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Performance, Precision, and Payloads:
Adaptive Nonlinear MPC for Quadrotors

Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, Davide Scaramuzza

Abstract—Agile quadrotor flight in challenging environments
has the potential to revolutionize shipping, transportation, and
search and rescue applications. Nonlinear model predictive con-
trol (NMPC) has recently shown promising results for agile
quadrotor control, but relies on highly accurate models for
maximum performance. Hence, model uncertainties in the form
of unmodeled complex aerodynamic effects, varying payloads and
parameter mismatch will degrade overall system performance.
In this paper, we propose L1-NMPC, a novel hybrid adaptive
NMPC to learn model uncertainties online and immediately
compensate for them, drastically improving performance over
the non-adaptive baseline with minimal computational overhead.
Our proposed architecture generalizes to many different envi-
ronments from which we evaluate wind, unknown payloads, and
highly agile flight conditions. The proposed method demonstrates
immense flexibility and robustness, with more than 90% tracking
error reduction over non-adaptive NMPC under large unknown
disturbances and without any gain tuning. In addition, the same
controller with identical gains can accurately fly highly agile
racing trajectories exhibiting top speeds of 70 km/h, offering
tracking performance improvements of around 50% relative to
the non-adaptive NMPC baseline.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/8oB1rG5iYc4

I. INTRODUCTION

A. Motivation

Unmanned aerial vehicle (UAV) utilization in industrial
applications is increasing at an astounding rate [1–3]. There
are over 300,000 commercial drones registered in the US
alone according to the Federal Aviation Administration [4].
Significant commercial opportunities exist for robust au-
tonomous systems which can safely conduct inspection of
sensitive, hazardous, and remote systems under uncertainty.
As a result, the global drone service market is expected to
grow from 4.4 Billion USD to 63.6 Billion between 2018
and 2025 [5]. In transportation and shipping applications,
UAVs can improve efficiency of operations via autonomous
missions and high speed maneuvers leading to dramatic time
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Fig. 1: Top: Quadrotor carrying a beer payload of unknown
mass while flying an aggressive racing trajectory. Our pro-
posed L1-NMPC method allows to reduce tracking errors on
such agile trajectories by more than 90% compared to non-
adaptive methods. Bottom: L1-NMPC control diagram.

savings, cost reductions, and higher throughput [6]. On a
similar note, emergency scenarios raised the need for agile
autonomous systems to conduct search and rescue tasks when
time is of the essence [7]. To facilitate these opportunities,
UAVs must be able to accurately track agile trajectories in
presence of model uncertainties and external disturbances such
as unknown drag coefficients, varying payloads, or wind gusts
respectively. These uncertainties can significantly degrade the
performance and reliability of the system and potentially lead
to loss of control if not compensated for. High-fidelity physics-
based models can improve control performance, but are often
prohibitively expensive to procure and require extensive levels
of domain expertise [8–11]. With the advancements of data-
driven methods such as those described in [8–10], the costs
of obtaining accurate models has been dramatically reduced.
Models learned from data, however, have a tendency to overfit
and can be intractable to update online [11].

In reality, modeling the system with complete accuracy is
impossible, necessitating control algorithms which are robust
to uncertainty. The field of robust control has tried to ad-
dress this problem with varying degrees of success. Classical
methods such as H∞ and more recently stochastic model
predictive control may enable safe behavior of the autonomous
system, but at the cost of significant performance degrada-
tion [12, 13]. Predicting external disturbances such as wind-
gusts is often impractical due to the chaotic nature of the dis-

https://youtu.be/8oB1rG5iYc4
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turbance [10, 14]. This necessitates the development of highly
adaptive control algorithms which can robustly compensate for
unknown model dynamics without prior assumptions, while
pushing the system to its dynamic limits.

