
This paper has been accepted for publication at the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Detroit, 2023. ©IEEE

Learning Deep Sensorimotor Policies
for Vision-based Autonomous Drone Racing

Jiawei Fu, Yunlong Song, Yan Wu, Fisher Yu, and Davide Scaramuzza

Fig. 1: This work explores learning deep sensorimotor policies for vision-based autonomous drone racing. The key is to
leverage contrastive learning and data augmentation to obtain feature representations that are robust against unseen visual
disturbances, including modifications in hue or brightness and the addition of blue boxes or random objects.

Abstract— The development of effective vision-based algo-
rithms has been a significant challenge in achieving autonomous
drones, which promise to offer immense potential for many
real-world applications. This paper investigates learning deep
sensorimotor policies for vision-based drone racing, which
is a particularly demanding setting for testing the limits of
an algorithm. Our method combines feature representation
learning to extract task-relevant feature representations from
high-dimensional image inputs with a learning-by-cheating
framework to train a deep sensorimotor policy for vision-
based drone racing. This approach eliminates the need for
globally-consistent state estimation, trajectory planning, and
handcrafted control design, allowing the policy to directly infer
control commands from raw images, similar to human pilots.
We conduct experiments using a realistic simulator and show
that our vision-based policy can achieve state-of-the-art racing
performance while being robust against unseen visual distur-
bances. Our study suggests that consistent feature embeddings
are essential for achieving robust control performance in the
presence of visual disturbances. The key to acquiring consistent
feature embeddings is utilizing contrastive learning along with
data augmentation.

Video: https://youtu.be/AX_fcnW9yqE

I. INTRODUCTION

Vision-based autonomous drone racing is a challenging
navigation task that demands the vehicle to operate at the
edge of the vehicle limits. High speeds and quick rotations
of the camera induce motion blur and rapid illumination
changes, adding to the difficulty of the task. To avoid
crashing, the system must tolerate very few mistakes, and any

J. Fu, Y. Song, and D. Scaramuzza are with the Robotics and Perception
Group, Department of Informatics, University of Zurich, and Department
of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
(http://rpg.ifi.uzh.ch). Y. Wu and F. Yu are with Visual Intelli-
gence and Systems Group in the Computer Vision Lab at ETH Zurich. This
work was supported by the Swiss National Science Foundation (SNSF)
through the National Centre of Competence in Research (NCCR) Robotics,
the European Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 871479 (AERIAL-CORE), and the European Re-
search Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

small error can be catastrophic. Consequently, even minor
deviations from the desired path can significantly reduce task
performance, making drone racing especially difficult.

Existing works on vision-based autonomous drone rac-
ing generally rely on globally consistent state estimation
and trajectory planning [1]–[5]. Methods of this kind rely
heavily on the quality of visual-inertial odometry, which
is known to be very sensitive during high-speed flight [6].
In contrast, human pilots operate drones purely based on
a video stream from the vehicle’s onboard camera, that
is, by directly mapping visual input to control commands
without performing any explicit state estimation or trajectory
planning. Human pilots can control the drone at its physical
limit while being robust against environmental changes. This
is primarily because they can select task-relevant visual in-
formation effectively [7]. Thus, we ask: how can we develop
deep sensorimotor policies that emulate human pilots?

Several studies [8]–[10] have investigated the effectiveness
of end-to-end sensorimotor policy learning for self-driving
vehicles utilizing a convolutional neural network that directly
outputs the steering angle via the front view image. However,
the challenges in vision-based drone racing are distinct from
those encountered in the aforementioned studies. Unlike au-
tonomous driving, where the agent needs to adapt to different
or unknown environments, the objective of drone racing is
to achieve low lap time in fixed and known environments.
Hence the major challenges in our task are (i) learning
a consistent visual representation and (ii) training a high-
performance control policy.

This work leverages contrastive learning and data aug-
mentation to train a perception network that can extract
useful feature representations from high-dimensional images.
Using contrastive learning, the perception network learns
to focus on useful visual features while ignoring irrelevant
backgrounds. In the drone racing context, the gate is the most

https://youtu.be/AX_fcnW9yqE
http://rpg.ifi.uzh.ch

relevant visual information for the task. Thus, in the feature
space, representations are closely clustered when the robot
is at the same place and widely dispersed when the robot
visits different locations.

