AutoTune: Controller Tuning for High-Speed Flight

Antonio Loquercio*, Alessandro Saviolo*, and Davide Scaramuzza

Fig. 1: A quadrotor flies a time-optimal trajectory with top speeds of 15ms~'. We automatically find a controller configuration that can
fly such a high-speed maneuver with a novel sampling-based method called AutoTune. To get a better sense of the speed achieved by the

quadrotor, please watch the supplementary movie.

Abstract— Due to noisy actuation and external disturbances,
tuning controllers for high-speed flight is very challenging. In
this paper, we ask the following questions: How sensitive are
controllers to tuning when tracking high-speed maneuvers?
What algorithms can we use to automatically tune them? To
answer the first question, we study the relationship between
parameters and performance and find out that the faster
the maneuver, the more sensitive a controller becomes to
its parameters. To answer the second question, we review
existing methods for controller tuning and discover that prior
works often perform poorly on the task of high-speed flight.
Therefore, we propose AutoTune, a sampling-based tuning
algorithm specifically tailored to high-speed flight. In contrast
to previous work, our algorithm does not assume any prior
knowledge of the drone or its optimization function and can
deal with the multi-modal characteristics of the parameters’
optimization space. We thoroughly evaluate AutoTune both
in simulation and in the physical world. In our experiments,
we outperform existing tuning algorithms by up to 90% in
trajectory completion. The resulting controllers are tested in
the AirSim Game of Drones competition, where we outperform
the winner by up to 25% in lap-time. Finally, we show that
AutoTune improves tracking error when flying a physical
platform with respect to parameters tuned by a human expert.

SUPPLEMENTARY MATERIAL

A video showing qualitative results in the real world
is available at https://youtu.be/Y__1fYkW3-8. Code can be
found at https://github.com/uzh-rpg/mh_autotune.

I. INTRODUCTION

Flying high-speed trajectories with a quadrotor requires
the platform’s controller to be meticulously tuned. The

*The first two authors contributed equally. A. Loquercio and D. Scara-
muzza are with the University of Zurich, Switzerland (http://rpg.ifi.uzh.ch).
A. Saviolo is with the University of Padua, Italy. This work was supported by
the National Centre of Competence in Research (NCCR) Robotics through
the Swiss National Science Foundation (SNSF) and the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 864042).

100,0
90,00
80,00
70,00
60,00
50,00
40,00
30,00
20,00
10,00

0,000

Fig. 2: Trajectory completion (%) as a function of two parameters
of a model-predictive controller. The high speed and high angular
accelerations required by time-optimal trajectories make the con-
troller extremely sensitive to its parameters.

complex relationship between parameters and performance,
empirically shown in Fig. 2] is caused by unavoidable factors
such as noisy actuation, imperfect modeling, and external
disturbances. This work is motivated by the following ques-
tions: What are the characteristics of this optimization space?
How can we automatically find controller parameters for
high-speed flight?

Tuning controller parameters to fly high-speed maneuvers
is difficult due to three main challenges: (i) the objective
function (i.e. the relationship between controller parameters
and performance) is highly non-convex (See Fig. [2); (ii)
the tuning process only relies on noisy evaluationg'| of
the objective function at adaptively chosen parameters, but
not to the function itself or its gradients; (iii) different
parts of the trajectory, e.g. a sharp turn or a straight-line
acceleration, generally require different controller behaviors,
hence dynamically changing parameters.

The traditional approach for automatic tuning and adaptive

'Due to noise the same controller parameters can yield different perfor-
mance on multiple runs.

https://youtu.be/Y__1fYkW3-8
https://github.com/uzh-rpg/mh_autotune

control, generally known as MIT rule [1], requires to express
the desired performance metric, €.g. the average tracking
error over the entire maneuver, as a quadratic function of
controller parameters, and then optimizes the controller with
gradient-based optimization [2], [3], [4]. However, express-
ing the long-term performance on a high-speed maneuver
with respect to the parameters of a receding horizon con-
troller (i.e. the optimization function depicted in Fig. [2)) is
generally intractable. Indeed, it requires to know a priori the
exact model of the quadrotor and the disturbances acting on it
during flight, e.g. noisy actuation and aerodynamic effects.
Instead of analytically computing it, another line of work
proposes to iteratively estimate the optimization function,
and use the estimate to find optimal parameters [5], [6], [7].
However, these methods make over-simplifying assumptions
on the objective function, e.g. convexity or relative Gaussian-
ity between observations. Such assumptions are generally not
suited for controller tuning to high-speed flight, where the
function is highly non-convex (c.f. Fig. [J). To remove any
assumption, model-free methods propose to directly search
for optimal parameters using sampling. Such methods are
however built on heuristics not necessarily suited to high-
speed flight and generally require thousands of iterations to
converge [8].