B. Contribution

In this work, we propose a novel quadrotor control archi-
tecture which cascades a nonlinear model predictive controller
(NMPC) to an L1 adaptive controller to fly highly aggressive
racing trajectories under various types of model uncertainties
and external disturbances with speeds up to 20 m s−1. We
show that the addition of the adaptive controller can drive the
real system towards the behavior specified by the underlying
MPC model with significantly better tracking performance
when compared to a non-adaptive baseline. The proposed
controller can compensate in real-time, while being transfer-
able to many different applications such as flying in windy
environments, carrying completely unknown payloads, and
flying aggressive racing trajectories without any re-tuning of
control gains. When unknown payloads up to 60% of the
quadrotor mass are introduced into the system, our approach
demonstrates a reduction of tracking error over 90% compared
to non-adaptive NMPC methods onboard a real quadrotor.
Additionally, we show that it is even possible to accurately
fly racing trajectories with unknown slung payloads. The data
indicates we can track these trajectories with an unknown
payload representing 13% of the quadrotor’s mass with 44%
higher accuracy than a non-adaptive NMPC without a payload
attached. Our experiments under nominal model conditions
demonstrate at least a 50% tracking performance improve-
ment over state of the art data-driven MPC methods without
an aerodynamics model on a set of increasing speed circle
trajectories which exhibit speeds of up to 36 km/h, indicating
that the adaptive component is able to learn and compensate
for unmodeled aerodynamic effects in real time with minimal
computational overhead.

II. RELATED WORK

Trajectory tracking controllers for quadrotors have been
studied extensively over the last decade. A detailed survey
on quadrotor control methods can be found in [15–17]. Most
of the existing literature focuses on hover conditions or slow
speed maneuvers which satisfy small angle assumptions neces-
sary for linear control methods. We are interested in exploring
a wider flight envelope, and focus on advanced techniques to
push the physical limits of the platform.

Agile flight of aerial vehicles has been a top priority for
the aerospace industry for the better part of 80 years, as a
part of which NASA developed Model Reference Adaptive
Control (MRAC) to deal with large model uncertainties that
are difficult to model and measure [18]. Readers interested in
the underlying mathematics of adaptive control methods for
aerospace vehicles are pointed to the following references [19–
22]. Specifically, we focus on the L1 adaptive control ap-
proach due its inherent ability to provide rapid adaptation
that is decoupled from the robustness of the controller [23].
Applications of L1 adaptive controllers have been successfully

demonstrated across a variety of aerial vehicles such as fixed-
wings, quadcopters, and octocopters [24–26]. The main feature
of the L1 adaptive controller is to drive a system towards a de-
sired reference model behavior. Typically, this is done using a
linear reference model to specify the desired behavior, however
this can lead to unrealistic desired dynamics which cannot be
achieved by the real system. Adaptive control has successfully
demonstrated accurate trajectory tracking using quadrotors in
several works [27–30]. However, the maneuvers conducted are
typically simple step inputs, or slow speed circles which do
not exploit the inherent agility of the quadrotor platform.

Adaptive controllers often act as an augmentation to an ex-
isting baseline controller rather than as a standalone controller.
Authors in [31] take advantage of the high level planning of
linear MPC, cascaded with an adaptive control law to adapt to
persistent model mismatch. A cascaded linear MPC with a lin-
ear reference model L1 adaptive controller was demonstrated
for the quadrotor trajectory tracking problem with exogenous
disturbances in [32], but the trajectories demonstrated were
simplistic and slow. They claim a reduced computational
cost compared to nonlinear MPC frameworks, however the
limitations of linear optimal control when applied to nonlinear
problems are well understood, especially when the vehicle
exhibits highly aggressive maneuvers [33].

Similarly, in [34] a Model Predictive Path Integral (MPPI)
controller was coupled with a nonlinear reference model L1

adaptive controller for agile quadrotor flight, however the
authors have not shown feasibility of the proposed method
on real hardware. No analysis of the adaptive control signal
is provided, however video footage released of the simulation
performance of the proposed L1-MPPI architecture indicates
highly oscillatory control performance in the first-person cam-
era view1. Additionally, the high level MPPI controller can
only run at a rate of 50 Hz using desktop hardware which
makes it infeasible for on-board control.