Given obtained feature representations, a vision-based
control policy is trained using a privileged learning-by-
cheating framework. Using reinforcement learning (RL), we
first train a privileged state-based policy that can maximize
its progress along the race track. Then, we use imitation
learning to distill its knowledge into a vision-based student
policy that does not rely on privileged state information,
including the ground truth position of the vehicle and its
target gate location.

Our experiments, conducted in a realistic simulator [11],
show that our vision-based deep sensorimotor policy
achieves the same level of racing performance as state-
based policies while being resilient against unseen visual
disturbances and distractors. We benchmark the performance
of our vision-based policy against the time-optimal trajectory
generation algorithm [12], which offers a theoretical mini-
mum time. Our policy achieves lap time close to the time-
optimal solution.

In conclusion, our results, albeit simulation only, suggest
that end-to-end policies represent a promising approach for
vision-based drone racing in challenging scenarios. Further-
more, to enhance the robustness of the vision-based policy,
it is crucial to have consistent feature representations, which
can be obtained by utilizing contrastive learning along with
data augmentation. Contrastive learning enables the network
to learn a representation that emphasizes the similarities
between different image observations. Data augmentation
further enhances this by generating additional training data
with random visual disturbances.

II. RELATED WORK

Different approaches have been studied to tackle au-
tonomous drone racing. State-based methods that rely on
globally accurate position information have been used exten-
sively. Foehn et al. [12] presented the time-optimal trajectory
generation by jointly optimizing the time allocation and the
trajectory. Combining with a model predictive controller,
the algorithm enabled them to outperform human experts in
drone racing. In [13]–[15], authors used RL to train a neural
network as the policy. For example, Song et al. [14] utilized
model-free RL to optimize a neural network policy that maps
ground truth state to control command directly. Nagami et
al. [15] initialized a network by mimicking a simplified
controller and further trained it with RL. The hierarchy
allowed the policy to outperform a trajectory planning policy.
Although promising results can be achieved using state-based
control, the assumption of accurate position information
requires estimating the vehicle state and the gate pose, both
are challenging during high-speed flight.

Prior work on vision-based drone racing decouples the
perception, planning, and control modules. In the work of
Foehn et al. [1], visual-inertial odometry (VIO) was fused
with a CNN-based gate corner detection for robust state

estimation. A receding horizon path planner generates a time-
optimal trajectory using motion primitives based on a point-
mass model of the drone platform. However, the point-mass
assumption cannot represent the true actuation limits of the
drone and may lead to dynamically infeasible trajectories.
In [16]–[18], authors first use data-driven methods to train the
neural networks that can predict the waypoint and the desired
speed. Afterward, a minimum jerk trajectory is planned
for passing through the waypoint and then tracked by a
low-level controller. Muller et al. [19] propose to train a
neural network for local trajectory planning, in which a
downstream control policy is used to track the trajectory
and generate low-level commands for vehicle control. The
trajectory labeling requires additional engineering efforts
and can result in ambiguity as each image can be labeled
with different trajectories. The decoupling of the perception,
planning, and control modules inevitably involves simplified
assumptions and compounding errors, leading to sub-optimal
control performance.

III. METHODOLOGY

An overview of our method is given in Fig. 2. Our
approach consists of two key components: feature represen-
tation learning and policy training.

A. Task Definition

The drone racing problem can be formulated as an op-
timization problem, in which the optimization objective is
to minimize the time for passing through a sequence of
gates [14]. The drone perceives the environment via a single
camera mounted on the nose of the drone and relies on an
inertial measurement unit (IMU) for measuring the vehicle’s
orientation, velocity, and acceleration.

Due to the limited field of view of the camera, the
environment is only partially observable. Our goal is to
develop an autonomous system that can push the vehicle
to its maximum performance while purely relying on the
onboard camera and IMU.

B. Feature Representation Learning

In vision-based drone racing, the algorithm relies solely
on visual feedback from an RGB camera attached to the
drone to perceive the environment. The image captured by
the camera provides crucial task information, including the
target gate pose and the background information, such as
obstacles and landmarks. We use YOLO(v5) [20] as the
backbone to detect the gate since it offers state-of-the-art
performance in object detection and can achieve very fast
inference speed. An average pooling layer is appended to the
YOLO’s detection head to extract low-dimensional features.
To enhance the robustness of the feature extractor and
counteract visual disturbances, we use contrastive learning
and data augmentation.

