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Abstract— Autonomous robots deal with unexpected scenar-
ios in real environments. Given input images, various visual
perception tasks can be performed, e.g., semantic segmentation,
depth estimation, and normal estimation. These different tasks
provide rich information for the whole robotic perception
system. All tasks have their own characteristics while sharing
some latent correlations. However, some of the task predictions
may suffer from the unreliability of dealing with complex scenes
and anomalies. We propose an attention-based failure detection
approach by exploiting the correlations among multiple tasks.
The proposed framework infers task failures by evaluating
the individual prediction, across multiple visual perception
tasks for different regions in an image. The formulation of
the evaluations is based on an attention network supervised
by multi-task uncertainty estimation and their corresponding
prediction errors. Our proposed framework generates more
accurate estimations of the prediction error for the different
task’s predictions.

[. INTRODUCTION

Autonomous agents utilize the information from various
learning-based visual perception predictions. Existing works
have shown good performance on cases where the deploy-
ment environment has similar distribution to the training
set [1]. However, many state-of-the-art deep learning ap-
proaches still face the lack of ability in dealing with open
and unconstrained world [2]-[4], and will produce failures,
especially in unseen environments [5]. Thus, a method to de-
tect prediction failures of various robotics visual perception
tasks is crucial for safe robotic deployments. With higher
introspection capabilities, autonomous robots will be more
controllable in safety-critical scenarios.

This work focuses on identifying failure predictions of
various robotics perception tasks by exploiting the latent cor-
relations among them. Those correlations have been recently
used to improve tasks performance [6,7]. Our basic idea is to
exploit the complementary information from multiple tasks
to improve the introspection capability of the perception
system on every single task based on an attention mech-
anism. Our failure detection model has a unified structure
that attends the encoded multi-task feature maps with the
expressive power to perform failure prediction for different
tasks.

Existing research recognizes uncertainty as a common
measurement of the multi-task prediction’s confidence [5].
The uncertainties are ideally correlated to the correspond-
ing task prediction errors, which measure the reliability of
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Fig. 1: Example Result of Our Approach. Our method
captures the high prediction uncertainty regions of a single
task using multiple visual tasks. The result maintains the use-
ful uncertainty estimation from the original task (highlighted
areas in red circle). Moreover, beneficial from the multi-task
setup, our approach captures the relevant information from
other tasks (highlighted areas in blue circle) to compensate
the missed failure regions.

the predictions. General uncertainty estimation methods are
based on a single task, e.g., softmax entropy from semantic
segmentation [8]. However, the quality of the uncertainty es-
timation is limited by several factors, such as environmental
conditions (e.g., clean/foggy weather), anomalies, and more
[9].

To investigate the model robustness, we train our model on
the Cityscapes [10] dataset and test it on several datasets with
different distribution characteristics [11,12]. We evaluate the
model for different tasks and compare it against several
existing methods. We show that our approach outperforms
all other failure prediction approaches. Moreover, our frame-
work is flexible to the number and types of tasks with
different task prediction & uncertainty estimation methods.

In summary, the contributions of this work are i) The
first work to exploit the multiple visual tasks setup for
detecting failures in their prediction in deployment. ii) A
novel framework with an attention mechanism over the
multiple visual tasks being deployed to extract the comple-
mentary information in their uncertainty estimates for failure
detection. iii) A thorough evaluation of design components
and their influence in open-world scenarios.

II. RELATED WORK

Failure Detection via Uncertainty Estimation

Uncertainty estimation has a close relation with failure
detection and introspection. The uncertainty of the prediction
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Fig. 2: Visual Tasks Failure Detection Framework. Given
an image and its multiple task predictions, our approach
computes the attention maps to weigh the multiple task
uncertainty estimations. This weighted sum of attention and
uncertainty maps is our failure prediction for a chosen task.

|

results reflects the level of its confidence. And the intuition
follows that a low-confidence prediction is likely a failure.
Therefore, uncertainty estimation could be regarded as a ref-
erence to failures prediction. A conventional way to calculate
the uncertainty is to directly analyze the distribution of the
model prediction such as the softmax entropy [13], or softmax
distance [14] used in classification models. Besides, image
flipping [2] investigates the model results’ difference in
dealing with the original and flipped image. Finally, Bayesian
estimation [15]-[17] estimates the uncertainty by sampling
multiple models, e.g. Monte-Carlo dropout [5,18] captures
the uncertainty by randomly dropping the connection be-
tween different layers.