Previous works demonstrating agile trajectory tracking with
physical quadrotors include [35, 9, 36, 37]. The authors
of [35] demonstrated accurate tracking of aggressive quadrotor
trajectories up to 12.9 m s−1 using a cascaded geometric con-
troller with Incremental Nonlinear Dynamic Inversion (INDI).
In [9], NMPC leveraging data driven methods to improve
model fidelity was used to achieve state of the art tracking
performance at speeds up to 14 m s−1. Control commands
were calculated off-board the quadrotor and sent via wireless
communication due to the increased computational overhead
from the learned model. Because the model parameters are
obtained offline, it can not adapt to online parametric changes
such as payloads or a reduction in actuator efficacy.

As the authors in [9] correctly point out, INDI and adaptive
control approaches coupled with traditional geometric con-
trollers are purely reactive and have no ability to plan over a
prediction horizon. To address this, we couple an L1 adaptive
control law with a nonlinear MPC, therefore taking advantage
of the prediction horizon and fully exploiting the nonlinearities
of the system for maximum performance. This selection is
further motivated by the recent comparative study between

1https://youtu.be/f602VSGIVb0
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geometric and nonlinear MPC methods for agile quadrotor
control in [16] The controller is evaluated against several state
of the art controllers and a wide variety of test conditions both
in simulation and reality.

III. M ETHODOLOGY

A. Notation

We de�ne the WorldW and BodyB frames with orthonor-
mal basis i.e.f x W ; y W ; zW g. The frameB is located at the
center of mass of the quadrotor. All four rotors are assumed to
be located on thexy-plane of frameB , as depicted in Fig. 2.
A vector from coordinatep1 to p2 expressed in theW frame
is written as:W v12. If the vector's origin coincide with the
frame it is described in, we drop the frame index, e.g. the
quadrotor position is denoted aspW B . Furthermore, we use
unit quaternionsq = ( qw ; qx ; qy ; qz ) with kqk = 1 to represent
orientations, such as the attitude state of the quadrotor body
qW B . Finally, full SE3 transformations, such as changing the
frame of reference from body to world for a pointpB 1, can
be described byW pB 1 = W t W B + qW B � pB 1. Note the
quaternion-vector product denoted by� representing a rota-
tion of the vector by the quaternion as inq� v = q�[0; v | ]| � �q,
where�q is the quaternion's conjugate.

B. Quadrotor Vehicle Dynamics

The quadrotor system dynamics are given by
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whereg = [0 ; 0; � 9:81 m=s2]T denotes Earth's gravity,TB is
the collective thrust from the 4 rotors,J = diag(Jx ; Jy ; Jz )
is the diagonal moment of inertia matrix,m is the quadrotor
mass, and� B is the body torque:
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WhereP is the thrust allocation matrix given by

P =
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wheredx i , dy i , c� for i = 0 ; 1; 2; 3 are the distances from each
rotor, i , to the respective Body frame axis and the rotor drag
torque constant respectively following the rotor positions and
spin con�gurations denoted in Figure 2 and obeying the right
hand rule. For discrete time, an explicit Runge-Kutta method
of 4th order is used:

x k+1 = f RK 4(x k ; u k ; �t ): (4)
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Fig. 2: Diagram of the quadrotor model with the world and
body frames and propeller numbering convention.

C. MPC Formulation

We construct a quadratic optimization problem using a
multi-shooting scheme and solve the following discretized
nonlinear optimal control problem

min
u

x T
N Qx N +

N � 1X

k=0

x T
k Qx k + u T

k Ru k (5)

subject to: x k+1 = f RK 4(x k ; u k ; �t )

x 0 = x init u min � u k � u max

as a sequential quadratic program (SQP) executed in a real-
time iteration scheme [38]. We discretize the system evolution
into N steps over a time horizonT and constrain the input to
be between0 � u k � u max . The optimal control problem is
implemented using the open source ACADO toolkit [39].

