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Abstract—Quadrotor navigation in unknown environments is
critical for practical missions such as search-and-rescue. Solving
it requires addressing three key challenges: the non-convexity
of free space due to obstacles, quadrotor-specific dynamics and
objectives, and the need for exploration of unknown regions to
find a path to the goal. Recently, the Model Predictive Path
Integral (MPPI) method has emerged as a promising solution
that solves the first two challenges. By leveraging sampling-based
optimization, it can effectively handle non-convex free space while
directly optimizing over the full quadrotor dynamics, enabling the
inclusion of quadrotor-specific costs such as energy consumption.
However, its performance in unknown environments is limited,
as it lacks the ability to explore unknown regions when blocked
by large obstacles. To solve this issue, we introduce Perception-
Aware MPPI (PA-MPPI). Here, perception-awareness is defined
as adapting the trajectory online based on perception objectives.
Specifically, when the goal is occluded, PA-MPPI’s perception
cost biases trajectories that can perceive unknown regions. This
expands the mapped traversable space and increases the likeli-
hood of finding alternative paths to the goal. Through hardware
experiments, we demonstrate that PA-MPPI, running at 50 Hz
with our efficient perception and mapping module, performs up
to 100% better than the baseline in our challenging settings where
the state-of-the-art MPPI fails. In addition, we demonstrate that
PA-MPPI can be used as a safe and robust action policy for
navigation foundation models, which often provide goal poses
that are not directly reachable.

I. INTRODUCTION

Enabling quadrotors to autonomously navigate to a goal
in unknown environments is critical for practical missions
such as search-and-rescue, infrastructure inspection, and ex-
ploration [1]-[3]. It is also relevant for the safe deployment
of navigation foundation models, which provide navigation
waypoints or goals in previously unseen environments [4],
[5]. Achieving this capability requires addressing three key
challenges: (i) non-convex constraints: cluttered environments
create non-convex free space, which complicates gradient-
based optimization; (ii) quadrotor-specific dynamics and costs:
planned trajectories must satisfy dynamic feasibility while
optimizing costs such as effort and energy; and (iii) mapping
in unknown environments: since the environment must be
mapped online using onboard perception, successful naviga-
tion must incorporate exploration and mapping of unknown
regions to find a feasible path to the goal.

A common approach is a hierarchical planner—controller
architecture [6]-[9], where a global planner computes trajec-
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Fig. 1: The Perception-Aware MPPI (PA-MPPI) controller navigating to the
goal pose while avoiding obstacles in a previously unknown environment. The
controller simultaneously controls the quadrotor at 50 Hz and optimizes the
perception objective based on an online-updated 3D map constructed from
onboard observations.

tories subsequently tracked by a local controller. However,
this separation often results in conservative or dynamically
infeasible plans, as quadrotor-specific dynamics and costs are
not considered during the planning stage [10].

Model Predictive Path Integral (MPPI) control has recently
emerged as a promising alternative. By employing sampling-
based optimization, MPPI can navigate highly non-convex
and nonsmooth free space in the presence of obstacles while
directly optimizing control inputs on quadrotor-specific dy-
namics and costs [11], [12]. Nevertheless, the application of
MPPI in navigating complex, unknown environments remains
unexplored. Our experiments show that standard MPPI tends
to get stuck at large obstacles and fails to reach the goal, as it
fails to expand traversable regions by actively exploring and
mapping unknown areas.

In this work, we introduce the Perception-Aware Model
Predictive Path Integral (PA-MPPI) controller, integrated with
a custom perception and mapping module, to enable standard
MPPI with the capability of exploring unknown regions with-
out direct path to the goal. This is achieved by extending
standard MPPI with perception awareness, characterized by
adapting control inputs and trajectory optimization based on
both current and future perception of the environment. Prior
works have demonstrated the effectiveness of perception-
aware costs for maintaining visual targets within the onboard



camera’s field of view [2], [13], [14]. PA-MPPI expands on
this by introducing an additional perception cost. Using the
current map of the environment, this cost evaluates sampled
trajectories based on their potential to perceive unknown
regions in the goal direction, thereby guiding the optimized
trajectory to map unknown regions that lead to the goal.