We use the architecture introduced in [21] for feature
representation learning (Fig. 2). Given an image observation
i, two different augmentations are used to produce two
augmented images iAug and iAug′ . Then, both augmented

Image Observation Image Representation

Concat

Latent Embedding

Temporal Convolutional Network

Action

Vehicle Position

Gate Center Position

Latent Embedding

Action

EMAEMA
Similarity

Orientation

Lin. Velocity

Acceleration

Prev. Action

Vehicle State Observation

Image

Augmented Image

Vehicle State Observation

Feature Representation Learning

Imitate ImitateStudent Policy

Teacher Policy

Freeze

Policy Training

: stop gradient

Policy Head

Fig. 2: Our approach consists of two key components: feature representation learning via contrastive learning and policy
training via learning-by-cheating.

images (iAug and iAug′) are processed by two YOLO fea-
ture extractors (YOLOFeat

ϕ and YOLOFeat
η) to obtain low-

dimensional features (z and z′), which are further processed
via projections Projϕ and Projη to get y and y′ separately.
We then output a prediction of ŷ for image iAug via the
predictor Predϕ. The representation y⋆ is the direct output of
the Projη . Here, sg means stop gradient. A cosine similarity
loss is used to align the representations

Lcos(ϕ) = − < ŷ,y⋆ >

||ŷ||2 · ||y⋆||2
(1)

where < ·, · > denotes dot product between vectors.
Minimizing the loss Lcos(ϕ) is equivalent to maximizing

the mutual information retained between y and y′ [22]. Thus,
YOLOFeat

ϕ learns to extract the representation of gates that
are shared across augmented images and ignore unrelated
information, e.g., distractors. The target network YOLOFeat

η

is updated via an exponential moving average (EMA) of
YOLOFeat

ϕ . After training, YOLOFeat
ϕ is freezed and used as

the feature extractor YOLOFeat in the student policy.

C. Policy Training

Teacher Policy Training: The first step is to obtain a
state-based teacher policy that can push the vehicle to its
maximum racing performance. We use RL to train a multi-
layer perceptron (MLP) policy πteacher for passing through a
sequence of gates in minimum time [14]. The teacher policy
has access to all ground truth information, including the gate
state Gt, the vehicle position pt, and other vehicle states ot

which includes orientation, linear velocity, acceleration, and
previous action. Here, the gate state Gt contains the next
two gate center positions g1

t and g2
t . We separate position

pt from other states ot for the brevity of notation; because
the student policy introduced in the following section does

not have the position pt information. The policy maps the
ground truth states directly to control command in the form
of mass-normalized collective thrust and angular velocity:
πteacher(Gt,pt,ot) = āt, where āt = (f̄t, ω̄t), f̄t is the
mass normalized thrust, and ω̄t = (ω̄x

t , ω̄
y
t , ω̄

z
t) is the angular

velocity.

The main objective in drone racing is to minimize lap
time, which is equivalent to maximizing the path progress
toward the target gate center. Similar to [14], at each sim-
ulation time step t, the agent receives a progress reward
defined as rprog

t = ∥g1
t − pt−1∥2 − ∥g1

t − pt∥2 − λ∥ωt∥2,
where pt and pt−1 are the vehicle positions at the current
and previous time steps, respectively. Here, λ∥ωt∥2 is a
penalty on the bodyrate multiplied by a coefficient λ. In
addition, we maximize a perception-aware reward rpercep

t =
exp

(
−(u2 + v2 + u̇2 + v̇2)

)
to maximize the visibility of

the next gate, where (u, v) and (u̇, v̇) are the pixel posi-
tion and pixel velocity of the target gate center gt in the
image plane of the camera. The perception-aware reward
incentivizes the policy to face the camera toward the target
gate and hence reduce motion blur [23], which is crucial for
vision-based flight. The full reward is rt = rprog

t + a · rpercep
t ,

where a is a coefficient that trades off between progress
maximization and perception-awareness.