D. L 1-Adaptive Augmentation

We implement theL 1 adaptive controller using a nonlinear
reference model [40], which estimates both matched and
unmatched uncertainties using a piecewise constant adaptation
law [41, 42]. The derivation is similar to [34], however we
account for the uncertainties directly at the rotor thrust level.
First, de�ne R I

B =
�
eB

x ; eB
y ; eB

z

�
as the rotation matrix from

the body frame to the inertial frame. We can then rewrite
the dynamics to account for both matched and unmatched
uncertainties as

_vW B =
T B

m
eB

z + g +
T B

m
R I

B &� Cd vW B ; (6)

_! B = J � 1[� B � ! B � J ! B + � ]; (7)

where & =
�
&x ; &y ; &z

� T
is the uncertainty appearing in the

linear accelerations,� =
�
� x ; � y ; � z

� T
is the uncertainty

appearing in the angular accelerations, andCd is a matrix
of linear drag coef�cients. Since a quadrotor is an underac-
tuated system, capable of providing linear acceleration only
along its body z-axis, the unmatched uncertainties de�ned as
� um =

�
&x ; &y

� T
, appear purely in the X and Y linear acceler-

ations. This can be thought of as existing in the null space of
the controllability matrix and therefore cannot be compensated
for directly. Then, what remains are the matched uncertainties
� m =

�
&z ; � x ; � y ; � z

� T
which can be compensated for directly.
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Next, consider the reduced state variable,z =
�
vW B ; ! B

�
.

Its derivative can be broken up as a function of the nominal
and uncertain dynamic behavior as follows:

_z = f (R I
B ) + g(R I

B )(u L 1 + � m ) + g? (R I
B )� um ; (8)

wheref (R I
B ) is the desired dynamics de�ned as

f (R I
B ) =

�
g + T MP C

m eB
z � Cd vW B

J � 1� B � ! B � J ! B ]

�
: (9)

The single rotor thrusts in expression of� B are obtained from
the solution of the NMPC at the current time.

De�ne g(R I
B ) as the uncertainty in the matched component

of the dynamics, andg? (R I
B ) the unmatched component:
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Let u L 1 be the adaptive control input which can act as a
standalone controller, or complement the NMPC signal via
addition. De�ne theL 1 observer as
_̂z = f (R I

B ) + g(R I
B )(u L 1 + �̂ m ) + g? (R I

B )�̂ um + A s ~z ;

where~z = ẑ � z and noting thatz is the state obtained from
an estimator, and̂z is the state predicted from theL 1 observer.
De�ne � = A � 1

s (e(A s Ts ) � I ) whereTs is the time step and
A s is a Hurwitz matrix which represents the adaptation gains.
Then the piecewise-constant adaptation law is given by

�
�̂ m (iTs)
�̂ um (iTs)

�
= � I 6� 6G � 1(iTs)� � 1� (iTs) ; (11)

where G(iTs) = [ g(R I
B ); g? (R I

B )] and � = eA s Ts ~z(iTs)
are evaluated at time stepi . Next, de�ne a �rst order, strictly
proper continuous time �lterC (s). TheL 1 control law is then

u L 1 = � C (s)�̂ m : (12)

In practice, we implement the control law in discrete time as

u L 1;k = u L 1;k � 1e� ! co Ts � �̂ m;k (1 � e� ! co Ts ) ; (13)

where! co is the cutoff frequency of the strictly proper �rst
order �lter. Finally, the discrete timeL 1 observer can be
propagated forward in time via

ẑ k +1 = ẑ k + [ f k + gk (u L 1;k + �̂ m;k ) + g?
k �̂ um;k + A s ~z k ]Ts :

IV. EXPERIMENTS AND RESULTS

Our experiments are designed to answer the following
research questions: (i) How does our proposedL 1-NMPC
compare to data-driven MPC methods? (ii) To what extent
can L 1-NMPC react to both parametric and non-parametric
disturbances in real world tests? (iii) Does the proposedL 1-
NMPC generalize across test scenarios without the need for
gain tuning? We set out to answer these questions through a
variety of simulation and real world tests which cover large
external disturbances and agile maneuvers. The experiments
start out with a set of different model predictive controllers
which are gradually eliminated over the course of the experi-
ments based on their tracking performance and computational
complexity. We point the reader to our corresponding video for
a better understanding of the level of �exibility and robustness
our proposed architecture can demonstrate.