We validate PA-MPPI in real-world experiments, demon-
strating that perception-awareness allows MPPI to navigate
through complex, unknown environments where standard
MPPI would otherwise get stuck. We show that PA-MPPI
successfully addresses all three challenges necessary for au-
tonomous quadrotor goal reaching in unknown settings.

Our contributions are threefold:

« Novel Perception-Aware Cost for MPPI: We propose a
cost function that exploits the current environment map
to guide trajectory optimization toward frontiers that help
perceive unknown regions towards the goal, improving
navigation success in challenging unknown environments.

« Integrated Framework: We present the first perception-
aware MPPI framework that simultaneously combines
sensing, mapping, and a high-performance MPPI im-
plementation running at 5S0Hz for real-time quadrotor
control.

« Hardware-in-the-Loop Validation: Our experiments
show that PA-MPPI outperforms the standard MPPI con-
troller, achieving up to 100% more successful navigations
in environments where baseline MPPI fails. We further
demonstrate that PA-MPPI enhances the robustness of
navigation foundation models when used as action poli-
cies.

II. RELATED WORK

In the following, we group related literature into three
sub-sections: (i) navigation with obstacle avoidance in
cluttered environments with an emphasis on optimization-
based formulations, (ii) perception-aware navigation under
sensing and estimation limits, and (iii) algorithms for solving
model predictive control (MPC) problems in real time, with
a focus on sampling-based MPC.

Obstacle Avoidance in Cluttered Environments. In clas-
sical software architectures, a high-level planner is responsible
for more complex objectives and generates a safe path or
trajectory, which is then passed to a fast lower-level con-
troller [10]. Often, planners operate in a discrete or low-
dimensional control/state space, for example, using graph
search [6]-[8] or rapidly exploring random trees [9]. However,
with a reduced state or control space, trajectories may be
suboptimal, and the hierarchical decomposition introduces an
interaction between the controller and the planner.

Optimization-based  approaches often simultaneously
plan safe trajectories and control the actuators. However,
optimization-based motion planning in the presence of
obstacles is challenging due to the induced nonconvexity
and nonsmoothness [15]-[19]. A recent approach [17]
and, similarly [16], exploit graphs of convex sets to cast
collision-free planning as a tight convex program, scaling

to high-dimensional environments [17]. The authors in [16],
[18], [19] propose efficient algorithms for ellipsoidal or cubic
obstacles, and [1] shows a real-world implementation for
Unmanned Areal Vehicles (UAVs). However, such derivative-
based formulations typically rely on smooth functions, which
can be difficult to obtain directly from raw depth observations
in complex, highly non-smooth environments.

Beyond optimization-based approaches, learned depth-
camera-based policies have shown sufficient navigation per-
formance when trained end-to-end from visual inputs. The
authors in [20] demonstrated high-speed flight in real-world
environments using policies trained in simulation. More re-
cently, vision transformer-based policies have been explored
for end-to-end quadrotor obstacle avoidance using onboard
computation [21]. While such approaches improve the closed-
loop cost disregarding collisions, they often lack the safety-
relevant explicit constraint handling and adaptability to new
environments provided by optimization-based methods.

Perception-Aware Navigation. A growing number of works
integrates perception objectives directly into planning and con-
trol, either to acquire task-relevant information or to maintain
estimation quality. Perception-aware Model Predictive Control
(MPC) aligns the robot’s viewpoint with features to maxi-
mize visibility during challenging maneuvers [2], [13], [22].
Information-theoretic surrogates such as Fisher Information
Fields provide differentiable maps for actively choosing infor-
mative viewpoints [23], [24]. In exploration and inspection,
planners explicitly reason about localization uncertainty to
select safe, observable trajectories [3].