Student Policy Training: We use imitation learning
to distill the teacher’s knowledge πteacher(Gt,pt,ot) into
a student policy πstudent(I

H
t ,OH

t |θ) parameterized by θ,
where IH

t = (it−H+1, · · · , it) indicates history images and
OH

t = (ot−H+1, · · · ,ot) represents history vehicle states.
The teacher policy provides strong supervision on the action
that the student policy should output in each state it visits,
hence reducing the sample complexity. While the teacher
policy uses privileged information about vehicle position and

Fig. 3: Data augmentations used for training. Left: none. Middle: random convolution. Right: random cutout-color.

gate position, the student policy can only observe the drone
state ot and needs to infer other information, such as gates,
from history image and state observations: (IH

t ,OH
t) →

(Gt,pt). The feature extractor YOLOFeat extracts an image
representation zt from the image observation it.

When using a single camera, the environment becomes
only partially observable. Hence, we use a temporal convo-
lutional network (TCN) [24] for the policy representation.
The image representations ZH

t = (zt−H+1, · · · , zt) are
concatenated with the state observations OH

t . The sequence
of concatenated embeddings is then fed into the TCN to
extract temporal information from history observations. Fi-
nally, we use a MLP as the policy head to regress the control
command. The MLP takes the output of the TCN as input
and produces the student policy’s action at. The imitation
learning loss LA is defined as the mean square error between
the outputs of the teacher policy and the student policy:

LA(θ) = ||πstudent(I
H
t ,OH

t |θ)− πteacher(Gt,pt,ot)||2 (2)

In addition, to achieve faster convergence [25], we include
a latent loss LE to supervise the output of the TCN et with
the intermediate representation of the teacher ēt, written as
LE(θ) = ||et − ēt||2. Therefore, we minimize the total loss
L = LA(θ) + λELE(θ) for the imitation learning, where
λE is a coefficient to weight the latent loss.

IV. EXPERIMENTS

A. Experimental Setup

Simulator Environment: We conduct experiments using
the Flightmare [11] simulator, a realistic quadrotor simulator
with various racing tracks and realistic racing environments.
We set up three different race tracks (Circle, Figure8, and
SplitS) in a warehouse environment (see the visualization in
Fig. 3 left). For training the teacher policy, we use a cus-
tomized implementation of the proximal policy optimization
algorithm (PPO) [26] based on the code from [27]. We set the
reward coefficients λ = 0.01 and a = 0.15. For training the
student policy, we implement an imitation learning pipeline.
We use the history length H = 8 and the coefficient λE =
0.1. For learning robust feature representations from raw
images, we use data augmentation with random convolution
and random cutout-color (see Fig. 3 middle and right).

Evaluation: To evaluate our policy, we rollout for 10
episodes for each setting, with quadrotor starting from dif-
ferent starting positions, which are sampled from a uniform
distribution between -0.1m and 0.1m in x, y, z-axis of

each. We evaluate the performance of our policy using two
different metrics: Lap Time and Success Rate. The lap time
indicates the racing performance of our policy, while the
success rate shows the robustness of the policy. We report
the lap time by computing the time required by the policy
to finish one complete track and calculate the success rate
by calculating the ratio that the quadrotor can successfully
finish one full lap without crashing among the ten rollouts.
The evaluation is done on a Ubuntu 20.04 machine with i7-
10750H and RTX-2060 Mobile where a forward pass of our
student policy takes 10ms.

B. Baseline Comparisons

To evaluate the performance of our vision-based policy,
we compare our method against two baselines: a state-
based policy obtained via RL [14] and a time-optimal tra-
jectory [12]. The state-based policy controls the drone using
ground truth information about its state, including position,
velocity, orientation, and acceleration, as well as the pose
of the next two gates. The time-optimal trajectory serves
as the theoretical minimum bound for our platform. On the
other hand, our student policy uses only the camera and
IMU to perceive the environment and control the drone.
As a result, it can only observe the environment partially,
similar to how human pilots control the drone using the
first-person-view camera. Despite this limitation, our policy
achieves strong performance on three different race tracks
with high success rates, as shown in the results in Table I.
Note that the reason for the student policy to achieve even
lower lap time than the teacher policy is due to action errors,
leading to risky behaviors such as cutting corners and smaller
distance margins to the gate center. Nevertheless, our vision-
based policies achieve state-of-the-art racing performance.
Visualization of the trajectories of vision-based policies on
three race tracks is shown in Table I

C. Handling Unseen Visual Disturbances

We test the robustness of our vision-based system in
various unseen scenarios to investigate how it performs
given unseen visual disturbances, such as color changes and
brightness changes. Specifically, we darken the environment
by lowering the brightness value from 1 to 0.8 and 0.5, and
we also change environment colors by tuning the image hue
value from 0 to both 0.5 and -0.5. Fig. 1 left and middle-
left provide examples of environments with brightness values
of 0.5 and hue values of 0.5, respectively. In addition, we
also add visual distractors randomly in the environment.

