozzle and captures how much momentum the flow carries.
While a quadrotor does not have a nozzle, the induced velocity
UH of eq. (1) relates to the same physical quantity. Denoting
a normalized quantity with ∼, the normalized velocity Ũ and
normalized centerline velocity ŨC are given by:

〈Ũ〉(ξ) = 〈U〉(ξ)/UH and ŨC(s) = UC(s)/UH . (7)

Length-Scale Normalization: Similar to the velocity nor-
malization, a spatial normalization parameter is needed to be
able to compare drones of different sizes. We propose the
motor distance l as the length-scale parameter as this distance
is found to be the closest equivalent to a nozzle’s diameter
in a jet flow. Using this, we define the normalized distance
to the rotor plane s̃, the normalized radial distance r̃ and the
normalized half-width r̃1/2 as:

s̃ = s/l, r̃ = r/l, and r̃1/2(s) = r1/2(s)/l . (8)

IV. FLIGHT EXPERIMENTS

A. Experimental Setup

Measurements of the flow around a drone require a large in-
door space to avoid air recirculation while preventing external
disturbances such as wind. For this study a large industrial hall
with a 36-camera Vicon motion-capture system (25×25×7 m
tracking volume) is used to record the drone’s position with
millimeter accuracy.
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flowprobe measurement tipdrone

tracking markers

Fig. 3. The DJI Matrice 300 drone hovers in proximity to the flow probe.
The inset shows a close-up view of the Testo hot ball probe. The flow probe
measures the speed of the airflow.

The flow is measured with an omnidirectional hot ball flow
probe (Testo 440) shown in Fig. 3. This type of commercial,
off-the-shelf anemometer is indifferent to the flow direction
and presents a sufficiently high measurement accuracy of
±0.03 m/s±5% (up to 20 m/s) at a sampling rate of 1 s. This is
favorable as we are interested in the induced mean magnitude
and not the fluctuating velocity components of vortices in the
turbulent flow.

B. Quadrotors

For experiments, six different quadrotors are used whose
properties are summarized in Tab. I. Kolibri, Offboard 1 and
Offboard 2 are research drones that can autonomously fly
missions [46] in the motion-capture system. Both Offboard
drones share the same frame, however, drone 2 has double
the mass compared to drone 1. To demonstrate the generality
of the proposed jet flow model we also use a DJI Matrice
300 drone as a much larger and heavier vehicle. The afore-
mentioned drones have an uncanted propeller arrangement,
meaning that their axis of rotation is parallel to the zB-axis.
We additionally use two commercial drones, respectively a DJI
Mavic 3E (enterprise) and a Flyability Elios 3, with canted
propeller configurations to better understand the limitations of
our model. The commercial DJI and Flyability drones must
be flown manually throughout the entire experiment.

C. Data Collection

To collect the experimental data, each vehicle is flown in a
grid-like pattern where the drone approaches a point, steadily
hovers for 5 s to allow the flow to (re-)develop, and then
slowly translates to the next point in the three-dimensional
flight path. For the autonomous drones, we sample a coarse
xy-grid spanning 10× 10 length-scales (resolution 0.66 l) and
a fine xy-grid spanning 3× 3 length-scales (resolution 0.33 l).
In z we cover a range of up to 3m above the probe. For the
Mavic 3E and the Elios 3 the pilot sampled a similar pattern to
the autonomous drone. For the Matrice 300 the pilot covered
an area amounting to 5× 6× 4.5 m.

We filter out all data points where the vehicle moves with a
speed greater than 0.1 m/s to reduce the influence of transient
effects. Despite being in a large indoor space, the anemometer
registers a small ambient flow in the range of 0.06 m/s to
0.12 m/s. As this flow is already observed before the drone
takes off, it is not primarily caused by recirculation effects but
related to the testing facility. The background level is about

TABLE I
OVERVIEW OF THE QUADROTORS.