The research direction of our work treat unobserved space
as potentially blocked or even hazardous within partial maps,
thus requiring its goal-targeted exploration [6], [15], [16]. The
high-level planners in [15], [16] enforce perception aware-
ness along an optimistic trajectory by monitoring potentially
hazardous regions, while [6] plans to explore the frontier of
unknown space via a Dijkstra graph-search. While these ideas
typically resort to a separate planner, they motivate our use of
perception-driven costs in a single controller that rewards the
line of sight to the goal and prevents motion into unknown re-
gions, with a focus on highly cluttered environments obtained
from depth images.

Algorithms for Model Predictive Control. In the fol-
lowing, the proposed Model Predictive Path Integral (MPPI)
algorithm is motivated, which contrasts with other sampling
or derivative-based algorithms [25].

a) Derivative-based MPC.: When objectives and con-
straints admit smooth approximations, derivative-based MPC
offers strong local convergence and tight constraint handling.
Progressive smoothing and continuation strategies have been
proposed to navigate nonconvex obstacle costs [19], con-
ceptually paralleling equal to annealing in sampling-based
MPC [26]. A recent approach proposed an algorithm with
an external active set solver for cluttered point-cloud ob-
stacles [27], which achieves a feasible average but has an
ample worst-case computation time. Still, in settings where,
in addition to obstacles represented by raw depth maps also
the cost functions are highly nonsmooth, constructing reliable
differentiable surrogates remains challenging. Sampling meth-



ods showed superior performance in these settings [28].

b) Sampling-based MPC.: Sampling-based MPC meth-
ods optimize control sequences by Monte Carlo rollouts rather
than local gradients, making them attractive for nonconvex,
nonsmooth objectives and dynamics. The most straightforward
but largely inefficient random shooting method purely random-
izes actions [29]. The Cross Entropy Method (CEM) [30] itera-
tively refines a distribution toward high-performing controls by
elites-only update and has been widely adopted as a trajectory
optimizer and within model-based RL pipelines [31]. MPPI
control [32]-[34] uses all samples via weighting to iteratively
refine an trajectory [35]. MPPI has recently been pushed to
demanding hardware settings, including agile UAVs [11] and
whole-body locomotion [36].

A key advantage of sampling-based MPC is its robustness to
nonconvex costs and discontinuities that arise in the presence
of obstacles. In such regimes, gradient estimators can be
biased or have high variance [28]. Nevertheless, sampling
can suffer from local minima and sample inefficiency. Re-
cent work improves exploration via annealing and diffusion-
inspired smoothing of the control distribution [26]. By in-
corporating novel concepts from [26], we demonstrate how
our proposed algorithm outperforms the current state-of-the-
art MPPI control algorithm for UAVs [11] in challenging real-
world experiments.

III. PRELIMINARIES

In the following, the notation of this paper is introduced
in Sect. III-A, followed by a brief description of the MPC
framework in Sect. III-B.

A. Notation

We introduce two reference frames: W, the fixed world
frame, whose z-axis is gravity-aligned, and B, the quadrotor
body frame, whose x-axis aligns with the onboard camera’s
principal axis. In this paper, vectors and matrices are written
in bold, with matrices indicated by capital letters. Each vector
carries a subscript specifying the frame in which it is expressed
and its endpoint. For instance, pw p denotes the position of
the body frame B relative to the world frame W, and Rw p
denotes the rotation from frame B to W. We use y;.y € RN
for the vectorization of vectors yy, ..., yn, with y; € R™. The
quaternion algebra is H and g € H; := {qg € H | |||q]| = 1}.

B. Model Predictive Control

Given an environment, often formulated as a Markov de-
cision process (MDP), with the states € R™~, controls u €
R™, a stage cost [ : R"™ xR — RU{o0}, a discount factor vy,
and a stochastic model P : R™ x R™ — Dist(R"~), MPC
provides a means to yield nearly optimal (sufficiently subopti-
mal) controls by solving an approximated implicit version of
the MDP online, local at the current state & € R™, cf. [25]
for details. MPC typically uses a simplified deterministic
model f : R™ x R™ — R possibly simplified stage
cost £ : R™ x R™ — R and an approximation V : R"™ — R
of the optimal value function V : R"™* — R. Moreover, an
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Fig. 2: Illustration of the control stack. The custom perception and mapping
module has three parts: (1) a point cloud is generated from the rendered
depth image and transformed to the world frame, (2) the Octomap updates
the aggregated observations with the new point cloud, and (3) the leaf nodes
of the Octomap are used to generate the occupancy grid.