Failure Detection via Learning-based methods

Nowadays, the neural network has become a possible
option for the failure detection task. Most of the failure
detection methods in the visual perception area focus on
detecting semantic segmentation miss-classification. These
methods can be roughly divided into two categories. One
group directly trains detectors with failure cases [19]-[21].
The other group uses re-synthesis methods [9,20,22,23] that
rebuild the image from semantic prediction, and capture the
anomalies by comparing the rebuilt image and the original
one.

Learning from Multiple Tasks

Prior works have already acknowledged the relation
among different perception tasks [24,25]. This latent cor-
related structure among visual tasks has been exposed in
the work of Taskonomy [6]. The utilization of cross-task
relations also lies in the area of domain adaptation [26,27],
transfer learning [7], and multi-task learning [28]-[30]. More
specifically, recent attention has focused on using cross-
task supervised learning to improve the performance of a
single task, such as to improve depth prediction under the
supervision of semantic understanding [31,32].

III. METHOD
A. Multi-task Element Generation

Our approach admits any number of visual perception
tasks that provide per-pixel predictions and their per-pixel
uncertainties. Different chosen uncertainty estimation meth-
ods will certainly influence the final output, and thus we
evaluate their influence in Section

B. Attention Network Model

We denote the original image as 7. The predictions of all
n tasks are denoted as 71,73, -, 7,. The uncertainty estima-
tions of them are denoted as U, Ua, ---, U,, respectively.
The architecture of our attention network is shown in Figure
The model first encodes the original images 7 and its
task predictions {7;},i € {1,2...,n}. We chose to encode the
image 7 with the first several layers of ResNet50 [33] into a
256-channel feature with a 128 x 128 size. On the other hand,
the predictions {7;} are encoded by part of MobileNetV2
[34]. Each of them is encoded into a 24-channel feature map
of size 128 x 128. All tasks prediction, {7;}, share the same
encoding structure. The encoded feature maps are denoted
as Cr, {G;}, correspondingly.

After the encoding process, the encoded features are con-
catenated along the channel dimension. The resulting feature
map, Ccq4; is then forwarded into a neural network with four
convolutional layers. In these convolutional layers, the output
of the second and third layers will be concatenated together
and used as the input to the last layer. In this case, the output
layer has one channel for each task. Given a predefined patch
size p, two pooling layers are added after the second and the
third convolutional layers to resize each output channel into
(256/p) x (256/p), which is the resolution of our attention
maps. An extra nearest neighbour rescaling layer is added
here to rescale each channel to the size of the uncertainty
maps. The rescaled feature maps in each channel are the
final attention map generated by our attention network. We
denote them as Wy, Ws, ---, ‘W, for each task, respectively.
The final failure prediction &. for a single task is generated
by calculating the weighted sum of all tasks’ uncertainty
estimates, with the attention maps as the weights.

C. Training Procedure

As introduced in the last subsection, the attention maps
are predicted by our attention network, {W;} = fo(Z,{7:}).
We set a single error approximation loss function to learn the
network parameters . When training the network to learn
a certain task failure, we compute the pixel-wise prediction
error €.y for this task.

IV. EXPERIMENTS
A. Experimental Setup

1) Model Implementation: Inspired by task networks
graph in taskonomy [6], we decided to choose tasks from
three visual tasks in total in our different experiments:
semantic segmentation, depth estimation, and normal esti-
mation. We add later in the experiments a fourth task, in-
stance segmentation. For each task, we implemented publicly
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Fig. 3: Example of the Model Architecture: This example model uses three different tasks: semantic segmentation, depth,
and normal estimation. For the uncertainties U}, U>, U3 and prediction errors &, we resize them to 256 X 256. Using the
predefined attention patch size p, the output attention from the model W, W,, Ws will have the size (256/p) X (256/p).
Then the output would be equally upscaled by a factor of p so that the attention maps’ sizes are 256 X 256. Now the
computed attention maps have the same size as the uncertainties, then element-wise multiplication can be performed.