In this paper, we propose a novel sampling-based algo-
rithm specifically tailored to the problem of high-speed flight,
rooted in statistical theory: AutoTune. Given an initial, low-
performance controller, AutoTune optimizes its parameters
to maximize a user-defined metric, e.g. track completion. In
contrast to traditional adaptive control, e.g. the MIT rule,
it does not require to analytically express the optimiza-
tion function with respect to the controller parameters, nor
assumptions about the optimization function. Similarly to
model-free sampling-based methods, AutoTune does neither
require prior knowledge of the platform model and external
disturbances. However, to make sampling computationally
tractable, our approach uses Metropolis-Hastings sampling
(M-H) [9] and several strategies specifically tailored to
the problem of high-speed flight. Specifically, motivated by
the observation that different parts of a trajectory require
different controller behaviors, we propose a strategy to break
down a trajectory into components with different behaviors,
e.g. sharp descent or planar acceleration. Despite controller
parameters being different for each component, they are
all optimized jointly to favor optimality over the entire
trajectory. In addition, to speed up convergence, we train
a regressor to predict good initialization parameters.

We perform an extensive evaluation in two simulators and
in the physical world. In these experiments, we find out
two interesting characteristics of the relationship between
controller parameters and flight performance during high-
speed flight: (i) the faster a maneuver is, the more sen-
sitive a controller becomes to its parameters, and (ii) the
optimization function is multi-modal, i.e. multiple controller
configurations lead to the desired performance. We empir-
ically show that our approach can tune controllers up to
90 percentage points better than previous work in terms of

trajectory completion. In the 2019 AirSim Game of Drones
competition [10], our approach decreases lap-time by up
to 25% with respect to the winner. We then validate the
controller parameters found by AutoTune in simulation on a
physical platform. These parameters decrease the tracking
error with respect to the ones tuned by a human expert.
Overall, our work makes the following contributions:

We present a novel sampling-based method for tuning
quadrotor controllers on the task of high-speed flight.
We show that our method outperforms existing methods
for automatic controller tuning and enables quadrotors
to fly time-optimal trajectories both in simulation and
in the physical world.

We provide interesting insights into the relationship
between the parameters of a receding horizon controller
and its flight performance on high-speed maneuvers.

II. RELATED WORK

The simplest option available to robotic researchers for
controller tuning is to use domain knowledge, i.e. experience,
to tune controllers’ parameters. However, tuning by hand
often translates in a tedious and time-consuming trial-and-
error process, difficult even for the simplest maneuvers.
Besides, human intuition often provides an inherent bias to
the experiments, which results in sub-optimal performance
and calls for a more principled parameter tuning approach.

In line with adaptive control, the classic approach for
controller tuning analytically finds the relationship between
a performance metric, €.g. tracking error or trajectory com-
pletion, and optimizes the parameters with gradient-based
optimization [1], [2], [3], [4]. However, doing so requires
to analytically derive the performance of a receding-horizon
controller over a possibly long maneuver, which is in-
tractable given the model errors, the noisy actuation, and
other perturbations possibly acting on the platform during
flight, e.g. aerodynamics effects. Approximating these effects
numerically is possible for short maneuvers [11], [12], [13],
but the more complex the maneuver or the system is,
the more difficult the identification becomes, making these
methods impractical for tuning controllers to fly time-optimal
maneuvers.

Motivated by this difficulty, another family of approaches
estimates the relationship between the controller’s perfor-
mance and its parameters directly from data [14], [6], [S].
Through multiple experiments, both the estimate and the
parameters are iteratively updated. However, doing so re-
quires making additional assumptions on the shape of the
function. The assumptions commonly used in the literature
are: (i) relative normality between all observations according
to some pre-defined kernel, as in Bayesian Optimization [6],
[14], [7], and (ii) the function can be described by a
parametric distribution, e.g. a Gaussian, as typical in inverse
optimal control [5]. When the relationship between param-
eters and performance is very complex, as it is the case
for time-optimal trajectories, these assumptions generally
cause a poor fitting of the function, which results in sub-
optimal tuning performance. If demonstrations by a human

expert are available, another option consists of using inverse
reinforcement learning [15], but this is generally not the case
with time-optimal trajectories, which can be faster than the
trajectories flown by the best human pilots [16].

To relax the assumptions required by the previous meth-
ods, another family of algorithms proposes to directly search
for the optimal controller parameters by sampling. The
main advantage of these algorithms is that they can deal
with highly non-convex functions, like the one between
parameters and performance in time-optimal trajectories.
However, these algorithms generally define the sampling
distribution through heuristics [8]. Building such heuristics
to properly fit the problem while minimizing the number of
sampling iterations is a major challenge in itself, which lim-
ited the success of these methods in quadrotors applications
to relatively simple problems, e.g. hovering [17]. Instead
of heuristically defining the proposal distribution, we use
Metropolis-Hastings [9] to sample the controller parameters.
In addition, we propose a strategy specifically tailored to the
problem of high-speed flight to reduce the sample complexity
of the approach.