Point Cloud

open-loop trajectory wo.i—1 with open-loop states x; € R"~,
actions u; € R™ and horizon H is optimized, instead of
a policy. The resulting single shooting MPC optimization
problem is therefore

H-1
min V(wH;p)+Zf(wk,uk;P) 1
u “~ (D

with xg=s, i1 = f(Tk, ux), 0 <k < H,

where constraints are approximated in the value and cost
function. We denote the dependency of the cost function on
external parameters, such as obstacle parameters or the goal
by p € R"». Unlike gradient-based algorithms for solving the
MPC problem (1), which typically rely on first or second-
order derivatives, MPPI uses Monte Carlo sampling-based
optimization. Despite the initial derivation of MPPI control
for the stochastic system [32]-[34], it is often used for the
deterministic counterpart (1), where noise is added as part of
the optimization algorithm [37].

IV. METHODOLOGY

A graphical overview of the integrated control stack is
shown in Fig. 2. As illustrated, PA-MPPI receives an oc-
cupancy grid from the perception module and optimizes a
trajectory as control sequences, which are directly executed
by the quadrotor. In the hardware-in-the-loop setting, the
quadrotor state is used to render depth images, which are then
processed by the perception pipeline to update the occupancy
grid in real time. The proposed PA-MPPI algorithm utilizes
a dynamic model, as described in Sect. IV-A. A detailed
description of the MPPI formulation is given in Sect. IV-B.
The perception and mapping part, and the cost definition are
detailed in Sect. IV-C and IV-D, respectively.

A. Quadrotor Dynamics

We denote the quadrotor’s position, orientation, and linear
velocity in the world frame by pwg € R?, qwp € H;i, and
vwp € R3, respectively, and the quadrotor’s angular velocity
in the body frame by wp € R3. The collective thrust and
the corresponding thrust vector in the body frame are defined
asc=ci+...+cng and eg = [0 0 |, where ¢; is the
thrust generated by the i-th of Ny, motors. The quadrotor mass
is m and gw is the gravity vector in the world frame. Finally,
the diagonal moment of inertia matrix is J € R¥>3_ and the



body torque is 75 € R3. The quadrotor dynamics can then be
expressed as

Pwa Vw B

. _|aws]| _ IA(wp) - qws

@=|IVB| = . )
VwB qw s © cp/m+ gw
wp J_I(TB—UJBXJ'UJB)

The lowest-level flight controller tracks the zero-order hold
PA-MPPI control u; = [c; wB,,]T. To ensure a feasible
total thrust and body rate at each timestep, we follow the
single motor thrust clipping in [11], using the motor thrust
limits to acquire clipped control input ufhp, which is then used
by PA-MPPI to simulate the dynamics (2) via forward Euler

integration.

B. MPPI formulation

trajectories of H steps are sampled by adding multivariate
Gaussian noise to the nominal control input »’°" . . The
perturbed control sequences u{c:k e J = 1,...,N, are then
rolled out from the quadrotor state x; using the model (2).
the per-step costs £/ = X~V p(z!, ul) + V(xy,). The op-
timized control sequence is calculated using the exponentially

[jizmin

N g exp (= ==—) min
Zj:] w uk:k+H—1’ . N where ,L 1S
the lowest summed cost out of the N rollouts, and A is
to the best-performing rollout, while higher values assign
more uniform weights to all rollouts [35]. The first action of
process repeats in the next time step.