TABLE I: Racing performance of different algorithms, including the time-optimal trajectory, state-based teacher policy, and
vision-based student policy on three different race tracks.

Circle Track Figure8 Track SplitS Track

Lap Time [s]
Circle Figure8 SplitS

Time-optimal Trajectory [12] 4.68 6.26 7.93
State-based Policy [14] 4.97±0.01 6.84±0.05 8.74±0.01

Vision-based Policy (ours) 4.95±0.01 6.76±0.01 8.58±0.01

For example, in Fig. 1 middle-right, we place multiple blue
boxes randomly in the environment; and in Fig. 1 right, we
instead add random objects that have irregular shapes in the
environment.

Table II and Table III present the results of our compre-
hensive robustness study. Table II demonstrates the effective-
ness of our system against visual disturbances. Our system
maintains high success rates and fast lap times across all
three racing tracks. However, we observed a slight decline
in success rate on the challenging SplitS track when the
number of boxes exceeded 60, dropping from 100% to
90%. Additionally, when we introduced 60 different ran-
dom objects, our policy experienced failure in the Figure8
race track. Nonetheless, our policy demonstrated robustness
against disturbances that are not experienced during training.
In comparison, when using naive data augmentation, the
success rate drops significantly on all three tracks as shown
in Table III.

The key to having robust racing performance in the face
of visual disturbances is to align the image representations,
namely, image features extracted from the camera obser-
vations should be consistent across different scenarios. In
Fig. 4, we present the qualitative results of image embed-
dings with contrastive learning and naive data augmentation.
For each race track, we collect a trajectory of images by
rolling out the teacher policy.

For visualization purposes, we extract the image repre-
sentations with YOLOFeat

ϕ and reduce the representations to
2-dimension with t-distributed stochastic neighbor represen-
tation (t-SNE) [28]. We can observe that the image features
are well-aligned between training and evaluation when using
contrastive learning to learn feature representations. During
training, we use contrastive learning in which the similarity
loss ensures that the feature extractor YOLOFeat

ϕ learns the
invariance between the two augmented images. As a result,
the image representations among randomly augmented im-
ages are aligned in the image representation space. Thus, the

image representations with visual disturbances are consistent
with the representations of augmented images. It ensures that
the TCN receives consistent image features from the feature
extractor YOLOFeat when visual disturbances are present.
Thus, our policy can maintain a high success rate under
different disturbances (Table II). In comparison, there are
significant deviations between image features during training
and evaluation if we use naive data augmentation in feature
representation learning. In this case, TCN gets significantly
different image representations when visual disturbances
appear. The policy fails to adapt to the disturbances and
achieves 0 success rate.

D. Handling State Noise

For the observability of the system, our policy must rely
on part of the drone state, including the orientation, linear
velocity, and acceleration. The state information can be
estimated using measurements from onboard sensors, such as
IMUs, which are usually noisy. Hence, we further investigate
the robustness of our policy against the state noise by adding
Gaussian noise N (0, σn) individually to each component of
the states, where σn is the standard deviation. Table IV shows
the result. We can observe that our policy maintains a high
success rate when the noise is small. The success rate on
the most challenging SplitS track starts decreasing as we
increase the standard deviation.

E. Understanding Network Attention

A fundamental question in representation learning is which
features does the perception network learn? We visualize
the attention map of the feature extractor YOLOFeat with
Eigen-CAM [29] to investigate the perception module of
our policy. Eigen-CAM provides interpretability of YOLOFeat

by computing and visualizing the principle components of
the learned image features from the convolutional layers.
Our study suggests that different data augmentation allows
YOLOFeat to learn different network attentions.