Model
GP-MPC MPPI NMPC INDI-NMPC L1-NMPC

Avg. dt
[ms] 4.13 23.13 0.81 0.82 0.82

TABLE I: Average controller update times running on an Intel
Core i7-8750H CPU @ 2.20GHz laptop with 16 Gb of RAM
and Nvidia GeForce GTX 1060 using CUDA 11.2

A. Simulation

We begin by implementing several state of the art controllers
in simulation including a Single Rotor Thrust NMPC (SRT-
NMPC), a data-driven NMPC (GP-MPC) from [9], MPPI with
Baseline Control from [34], INDI-NMPC from [16], and our
proposedL 1-NMPC with and without an aerodynamic model
included in the underlying NMPC. All baseline controllers
have an aerodynamic model enabled by default. We use the
open source Gazebo simulator [43] with the the AscTec Hum-
mingbird quadrotor model using the RotorS extension [44].
Performance in simulation is measured by comparing posi-
tional tracking errors on a set of circular reference trajectories.
These trajectories feature a radius of5 m and vary in peak
velocities from 2.5-10m s� 1.

1) Without Disturbance:First, we �y these trajectories with
a model that best represents our knowledge of the dynamics
within the RotorS simulation. In these cases, the mass, inertia,
drag, and rotor arm lengths of the simulated quadrotor are
perfectly known. The model parameters used in the NMPC
are identical to the parameters in the RotorS simulator. These
experiments without disturbance serve to understand the max-
imum achievable performance by each method in case of
perfect model identi�cation.

We include the timings for each of the tested controllers in
Table I and show the tracking performance on a semi-log scale
for the increasing speed circle trajectories in Figure 3. OurL 1-
NMPC without an aerodynamic model outperforms the state
of the art INDI-NMPC and GP-MPC in all cases except for
the fastest circle trajectories, indicating that the adaptation law
is able to compensate partially for unmodeled aerodynamics.

Once we enable the drag model, theL 1-NMPC outperforms
all proposed methods, however we note that the performance
improvement is less than1 cm RMSE over the course of a60 s
long trajectory. We expect the performance bene�t to be small
since the model parameters perfectly match those described
in the simulator. In contrast to all other approaches, MPPI
performed an order of magnitude worse. We therefore do not
consider it as a viable candidate moving forward. SRT-NMPC
with a linear drag model performs similarly to GP-MPC, but
with 80% less computational overhead and therefore forms the
baseline for the remaining simulation trials.

2) Model Mismatch:Next, we inject three different forms
of model mismatch into the model used for the NMPC. The
same increasing speed circle trajectories from the previous
section are used in this analysis. First, the mass of the
quadrotor is increased by660 g, representing a 90% increase
from the nominal mass of the system. Second, the inertias
on all axis are doubled in the simulator. Finally, the right side
rotor arm lengths are reduced by 25%, representing a persistent
center of gravity offset.
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Fig. 3: Simulated tracking accuracy of increasing speed, on a
5 m radius circle trajectory in the RotorS simulation environ-
ment. Tracking accuracy is given by RMSE from the reference
trajectory. Each point represents the accumulated positional
tracking error across the trajectory for a given peak velocity.

Model
NMPC NMPC+I INDI-NMPC L1-NMPC

Dist.
v peak
[m s� 1 ]

RMSE
[m]

RMSE
[m] %#

RMSE
[m] %#

RMSE
[m] %#

2.5 0.434 0.029 93 0.434 0 0.007 98
4 0.441 0.045 90 0.440 0 0.010 98
6 0.471 0.091 81 0.470 0 0.020 96
8 0.532 0.167 69 0.537 0 0.032 94M

as
s

10 Crash Crash ? Crash ? Crash ?
2.5 0.02 0.033 -65 0.009 55 0.007 65
4 0.016 0.043 -169 0.015 6 0.014 13
6 0.037 0.080 -116 0.028 24 0.030 19
8 0.070 0.150 -114 0.048 31 0.052 26In

er
tia

10 0.081 0.240 -196 .074 9 0.079 2
2.5 0.078 0.056 28 0.008 90 0.007 91
4 0.049 0.038 22 0.015 69 0.016 67
6 0.052 0.088 -69 0.032 38 0.033 37
8 0.057 0.151 -165 0.053 7 0.056 2

A
rm

Le
ng

th

10 0.083 0.241 -190 0.083 0 0.087 -5

TABLE II: Tracking performance of increasing speed,5 m
radius circle trajectories with mass, inertia, and rotor arm
length disturbances in the RotorS simulator. Each table entry
represents the tracking RMSE over the course of a single
trajectory for different speeds. In the Mass cases, we increase
the mass of the quadrotor by660 grepresenting a 90% increase
in mass. Similarly, in the Inertia cases, we double the inertia
of the quadrotor. Finally, in the Arm Length cases, we increase
the length of the right side rotor arms by 25% representing a
signi�cant shift to the center of gravity.