Recent works [11], [26], [38] have shown success in de-
step size Atey. With Afpeq > Atey, the policy rollouts can
predict over a longer real-time horizon for the same number
further into the future. Since the optimization loop executes
the first action at control frequency and the actions in the
as u"°™ for the next iteration, the control sequence is linearly
interpolated and shifted by At.q1, then down-sampled at Afpred.
resemble the optimal value function and account for a recursive
feasible safe set, cf. [25], we only consider a simple terminal
planning horizon to diminish its influence on the open loop
cost.

wj

In the MPPI framework, at each timestep k, N parallel
k:k+H*
Each sampled trajectory wi: k+p 18 then evaluated by summing
weighted average based on the summed cost: wg.p+g—1 =
TN, exp (- L)
the temperature parameter. A low A assigns higher weight
the averaged sequence is then executed, and the optimization
coupling the prediction time step size Afpeq, and the control
of forward simulation steps, allowing optimization of actions
sequence are spaced by Afp.q, to reuse the remaining actions
While the terminal value V function should in principle
hovering safe set with zero velocity and resort to a long enough

C. Perception & Environment Mapping

We use a depth sensor on the quadrotor to continuously
build a 3D map of the environment as the policy navigates
toward the goal. From each depth image, we extract a point
cloud and transform it into the world frame using the cor-
responding camera pose. The point clouds are then inserted
into an Octomap [40], which efficiently aggregates all past
observations. During this process, ray-tracing marks the space

between the camera and each occupied voxel as free. Since
Octomap stores occupied and free voxels in a tree structure, we
convert its leaf nodes into a 3D occupancy grid representation
to enable O(1) occupancy lookup. The occupancy grid uses
the same voxel resolution as the Octomap. This conversion
also defines unknown regions that are neither occupied nor
free within the grid boundary. As a result, each voxel in
the occupancy grid has one of three states: occupied, free,
or unknown, with integer values {1,0,—1} respectively, as
visualized in Fig. 3. Formally, the 3D occupancy grid is
defined as G € {-1,0, 1}>*¥*Z_ We denote by G(pwg) the
operation that looks up the voxel corresponding to position
pw s and returns its value. The mapping pipeline is able to
process depth images at 30 Hz and update the occupancy grid
at 10Hz for a 4 X 4 X 2m grid with 0.1 m voxel resolution.

D. Optimization Cost Definition
The stage cost of (1) for the navigation task has the
following terms: € = €goa1 + Cact + Leollision + Lperception, With
Looal = (= Cpos + ¢y |AY[) - exp (= lldgou]l*).
bact = llullg + Aulz,,
Leollision = Ceollision * 1{G (pw 5)#0}>
Cperception = Cpol * (1 = (& B dgon))  1{|jdyou [ cumesn}
+ Coceupied * (g (r(:7))=1}
+ Cunknown * 1{G(r(r*))=—1}
+ Ctree - 1{G(r(14))=0}
and the quantities:

Iy dgoal
dgoal = d s
|| goal ||

dgoal = PWB — Pgoals

Xwp = Rwp -ei,
Ywp = atan2(Rw g 1,0}, Rw{0,0})
Ay = atan2(sin(Yw p — wgoal), cos(Ywp — ‘/’goal))~

The terminal value function is V(x) =  cCsfe
1{jowgl>v}Vlws||>w> With bounds v and w, and a large
penalty cgfe to account for safe set (hovering).

The goal cost £y0q is split into two components: a position
cost with weight cpos, which penalizes distance from the
desired goal position, and a yaw cost with weight c,, which
encourages alignment of the quadrotor’s heading with the goal
pose. Only yaw alignment is explicitly considered, as each
episode terminates with the quadrotor at the goal pose with
zero velocity and acceleration. The yaw penalty remains small
when the quadrotor is far from the goal, allowing perception
loss to have a greater influence over yaw during navigation.

The action cost £, penalizes the magnitude and change
in control inputs, similar to the implementation in [11]. To
penalize each component of the collective thrust and body rate,
we use the positive semidefinite diagonal matrices R € R***
and Ry € R¥* in corresponding dimensions.

The collision cost {coflision iS @ binary value weighted by
a large constant ccoliision- The indicator function 1{g(py, 5)#0}
returns 1 if the quadrotor’s current position lies outside the
set of free voxels defined in Section I'V-C. This large penalty



(a) Reconstructed Scene (b) Occupied Voxels

(c) Free Voxels (d) Unknown Voxels

Fig. 3: Mapping example of a scene from the Habitat Matterport dataset [39] using four consecutive RGB-D images with the corresponding camera poses. (a)
Scene reconstruction obtained by projecting RGB values onto the depth point cloud, with camera poses and the mapping bounding box overlaid. (b)(c) Occupied
and free voxels extracted from the Octomap. (d) Unknown voxels, which naturally appear outside the camera’s FoVs or in areas occluded by objects.