Task Entries Semantic Depth
S D N | ZNCCT AP-ErrT AP-SucT FPR95| ZNCCT
v vV 0.649 0.590 0.987 0.280 0.646
v v 0.609 0.545 0.990 0.278 0.489
v 0.494 0.413 0.978 0.570 -

v - - - 0.483

Task Prediction Uncertainty Estimation
Method Methods
Softmax Entropy [8]
Semantic Softmax Distance [14]
Segmentation SDC Net [4] Synboost* [9]
MC Dropout [35]
Depth Bayesian Estimation [17]
EstimI:ition Monodepth V2 [3] MC Dropout [35]
Self Learning* [18]
Normal L
Estimation VNL [36] Flipping* [2]
Instance . ROI Softmax
Segmentation EfficientPS [37] Uncertainty* [38]

TABLE I: The selected task prediction methods and the
uncertainty estimation methods for all different tasks in the
experiments. * indicates the method used by default in the
experiments unless otherwise mentioned.

available task prediction methods and uncertainty estimation
methods. All evaluated methods are shown in Table [II

2) Dataset: Training was performed on Cityscapes train-
ing dataset [10], including 2975 driving scenes images with
fine semantic annotations and disparity ground truth. We
produced our dataset by applying the methods shown in
the Table |I} The training set is then composed by set in
form of {I,7s,7p,Tn.Us, Up,Up, €.y}, where S,D,N
denote semantic segmentation, depth estimation, and normal
estimation, tasks, respectively, and €;., correspond to the
prediction error of the chosen task to predict its failure.

To test our model’s performance, pre-processing of the
various test datasets is also required. Here we performed
the same pipeline as mentioned in the subsection
for Cityscapes validation set [10], Foggy Cityscapes vali-
dation set [39], Wilddash [12] and Dark Zurich dataset [11].
Wildash provides a dataset and benchmark for challenging
driving scenarios under real-world conditions, it contains
scenarios from very diverse environments, locations, and
weather conditions. Dark Zurich is a dataset designed for
semantic uncertainty-aware model evaluations. It contains
driving scenes images captured at night time, twilight and
day time. Here we only use the night time images for our
evaluation. The purpose of testing on these extra two datasets

TABLE II: Multiple Tasks Experiments: Comparison among
multiple different task entries for both semantic segmenta-
tion’s and depth estimation’s failure prediction.

is to validate the model robustness when dealing with the
challenging unseen scenarios.

3) Metrics: We choose the zero-mean normalized cross-
correlation (ZNCC) in our experiments as a measurement
of how close the predicted failure is to the ground-truth
failure. This metric is seamlessly applicable to classification
and regression tasks.

In addition, for the classification task of semantic seg-
mentation, previous works on failure detection have used
several metrics for evaluation [9,21,23]. Thus we also report:
i) AUPR-Error: the area under the Precision-Recall (AUPR)
curve ii) AUPR-Success: the AUPR metrics treating correct
prediction as the positive class. iii) FPR9S: the false positive
rate at 95% true positive rate. As for regression tasks, such
as depth estimation, we are not aware of any previous work
focusing on evaluating the failure prediction model.

B. Comparisons

Are multiple tasks beneficial for single task failure
detection? In these experiments, we evaluate two aspects.
The first one is the influence of increasing the number of
tasks as inputs to our failure detection. And the second one,
we evaluate our failure detection on different main tasks: a
classification task (semantic segmentation) and a regression
task (depth estimation).

We start in our network structure by only having the input
of a single task (the task for which the failure is being
detected), see last 2 rows of Table on the Cityscapes
original validation set. This is equivalent to learning failures
from single task knowledge and thus can be compared to use
the uncertainty input as a proxy to the failure.



Cityscapes Original Cityscapes Fo, Task Entries Semantic Depth
Method | Patch ZNycch AP—gErrT ZNCyCT : AP—gEgr}rlT Patch | ¢ “h N IS | ZNCCT  AP-Errf ZN(IJ)CT
Ours with 1 0.649 0.590 0.560 0.518 1 v v v v 0.641 0.585 0.655
Synboost 16 0.489 0.400 0.516 0.466 v v v 0.649 0.590 0.646
SynBoost - 0.450 0.387 0.506 0.480 16 v v v v 0.493 0.403 0.581
Ours with 1 0.681 0.618 0.628 0.565 v v v 0.489 0.400 0.529
Soft. Ent. 16 0.568 0.447 0.593 0.497
Soft. Ent. - 0572 0.444 0.619 0.520 TABLE V: Adding an Extra Task: Comparison among mul-
Ours with 1 0.576 0.506 0.430 0.408 tiple different task entries for both semantic segmentation’s
MC Dropout 16 0.358 0.274 0.327 0.307 PO .
MC Dropout : 0510 0518 0163 0536 and depth estimation’s failure prediction.
Ours with 1 0.668 0.593 0.600 0.532 Method Wilddash Dark Zurich
Soft. Dis 16 0.540 0.409 0.574 0.479 ZNCCT _ AP-Erl | ZNCCT _ AP-Err]
Soft. Dis. - 0.527 0.408 0.569 0.489 Ours with Synboost 0.412 0.595 0.238 0.775
SynBoost 0.323 0.584 0.199 0.726
TABLE III: Effect of Changing the Semantic Uncertainty In- Ours with Soft. Ent. 0.520 0.630 0.544 0.867
put: Our models vs. selected uncertainty inputs for semantic - S‘;lftMECmD gggf %652357 g%? 85;2
. . . T urs wit ropout .. . . .
estimation’s failure prediction. MC Dropout 0139 0478 o138 0678
Ours with Soft. Dis 0.511 0.628 0.497 0.861
Then, we continue by adding a second task (depth or se- Soft. Dis. 0.478 0.619 0.502 0.797