Mass Propeller
Cant

Propeller
Diameter

Motor
Distance

Induced
Velocity

Kolibri 0.230 kg uncanted 7.37 cm 11.8 cm 7.41 m/s
Offboard 1 0.572 kg uncanted 12.95 cm 26.6 cm 6.66 m/s
Offboard 2 1.207 kg uncanted 12.95 cm 26.6 cm 9.66 m/s
Matrice 300 6.300 kg uncanted 53.34 cm 89.4 cm 5.36 m/s

Mavic 3E 0.958 kg inward 23.88 cm 38.5 cm 4.67 m/s
Elios 3 2.398 kg outward 12.70 cm 27.5 cm 13.89 m/s

2 orders of magnitudes below the induced velocities and we
correct for this static offset by subtracting the ambient airflow
speed from the measurements. After filtering we obtain around
10000 s of flight data (position and corresponding anemometer
measurement) for each of the vehicles. For further processing,
this scattered data is binned into gridded data as the median
of all measurements within a grid cell.

V. RESULTS: NEAR FIELD

In a first analysis, we focus on the flow directly below
the drone. In this region the flow contributions of the four
individual propellers are separated and have not yet fully
merged into a combined drone downwash. The goal is to
analyse how the individual propeller flows eventually merge
into one turbulent jet for the different quadrotors.

Figure 4 exemplarily visualizes the flow field for a yzB-slice
from the measurement data. The quadrotor is located at the
‘top’ of the plot (e.g. at z̃=0) and one can clearly see the two
separate flows induced by the left and the right propellers. The
Offboard 1 and Matrice 300 drone show similar flow patterns
as we normalize the axes with the drones’ motor-distance l.
This indicates that the motor-distance is an appropriate scaling
for the drones’ flow geometry.

In between the two jets, a region of reduced flow speed can
be observed. This depression is due to the separation of the
drones’ rotors and the blocking of the flow by its main body.
Such flow structures have previously been observed in CFD
simulations [13] and validation studies [12], and are consistent
with our results. Afterwards, the jets start to converge at about
one length scale below the rotor plane. From about 2.5 length
scales below the drone, the jets appear to have fully merged.

Figure 5 quantitatively describes the merging of the individ-
ual jets. The distance of the maximum propeller flow velocity
centerline to the drones’ negative zB axis is considered. This
distance is estimated by first extracting the ỹ-axis velocity
profile for different distances below the drone. Then this
empirical profile is approximated with a zB-axis symmetric
bimodal Gaussian where the means are shifted ±δ̃ along the
ỹ-axis. In agreement with related works [13] we find that for
our drones the individual rotor flows merge between 1.5 and
2.5 motor-distances below the drone.

VI. RESULTS: FAR FIELD

From the preliminary considerations of the airflow close
to the vehicle, we see that the individual contributions from
the quadrotor’s four propellers merge about 2.5-length scales
below the drone. In this section, we present our novel ex-
perimental findings to answer the question: ‘How much wind
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Fig. 4. Visualization of the near field of (a) the Offboard 1 drone and (b) the
Matrice 300. The length and velocity scales are normalized. The influence
of the individual propellers is clearly visible at z = 0 and diminishes at a
normalized distance of about 2.5 as indicated by the dotted white line.
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Fig. 5. Distance δ̃ of the flow tube centerline to the zB axis. Close to the
rotor-plane of the vehicle (left side) the flow has not fully developed. From
2 to 3 length scales below the drone the flow fully develops with the highest
velocity being measured on the negative z-axis of the drone.

do the quadrotors make away from their propellers in the
far field?’. For the remainder of this section, cylindrical
coordinates are used. The data is binned radially along r
and analyzed for downstream coordinates s, following the
convention introduced in Fig. 2.

A. Radial Velocity Profiles

Figure 6 exemplarily shows radial profiles of the mean
velocity for the Kolibri drone at different heights. First,
the measured peak velocities exceed the calculated induced
velocity at hover by 25 % at maximum. This mismatch with the
calculated propeller-induced flow is expected as the velocity
profile in the merged flow is not constant across the cross-
section and by conservation of momentum the peak velocity
is higher. Second, we compare measurements at different s-
coordinates and observe that the mean flow velocities all decay
radially from the drone. Third, the downstream peak velocity
rapidly decreases away from the drone, while the flow domain
spreads out.