Goal Position

Quadrotor
Position

(a) Given only one depth observation, there is no position in known
free space that has a direct line-of-sight to the goal. Trajectories receive
a reward for exploring unknown regions (blue trajectories) or a penalty
for facing obstacles (red trajectories).

/

Position

(b) After moving to a new position while mapping the environment, the
trajectories that contain positions with direct line-of-sight to the goal
(green trajectories) are strongly preferred in the optimization process by
receiving a large reward.

Fig. 4: A top-down visualization of the ray-tracing in perception cost calcu-
lation, showing the occupied voxels (red), free voxels (green), and unknown
voxels (blue), and sampled trajectories on which ray-tracing is performed.
enforces the quadrotor not only to avoid collisions with known
obstacles but also to refrain from entering unknown regions,
which is critical for ensuring safety when navigating in un-
known environments.

The perception cost, €perceptions Consists of two compo-
nents. The first, weighted by cpo1, encourages alignment of
the quadrotor’s x-axis (coinciding with the depth camera’s
principal axis) with the direction of the goal position (point
of interest), thereby maximizing the goal’s visibility within

the image frame [2], [13]. As the quadrotor approaches the
goal (distance below cihresh), this term becomes inactive and
yaw control authority is handed to the goal cost. The last
three terms in {perception T€present three mutually exclusive
cases of the quadrotor position with respect to the mapped
region of the environment. We define a ray that starts from
the quadrotor position pwp and ends at the goal position
Pooal as: T(1) = pwp +1 - dgoa, 0 <t < 1. Since pwp is
constrained to the known free space due to the collision cost,
there exists a t* such that the ray either exits the free space (i.e.,
no direct line-of-sight to the goal; see Fig. 4a) or reaches the
goal (direct line-of-sight available; see Fig. 4b). If r(z*) lies
in an occupied voxel, a cost Coccupicd is assigned. If r(¢*) falls
in an unknown voxel, then it suggests an exploration frontier
towards the goal is present, and a negative cost Cynknown 1S
given. If (") remains in a free voxel, then the ray successfully
reaches the goal without leaving free space, indicating a direct
path to the goal, and a large negative cost cgee is applied.
As illustrated in Fig. 4, this ray-tracing term favors sampled
trajectories that either explore unknown regions when the goal
is blocked by obstacles (Fig. 4a) or move directly toward
the goal when possible, cf. Fig. 4b. This design enables
the PA-MPPI controller to exploit map information, allowing
it to plan around obstacles and efficiently explore unknown
space. For the implementation of ray tracing, we adopt the
3D Digital Differential Analyzer (DDA) algorithm [41], which
does not require a signed distance field representation of the
environment. Due to high computational cost, ray tracing is
performed on every 10" time step of the open loop trajectory.

V. EXPERIMENTS

To evaluate the performance of PA-MPPI without con-
sidering the effect of other modules in the control loop,
such as depth sensor noise or imperfect state estimation, we
conduct hardware-in-the-loop (HIL) [42] experiments. We use
a motion capture system to acquire the ground truth state of
the quadrotor, and the Flightmare simulator [43] to render
depth images at the corresponding poses in real time. The PA-
MPPI controller is implemented in JAX and integrated into the
Agilicious control framework [42], running on a laptop with
an i7-13800H CPU with 64GB RAM and a NVIDIA A1000
laptop GPU with 6GB VRAM. The quadrotor used has a mass
of 0.21kg and arm length / = 19.4cm, with propeller radius
of 3.81cm and a thrust to weight ratio of 6.8.



TABLE I: MPPI parameter.