mantics, as appropriate), and a third one (normal estimation),
see first row in Table

From this experiment we have evidence that, indeed,
a multi-task setup improves failure detection of one task,
and, this is true for both semantic segmentation and depth
estimation. This is a confirmation of our hypothesis that our
framework leverages the latent correlations among tasks to
improve the introspection capabilities of the every single one
of them.

How dependant is our failure detection on the uncer-
tainty estimate input? This experiment investigates whether
our conclusions have been biased to the uncertainty input
used. For the semantic segmentation task we evaluate three
more uncertainty inputs, and for the depth estimation another
two (see Table [l). For each specific uncertainty method, we
select two of our models with different patch sizes (1 & 16).

The results of this investigation can be seen in Tables
and Our framework is consistently outperforming the
uncertainty input for both tasks failure detections, within
both original and foggy image set from Cityscapes.

How is the failure detection performing when adding
one more task? Finally, the question comes to our failure
detection based on a multi-task setup is fixed to the already
chosen tasks in the previous experiments. For that reason,
we add the extra task of instance segmentation (/S), with its
corresponding uncertainty estimate, see last row of Table [}

The results of this experiment, shown in Table V] indicate
that the addition of an extra task continues to be beneficial for

Method Patch (Z);gclg‘}l ;NOé%yT
Ours with 1 0.646 0.570
Self Learning 16 0.569 0.529
Self Learning - 0.248 0.255
Ours with 1 0.757 0.645
Bayesian 16 0.684 0.584
Bayesian - 0.091 0.074
Ours with 1 0.648 0.516
MC Dropout 16 0.575 0.446
MC Dropout - 0.076 0.075

TABLE 1V: Effect of Changing the Depth Uncertainty In-
puts: Our models vs. selected uncertainty methods for depth
estimation’s failure prediction.

TABLE VI: Generalization: Our models vs. selected uncer-
tainty inputs for semantic segmentation’s failure prediction
on two other datasets: Wilddash and Dark Zurich.

the different tasks failure detections. However, we observe
that the contribution is higher for the depth estimation failure
detection than for the semantic segmentation. We believe this
is due to less extra information provided by the instance
segmentation with respect to the semantic segmentation task.
While differentiating among different instances of the same
class is highly informative for the depth estimation task.

How is our failure detection generalizing to scenar-
ios with larger distribution mismatch? Here, we use
our default models trained with the Cityscapes dataset,
and deployed them on Wilddash and Dark Zurich (night)
datasets, for the tasks of failure detection of the semantic
segmentation. Results can be seen in Table [VI Additionally,
we include the evaluation of different uncertainty inputs
as they are quite dependent on the distribution mismatch
between the test and training set. We can conclude that
the improvements brought by our framework generalize to
more complex scenarios, invariant to the uncertainty estimate
1nput.

V. CONCLUSION

We propose a framework to detect visual task prediction
failures. We leverage the information from multiple visual
tasks simultaneously being deployed, and build a learning-
based attention neural network to perform a weighted sum of
task uncertainties to approximate the task prediction failure.
Our approach is more accurate in detecting semantic and
depth prediction errors, compared with various uncertainty
estimation methods. Additionally, our thorough experimental
evaluation also proves its ability to further improve the
performance by increasing the attention map resolution, as
well as by including in extra correlated visual tasks. Finally,
we observe that the multi-task setup allows for better gener-
alization to environments with a larger distribution mismatch
to that of the training set.
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