We now look at the data for multiple drones using the
normalization introduced in Sec. III-D. The plot in Fig. 7
corresponds to a normalized s̃ level at 3 length scales (motor-
distance) below the drone. The normalized, time-averaged
measured velocity 〈Ũ〉 is plotted as a function of the normal-
ized radial coordinate r̃ and each color now corresponds to one
drone. We can clearly see that, within the given measurement
accuracy, the curves overlap which empirically validates the
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around the mean, the line shows the median value.
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at a normalized height of s̃ = 3.0. The shaded area indicates 1σ uncertainty
around the mean, the line shows the median value. The proposed normalization
leads to all curves being similar in measurement accuracy. The black line
represents the radial velocity profile for a turbulent jet eq. (3).

proposed normalization as it makes the airflow around differ-
ent vehicles similar. Additionally, the radial velocity profile
across all drones is well captured fitting eq.(3), inset in black
in Fig. 7. This provides evidence that the combined rotor flow
can be treated as a turbulent jet.

B. Jet Flow Scaling

Next, we focus on the expansion of a turbulent jet which
is described by eq. (6). For a turbulent jet, the flow ex-
pands linearly as a cone with approximately 12 deg opening
angle [23]. Furthermore, the jet’s centerline velocity scales
inversely proportional to the distance as described by eq. (5).

In Figure 8 (a) and (b) we find good agreement with these
two key characteristics for the combined rotor flow of a
quadrotor after s̃ = 2.5. Figure 8a and b show the normalized
half-width r̃1/2 and the normalized centerline velocity 〈ŨC〉
of the radial velocity profiles as a function of the normalized
distance s̃ to the drone’s rotor plane. The half-width and
velocity have been obtained by fitting the velocity profile
eq. (3) to the measurements at each s̃-slice for each drone.
The triangles indicate datapoints located in the near-field (not
considered for the fit) and circles indicate measurements from
the far field (considered for the fit). The black lines represent
a fit using the function form prescribed by the turbulent jet
model eq. (5) and (6). From the fit we obtain

B d = 10.11 , S = 0.07668 and s0 = −5.817 (9)

for the unified flow. Note that only drones with uncanted
propeller configurations are used to obtain the fit. Figure 8c
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Fig. 9. Unified formulation of the flow. The measurement samples from all
planar drones across the entire far field show good agreement with turbulent
jet theory eq. (3) (black line). Drones with canted propellers show a slightly
narrower or a wider jet, depending on the geometry.

shows visualization of the Kolibri far-field velocity profile with
the white lines indicating the half-width (see Fig. 8a).

The scaling parameters (9) can be used to fully describe the
turbulent jet flow in eq. (3). This velocity profile from eq. (3)
is shown with the black line in Fig. 9 and is not fitted to the
data. The measurement samples are taken across the entire
far field and measurement scaling is computed using eq. (5)
and (6) with the parameters above. The good agreement with
the theory shows that the measured velocity of a quadrotor
field in both axial and radial dimension is well captured by
the theory of turbulent jets.

We note that the measured velocities in Fig. 9 for uncanted
drone designs are well-centered around the theoretical curve
in the region for low ξ but seem to fall below the theory
curve Utheory eq. (3) around ξ > 2 until the measurement noise
dominates from ξ > 5 onwards. To corroborate this visual
impression, a one-sided t-test for the mean of the distribution
of measurement residuals ε = Utheory − 〈U〉/UC is conducted.
We verified the normality of the residuals with a χ2 goodness-
of-fit test. The t-test results (see Tab. II) show that for ξ > 2

TABLE II
HYPOTHESIS TEST (α = 0.05): H0 : µ(ε) = 0, HA : µ(ε) > 0

Interval ξ ∈ [0 1) [1 2) [2 3) [3 4) [4 5) [5 6)

Reject H0, e.g., µ(ε) > 0 False False True True True False

the theory overpredicts the velocity. This is a well-known
result for turbulent jets [23]. However, in practice it can be
safely ignored due to the negligible magnitude of the mismatch
w.r.t typical ambient airflow.