III. PRELIMINARIES AND OVERVIEW

We define the task of high-speed flight through a series
of waypoints as finding a policy minimizing the following
cost:

minJ()=E ¢y[t()];)
subject to ku[k]k uc 2)
slk + 1] = f(s[k]; Bulk]); (3

where s[k] is the quadrotor’s state at time K, u[K] is the
input, () is the distribution of possible trajectories induced
by the controller , and t() is the time required to fly
through all waypoints. The solution of Eq. is a policy
that minimizes the time to pass through all waypoints by
respecting the platform dynamics (Eq. (3)) and actuation
constraints (Eq. (2)). Given the series of waypoints and the
platform’s specifics, we approximate a solution to Eq. (T)
with non-convex optimization [16], and then track the re-
sulting trajectory 7, with a receding-horizon controller.
Analytical controllers, e.g. the Linear Quadratic Regulator
(LQR), aim to solve the tracking problem directly. However,
they disregard the platform dynamics and actuation con-
straints, resulting in poor controller performance when the
system operates close to its physical limits [18]. Therefore,
model predictive controllers (MPC) propose to solve a finite
horizon version of the tracking problem in a receding horizon

fashion: .
ot #
(x[to]) = min x[k]” @Qx[k] + u[k]" Rulk] (4)
k=t0
subject to Ku[K]k uc

x[k + 1] = f(x[k]; Bu[k]);

where X[K] = 7([K] s[K] denotes the difference between
the state of the platform and the corresponding reference

at time Kk, @ and R are the state and input cost matrices,
and ty is the horizon length, generally much smaller than
the entire trajectory duration t. In contrast to the LQR, the
platform constraints and dynamics are directly taken into
account by the controller. This approach, however, requires
to tune the controller parameters @, R, and tn to minimize
a user-defined metric, e.g. the tracking error, over the entire
trajectory ﬂ Tuning these parameters is challenging since it
is not possible to analytically find the relationship between
them and the long-horizon cost, as required for example
by the traditional MIT rule [1]. This difficulty arises from
the fact that the available model f is generally inaccurate
and does not represent noise in the actuation and other
disturbances, e.g. drag.

Since time-optimal trajectories push quadrotors to their
physical limits, we track them with an MPC controller and
tune the controller parameters through a specifically designed
sampling-based technique. To improve performance, we pro-
pose a strategy to split a trajectory into parts that require
different controller behavior, hence different parameters. The
parameters are optimized jointly to favor global optimization.
Additionally, we initialize the search from a good guess of
parameters to reduce sampling time. These parameters are
predicted by a regressor trained on previously optimized
tracks. Fig. [3| shows a summary of the proposed approach
to tune controllers for high-speed flight. The next section
presents each aspect of our method in detail.

IV. METHOD
A. Metropolis-Hastings Sampling

In statistics, the Metropolis-Hastings (M-H) algorithm [19]
is used to obtain a sequence of random samples from a
desired distribution P (W) which can’t be directly accessed.
To generate the samples, the M-H algorithm requires a
score function d(w) which is proportional to the density
P (w). Samples are produced in an iterative fashion: the next
sample W41 comes from a distribution t(Wg+1jwe), referred
to as transition model, which only depends on the current
sample W¢. The transition model t(We+1jwe) is generally
a parametric distribution, e.g. a Gaussian. The next sample
Wi+1 is then accepted and used for the next iteration, or it is
rejected, discarded, and the current sample Wy is re-used for
the next iteration. Specifically, the sample is accepted with
probability equal to
= min(L; d(Wt+1)) = min(L: P (Wt+1)
d(wy) P (W)
Therefore, M-H always accepts a sample with a higher score.
However, the move to a sample with a smaller score will
sometimes be rejected, and the higher the drop in score 1,
the smaller the probability of acceptance. Therefore, many
samples come from the high-density regions of P (w), while
relatively few from the low-density regions. Intuitively, this
is why the empirical sample distribution If’\(w) approximates
the target distribution P (w).

4

2Parameters are equivalent up to scale. To account for this effect, we keep
the cost on inputs R constant

	Introduction
	Related work
	Preliminaries and Overview
	Method
	Metropolis-Hastings Sampling
	Scoring Performance with Time
	Trajectory Segmentation
	Sampler Initialization

	Experiments
	Experimental Setup
	Tracking Minimum-Time Trajectories
	Application in the Real World
	Robustness to Changes in Mass, Velocity, and Track Layout
	Robustness to Initial Conditions
	Ablation Studies

	Discussion and Conclusions
	References
	Supplementary
	Tracks
	Training Data and Feature Selection
	Implementation Choices