TABLE II: Success rate and lap time of our vision-based policy when facing different visual disturbances.

Lap Time [s] Success Rate
Circle Figure8 SplitS Circle Figure8 SplitS

Brightness Change 0.5 4.88±0.01 6.71±0.01 8.60±0.01 1.0 0.8 1.0
0.8 4.91±0.02 6.68±0.01 8.65±0.01 1.0 1.0 1.0

Hue Change -0.5 4.91±0.01 6.72±0.03 8.66±0.01 1.0 1.0 1.0
0.5 4.92±0.02 6.71±0.01 8.65±0.01 1.0 1.0 1.0

Blue Boxes 10 4.94±0.01 6.87±0.01 8.64±0.01 1.0 1.0 1.0
60 4.90±0.02 6.77±0.01 8.73±0.01 1.0 1.0 0.9

Random Objects 10 4.94±0.02 6.75±0.02 8.67±0.01 1.0 1.0 1.0
60 4.91±0.02 6.81±0.03 8.67±0.01 1.0 0.6 1.0

TABLE III: Success rate comparison between using contrastive learning and naive data augmentation for feature represen-
tation learning.

Contrastive Learning Naive Data Augmentation
Cricle Figure8 SplitS Cricle Figure8 SplitS

Brightness Change 0.5 1.0 0.8 1.0 0.0 0.0 0.0
Hue Change 0.5 1.0 1.0 1.0 0.0 0.0 0.0
Blue Boxes 60 1.0 1.0 0.9 0.0 0.0 0.0

Random Objects 60 1.0 0.6 1.0 0.0 0.0 0.0

Contrastive Learning Naive Data Augmentation
Cricle Figure8 SplitS Cricle Figure8 SplitS

Brightness Change

Hue Change

Blue Boxes

Random Objects

Fig. 4: A comparison of time-lapse t-SNE visualization of image representations by using contrastive learning and naive
data augmentation. The blue and orange trajectories refer to the image representations of training augmentations and test
disturbances, respectively.

Fig. 5 shows the applied random convolution during
training and the attention of YOLOFeat during evaluation.
Applying random convolution on the entire raw image allows
changing the visual appearance of the image while retaining
the shape information, e.g., edges. As a result, YOLOFeat

learns to focus on both the gate and the background, which
explains why the policy is robust against the change of the
hue value and brightness.

Fig. 6 shows the applied random cutout-color during
training and the attention of YOLOFeat during evaluation.
During training, we randomly mask a large portion of the
environment background, except the gates. As a result,
YOLOFeat learns to focus attention mainly on the gates while
ignoring the background information. Hence, the policy is
robust against the change in the background, such as adding
distractors.

TABLE IV: Success rates of the student policy when adding
Gaussian noises to the drone states.

Success Rate
State Noise σn Circle Figure8 SplitS

0.04 1.0 1.0 1.0
0.12 1.0 1.0 0.7
0.20 1.0 1.0 0.4
0.28 0.3 0.5 0.0

Circle Figure8 Split-S

Random Convolution

Change Hue

Change Brightness

Fig. 5: Visualization of the attention map of the feature ex-
tractor YOLOFeat, which is trained with contrastive learning
and random convolution. Areas with yellow to red color
indicate medium to high attention while areas in blue suggest
low attention.

Circle Figure8 Split-S

Random Cutout-color

Blue Boxes

Random Objects

Fig. 6: Visualization of the attention map of the feature ex-
tractor YOLOFeat, which is trained with contrastive learning
and random cutout-color. Areas with yellow to red color
indicate medium to high attention while areas in blue suggest
low attention.

V. CONCLUSION

This work presented a method to learn deep sensorimo-
tor policies for vision-based autonomous drone racing. We
showed that a vision-based control policy allows predicting
control commands with information extracted from images
without explicitly estimating position information, trajectory
planning, and tracking. The vision-based policy can achieve
the same level of racing performance as the state-of-the-art
state-based policy while being robust against different visual
disturbances and distractors. The key to achieving robust sen-

sorimotor control is to learn well-aligned image embeddings
using contrastive learning and data augmentation.