In Fig. 9 the two drones with canted propeller planes
are also included in the plot and represented with squares
and triangles. The Mavic 3E design features an inward cant,
effectively focusing the flow. This is consistent with the obser-
vation that the jet is narrower with slightly higher centerline
velocities. The Elios 3 on the other hand has outwardly canted
propellers which leads to a wider jet with lower centerline
velocities but a larger half-width. This effect is especially
notable around ξ = 0 and ξ = 2.5.

C. Unified Model

To use the unified model describing the far field flow of a
quadrotor, we combine the results demonstrating normalization
and scaling. As demonstrated in Fig. 7, the normalization of
the drones’ propeller-induced flow and geometry of Sec. III-D
makes drones of different mass and size similar. The recovered
scaling parameters for eq. (6) and (5) enable us to leverage
self-similarity to fully describe the downwash of the quadrotor
as a turbulent jet (see Fig. 9).

To calculate the time-averaged velocity 〈U〉 in the far field
below a quadrotor at a point p = [s r θ]>, perform the
following operations:

1) Normalization parameter: Use the physical parameters
(mass, propeller size, number of propellers) of the
quadrotor to calculate the induced velocity at hover UH

using eq. (1) and the motor distance l.
2) Normalize the point’s length-scale: s̃ = s/l, r̃ = r/l.
3) Calculate the normalized turbulent jet scaling r̃1/2 and

ŨC for the normalized point. This is done with eq. (5)
(set UJ = 1) and (6) together with the parameters (9).

4) Calculate the scaled radial position ξ = r̃/r̃1/2.
5) Scale the centerline velocity UC = ŨC · UH.
6) Finally, use ξ and UC to evaluate the time-averaged flow

speed using the turbulent jet equation (3).
Note that, in case of interest, the entrained radial mean flow
component 〈V 〉 can be obtained through continuity [23].
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TABLE III
HEIGHT TRACKING PERFORMANCE OF THE CONTROLLER

Controller Height [m] RMSE [mm] Mean Err. [mm]

Without Correction 1 m 69.1 -37.6
With Correction 1 m 24.8 18.9

Without Correction 2 m 134.2 -87.1
With Correction 2 m 25.4 8.1

VII. CONTROLLER INTEGRATION

To highlight that our turbulent-jet model is relevant to
real-world multi-agent scenarios, we conclude our work by
demonstrating how the model can be used to compute a feed-
forward downwash compensation in a scenario where one
drone needs to pass below another drone.

A. Downwash Compensation

When flying below another drone, the lower drone needs to
additional power to maintain hover thrust. Similar to eq. (1),
momentum theory can be used to calculate the airspeed U ′

H

below the propeller. However, in this case the air above the
propeller is not at rest but moving downwards with UD [28],

U ′
H =

UD

2
+

√(
UD

2

)2

+ U2
H , (10)

where UH from is the induced velocity at hover in still air
from eq. (1), and UD is calculated according to the unified
model presented in the previous section. Both UD and U ′

H

depend on the relative position ∆p of the drones. The total
aerodynamic power required to hover inside the downwash
is P ′

H = U ′
H · TH . Introducing the relative induced velocity

α = UD/UH we get the relative power β as

β :=
P ′
H

PH
=
α

2
+

√
α2 + 4

2
. (11)

The electronic speed controllers (ESC) on the Kolibri drone
exhibit a quadratic relationship between the throttle command
and the power consumption. Consequently, the throttle setpoint
computed by the controller is scaled with

√
β before sending it

to the vehicle’s motor controllers. This scaling factor is time-
varying as it depends on ∆p. We implement the downwash
compensation on top of an MPC controller [46] by scaling the
throttle command according to (11).