MPPI param. Cost definition constants
N 10,000 | cpos 2.5 | Cfree -5.0
H 15| cy 1.0 | Cunknown -1.0
4 0.05 | ccomision  15.0 Coccupied 2.0
Atpred 0.1 | cpor 50| R diag(0.01, 0.1, 0.1, 0.2)
At 0.02 | Cthresh 0.5 | Ra diag(0.02, 0.02, 0.02, 0.05)

3m

(a) C-wall w =0.25m (b) C-wall w =3.0m

(c) Hole d = 1.0m (d) Hole d =0.5m

(e) 4-Wall d =0.5m

(f) 4Wall d = 1.5m

Fig. 5: Synthetic scenes for navigation experiments. The goal pose for each
task is always 3m ahead of the initial pose, with three types of obstacles
in between: a C-shaped wall (a)(b), a wall with a hole (c)(d), and four walls
(e)(f). The easiest and hardest settings for each scene are shown here, with the
reference trajectory shown in red (for baseline only) and example successful
trajectories in blue.

Two sets of experiments are conducted. The first consists
of navigating synthetic scenes of varying difficulty (Fig. 5)
to quantitatively evaluate the performance of PA-MPPI. The
second consists of indoor navigation scenes from the Habitat
Matterport dataset [39], using goal poses proposed by a navi-
gation foundation model [4] to demonstrate an example usage
of PA-MPPI as the action policy for a Vision-Language-Action
(VLA) model in unknown environments. A list of PA-MPPI
parameters are provided in Table I. As in our experiments, the
weight of the terminal safe set cgue barely had an influence,
we set it to zero.

Synthetic Scene Experiment. To quantitatively evaluate
the performance of PA-MPPI, we design three scenes to

(a) t=0s

(b) r=1.6s (c)t=5.0s

Fig. 6: PA-MPPI's trajectory in the C-wall scene (w = 2.0 m)

navigate through. The first is a C-shaped wall of varying
sizes that is a good example of challenging obstacles. The
second is a hole in a wall that the quadrotor must go through,
similar to manholes that quadrotors must navigate through
during ship inspections [44]. The third scene consists of four
walls that the quadrotor must navigate past, which tests PA-
MPPI’s path-finding capabilities. The difficulty of each scene
is parametrized by the size of the obstacles w (each difficulty
tested 5 times) or the diameter of the holes r (5 random
locations, each tested 2 times), as shown in Fig. 5.

To evaluate the effectiveness of incorporating mapping
information in the perception cost, we chose a trajectory
tracking MPPI controller as the baseline. As reported in [11],
this baseline is able to deviate from the reference trajectory
to avoid obstacles, making it a suitable comparison in the
navigation task. The tracking MPPI controller shares the same
cost definition except that the perception cost {perception iS
not used. Moreover, the goal cost g0y is replaced with the
trajectory tracking cost in [11]. The reference trajectory is
created by uniformly sampling waypoints along the straight
line connecting the initial and goal position, and optimizing
for a minimum-jerk trajectory with 4 s horizon.

The experiment results are summarized in Table II. Success
termination is defined as reaching the goal pose without getting
stuck on or colliding with an obstacle. PA-MPPI drastically
improves the success rate by avoiding getting stuck on all
obstacles. Given an incomplete initial map of the environment,
it moves to positions that help map the environment between
its position and the goal, which is visualised in Fig. 6 and
Fig. 7, respectively. In these cases, where the successful path
requires a large deviation from the straight line reference,
tracking MPPI fails by getting stuck on the obstacles, failing
to find a path towards the goal. However, PA-MPPI is not
restricted by the reference trajectory and instead is guided
by the perception cost to navigate around the obstacles. Both
controllers suffer collisions, especially when the velocity is
high. Investigating the collisions shows that the PA-MPPI
controller enters the occupied region with an average distance
of 4 cm. Repeating the experiment in simulation does not result
in such collisions, suggesting a gap between the simplified
quadrotor model for trajectory rollouts and the real drone
dynamics.

PA-MPPI combined with Navigation Foundation Model.
We validate the real-world applicability of the PA-MPPI
controller by using it as the action policy for a navigation
foundation model that proposes trajectory waypoints. In this
case, we use two scenes from the Habitat Matterport dataset



TABLE II: Synthetic scene navigation experiment results.