Since the baseline NMPC does not contain any integrator
action, we expect any pure-mass disturbances to result in a
steady-state offset in target Z-height. In an attempt to make a
fair comparison, we add an additional comparison case which
embeds an integrator state on positional error into the NMPC.
The gains for all controllers are not adjusted from the nominal
tests in the previous section. Table II provides the results for
these parametric disturbance cases.

As parametric disturbances are introduced into the test
scenarios, the proposedL 1-NMPC architecture demonstrates
a sizeable advantage over the other state of the art methods.
Only the NMPC with integrator action andL 1-NMPC show
any ability to compensate for mass mismatch, withL 1-NMPC
reducing the tracking error by over 90% in all cases. We
note that all controllers fail to complete the10 m s� 1 circle

trajectory with a660 gpayload. The thrust requirements to �y
this case exceed what is available on the simulated quadrotor
which leads to the NMPC solution failing to converge in
all cases. In the inertia and rotor arm length test cases,
INDI-NMPC and L 1-NMPC perform almost identically. The
performance delta between the two methods is less than5 mm
across these 10 cases. Our adaptive architecture demonstrates
robustness to these uncertainties in addition to providing a
performance bene�t when the model is well known. We are
able to immediately identify various forms of disturbance and
swiftly reject it without any gain tuning or model learning.

B. Real World Experiments

We test our proposedL 1-NMPC controller performance
on a quadrotor with mass750 g out�tted with a Jetson TX2
on-board computer and Radix �ight controller with our own
custom low-level �ight control �rmware. The �ight controller
accepts single rotor thrust inputs and performs closed loop
rotor speed control. The quadrotor has a thrust to weight ratio
of about 4.5. We run all controllers completely onboard the
quadrotor and solve the optimal control problem at100 Hz. A
Vicon motion capture system2 provides pose updates at400 Hz
which are fused with the Inertial Measurement Unit (IMU) via
an Extended Kalman Filter (EKF) for state estimation.

To demonstrate our approach can signi�cantly improve
tracking performance under model mismatch and aerodynamic
disturbance, we conduct experiments in �ve settings:

� Setting (i): Increasing speed5 m radius circle trajectories
up to 10 m s� 1 to compare performance to GP-MPC and
INDI-NMPC in a nominal setting.

� Setting (ii): 2 m s� 1 circle trajectory with a450 g un-
known payload to show tracking performance when a
large mass mismatch is present.

� Setting (iii): 2 m s� 1 circle with external aerodynamic
forces to show rapid disturbance rejection.

� Setting (iv): Mildly aggressive �ight with a top speed
of 11:9 m s� 1 with a 100 g slung payload to show agile
�ight is possible with unknown payloads.

� Setting (v): Highly aggressive �ight with a top speed of
19:4 m s� 1 without payload to demonstrate capability of
accurate tracking near the system limits.

In Setting (i), we perform the same increasing speed circle
trajectories from the simulation experiments and compare
the tracking performance of our method to GP-MPC, SRT-
NMPC, and INDI-NMPC. Table III shows the results of this
comparison. As can be seen, even without an aerodynamic
model, ourL 1-NMPC architecture outperforms GP-MPC by
over 70% and has a slight advantage over INDI-NMPC,
indicating that the adaptive controller is compensating for both
model mismatch and aerodynamic disturbances. Additionally,
we show that SRT-NMPC with a linear aerodynamic model
matches the performance of GP-MPC and therefore use SRT-
NMPC as the baseline moving forward due to its computa-
tional advantage over GP-MPC.

Next, in Setting (ii) we perform a2 m s� 1 circle with a
450 gpayload attached. This represents a mass increase of over

2https://www.vicon.com/
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