B. Experimental Results

To demonstrate the effectiveness of the control scheme,
we perform the following experiment: the Offboard 2 drones
hovers at 3 m height and the much smaller Kolibri passes 1 and
2 meters exactly below at a translation speed of 1 length-scale
per second. The results are shown in Fig. 10 and Table III and
one can see that the baseline controller without the proposed
downwash correction has a much higher altitude tracking error
compared to the corrected controller. Directly below the drone
the controller without correction deviates up to 30 cm from
the reference height. Comparing the RMSE in height we see
a 3 to 5-fold improvement with the proposed controller and
observe that the performance improvement is larger in stronger
downwash (e.g., closer to the upper drone).
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Fig. 10. Experiment showing that our downwash model can be used to
improve the control performance in a multi-drone scenario. The dotted
line starting at 2.5 length scales below Offboard 2 indicates the half-width
calculated from eq. (6). The depicted drone is true-to-scale in width. The right
side shows a time-lapse photograph of the run at 2 m.

VIII. CONCLUSION AND DISCUSSION

This work presented a model for the far field flow of a
drone, based on classical turbulent jet theory. We recorded a
large-scale dataset comprising six drones and containing over
16 h of flight data in a motion-capture system while measuring
the airflow with a hot-ball flow probe. We studied the flow
in the near-field flow close to the drone and found that the
individual flows from the propellers merge approximately 2.5
motor-distance length scales below the drone. In this near-
flow region, the interactions between the flow and the drone
are dominant which can only be fully captured through CFD
simulations. However, when considering the effects of the
induced flow on the environment and other agents, the primary
concern is the far-field extending from about two length scales
downwards.

Through the use of appropriate scaling laws for turbulent
flows, we developed a unified model that describes the far
field flow below the drone as a turbulent jet. The experiments
show that, despite the simplicity of the model, it accurately
describes the flow for a wide range of drones at hover. Jet
flows are well-established in fluid mechanics. For example, in
the case of cross-flows [47], jets include empirical scalings
for the center-line shape, relevant to vertical and forward
flight [28], and rotor induced-vortex flows [48]. Moreover,
experiments on impinging jets [49] and similarity-solutions
for wall-bounded jet flows [50] help understand modulations
in ground effect and near boundaries as a first step towards
confined environments with internal circulation. Showing that
the induced flow of a drone is a turbulent jet, we believe that
applying the above results from fluid mechanics presents an
interesting avenue for further research.

Finally, we demonstrated that the accuracy and efficiency
make our model ideally suited for integration in a controller for
multi-agent scenarios. We believe that this is an important step
towards safer and less intrusive drones, an aspect becoming
increasingly important with the increasing adoption of quadro-
tors. Understanding the flow also enables optimized sensor
placement for scientific applications and potentially higher
efficiency when quadrotors are deployed in an agricultural
context.
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[44] Z. Czyż, P. Karpiński, and W. Stryczniewicz, “Measurement of the flow
field generated by multicopter propellers,” Sensors, 2020.

[45] I. C. A. Organization, Manual of the ICAO Standard Atmosphere: Cal-
culations by the NACA. National Advisory Committee for Aeronautics,
1954.

[46] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza,
“Agilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, 2022.

[47] K. Mahesh, “The interaction of jets with crossflow,” Annual Review of
Fluid Mechanics, vol. 45, no. Volume 45, 2013, pp. 379–407, 2013.

[48] A. Gardner, C. Wolf, and M. Raffel, “Review of measurement techniques
for unsteady helicopter rotor flows,” Progress in Aerospace Sciences, vol.
111, p. 100566, 2019.

[49] J. M. M. Barata, D. F. G. Durão, M. V. Heitor, and J. J. McGuirk,
“On the analysis of an impinging jet on ground effects,” Experiments in
Fluids, vol. 15, pp. 117–129, 1993.

[50] W. K. George, H. Abrahamsson, J. Eriksson, R. I. Karlsson, L. Löfdahl,
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