C-Shaped Wall

Hole Traversal 4-Wall Traversal

Termination Obstacle size w Hole diameter d Wall size w
Condition

0.5m 10m 20m 3.0m | 0.5m 10m | 05m 1.0m I.5m

Success 100% 20% 0% 0% 20% 50% 20% 80% 0%

Tracking MPPI Stuck 0% 60% 100%  100% 40% 20% 0% 0% 80%
Collision 0% 20% 0% 0% 40% 30% 80% 20% 20%

Success 100%  100%  100% 60% | 80% 100% 100%  40% 80%

PA-MPPI Stuck 0% 0% 0% 0% 0% 0% 0% 0% 0%
Collision 0% 0% 0% 40% 20% 0% 0% 60% 20%

(a)t=0s (b) t =225

()t =5.0s

d)r=6.5s
Fig. 7: PA-MPPI’s trajectory in the 4-wall scene (w = 1.5m)

[39] and NoMabD [4] for waypoint generation. The reference
trajectory for the tracking MPPI controller is a minimum-jerk
trajectory that passes through all the waypoints in 4 s.

In the first scene, visualized in Fig. 8, the NoMaD proposed
trajectory attempts to enter the room but misses the door. The
trajectory tracking controller follows the proposed trajectory
and gets stuck on the wall. On the other hand, PA-MPPI
was able to explore and map more regions in this scene,
including navigating through the door and ultimately reaching
the goal position. In the second scene, visualized in Fig. 9,
the NoMaD trajectory starts close to a ping-pong table and
goes directly through it. Although both controllers attempt to
avoid collisions with the obstacle, the tracking MPPI, guided
by the reference trajectory, collides with the ping-pong table
at the beginning of its trajectory. On the contrary, PA-MPPI
successfully avoids the obstacle. Both scenarios demonstrate
the robustness of PA-MPPI against imperfect trajectory pro-
posals in unknown environments, making it a suitable action
policy for navigation foundation models.

VI. DiscussioN & FuTurRE WoRK

Despite outperforming the tracking MPPI controller, the
current implementation of PA-MPPI can still suffer from colli-
sions, as observed in Section V, due to its simplified dynamics
model and the low update rate of 50 Hz. Additionally, due to
the limited FoV of the depth sensor, a good initial observation
is crucial for successful navigation around large obstacles.
For example, in the experiment shown in Fig. 6, the initial

Start

(a) NoMaD proposed trajectory

(b) Tracking MPPI (c) PA-MPPI

Fig. 8: Habitat Scene 1, top-down view of the floorplan, with NoMaD
trajectory in blue.

(a) NoMaD proposed trajectory

(c) PA-MPPI

(b) Tracking MPPI

Fig. 9: Habitat Scene 2, with NoMaD trajectory in blue. The tracking MPPI
trajectory collides with the ping-pong table at the beginning of the trajectory,
whereas PA-MPPI safely navigates around it.

observation at t = Os is initialized by turning the quadrotor
+90° to observe free space outside the convex hull of the C-
shaped wall. However, this issue can be solved by replacing the
depth camera with LIDAR, which only requires modification
to the mapping module. Finally, we only considered local
navigation tasks within a fixed 3D boundary. We leave the
implementation of long-horizon navigation scenarios, which



may involve navigating to intermediate waypoints proposed
by foundation models, for future work.

VII. CoNCLUSION

This work introduces a perception-aware MPPI controller
that incorporates a novel perception-aware cost to enhance
quadrotor navigation in partially known cluttered environ-
ments. By leveraging the current map, the perception term
guides trajectories toward promising frontiers as they progress
toward the goal. Real-world experiments demonstrate its effec-
tiveness compared to state-of-the-art MPPI controllers that do

not

account for the potential benefit of exploring unknown

areas. Moreover, we demonstrate its potential as an action
policy for foundation models for navigating challenging en-
vironments. Future improvements will include a more realistic
quadrotor dynamics model with higher control frequency to
increase robustness, as well as validation on long-term navi-
gation tasks.
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