However, there are some limitations to be mentioned and
to be improved in the future. First, the deep sensorimotor
policy still relies on accurate state measurements, rather than
raw IMU measurements which are more noisy. A potential
solution is to train a neural estimator that estimates the states
from the sequence of image inputs and raw IMU measure-
ments. Besides, the presented sensorimotor policy is both
trained and evaluated with simulation data. The policy relies
on well-aligned features, which can be sensitive to large
distribution shifts, such as changing environments. Future
work can focus on bridging the simulation-to-reality gap.
A promising approach is to apply test-time adaptation [30]
that adapts the vision-based policy to unknown environments.
Another solution is to incorporate foundation models [31]
into the feature extractor to increase its robustness to un-
known environments.

REFERENCES

[1] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, 2021.

[2] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler,
D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter,
et al., “Challenges and implemented technologies used in autonomous
drone racing,” Intelligent Service Robotics, 2019.

[3] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor, “Airsim
drone racing lab,” in NeurIPS 2019 Competition and Demonstration
Track. PMLR, 2020.

[4] L. O. Rojas-Perez and J. Martı́nez-Carranza, “On-board processing
for autonomous drone racing: an overview,” Integration, vol. 80, pp.
46–59, 2021.

[5] C. De Wagter, F. Paredes-Valles, N. Sheth, and G. de Croon, “The
sensing, state-estimation, and control behind the winning entry to the
2019 artificial intelligence robotic racing competition,” Field Robotics,
2022.

[6] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the uzh-fpv drone
racing dataset,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2019.

[7] C. Pfeiffer and D. Scaramuzza, “Human-piloted drone racing: Visual
processing and control,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3467–3474, 2021.

[8] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. Cun, “Off-road
obstacle avoidance through end-to-end learning,” Advances in neural
information processing systems, vol. 18, 2005.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[10] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” arXiv preprint arXiv:1709.07174, 2017.

[11] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[12] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, 2021.

[13] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[14] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” in
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2021.

[15] K. Nagami and M. Schwager, “Hjb-rl: Initializing reinforcement
learning with optimal control policies applied to autonomous drone
racing.” in Robotics: science and systems, 2021.

[16] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: Learning agile flight in dynamic
environments,” in Conference on Robot Learning. PMLR, 2018, pp.
133–145.

[17] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep drone racing: From simulation to reality
with domain randomization,” IEEE Trans. Robotics, vol. 36, no. 1, pp.
1–14, 2019.

[18] T. Wang and D. E. Chang, “Robust navigation for racing drones based
on imitation learning and modularization,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
13 724–13 730.

[19] M. Muller, G. Li, V. Casser, N. Smith, D. L. Michels, and B. Ghanem,
“Learning a controller fusion network by online trajectory filtering for
vision-based uav racing,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–
0.

[20] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012,
Y. Kwon, TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V,
D. Montes, J. Nadar, Laughing, tkianai, yxNONG, P. Skalski,
Z. Wang, A. Hogan, C. Fati, L. Mammana, AlexWang1900, D. Patel,
D. Yiwei, F. You, J. Hajek, L. Diaconu, and M. T. Minh,
“ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and
OpenVINO Export and Inference,” Feb. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6222936

[21] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Ghesh-
laghi Azar, et al., “Bootstrap your own latent-a new approach to
self-supervised learning,” Advances in neural information processing
systems, vol. 33, pp. 21 271–21 284, 2020.

[22] N. Hansen and X. Wang, “Generalization in reinforcement learning by

soft data augmentation,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 13 611–13 617.

[23] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). IEEE, 2018, pp. 1–8.

[24] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[25] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation:
A survey,” International Journal of Computer Vision, vol. 129, pp.
1789–1819, 2021.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[27] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/
v22/20-1364.html

[28] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[29] M. B. Muhammad and M. Yeasin, “Eigen-cam: Class activation map
using principal components,” in 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020, pp. 1–7.

[30] J. Liang, R. He, and T. Tan, “A comprehensive survey on test-time
adaptation under distribution shifts,” arXiv preprint arXiv:2303.15361,
2023.

[31] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

https://doi.org/10.5281/zenodo.6222936
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Task Definition
	Feature Representation Learning
	Policy Training

	EXPERIMENTS
	Experimental Setup
	Baseline Comparisons
	Handling Unseen Visual Disturbances
	Handling State Noise
	Understanding Network Attention

	CONCLUSION
	References

