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Tightly-coupled Fusion of Global Positional Measurements
in Optimization-based Visual-Inertial Odometry

Giovanni Cioffi, Davide Scaramuzza

Abstract— Motivated by the goal of achieving robust, drift-
free pose estimation in long-term autonomous navigation, in
this work we propose a methodology to fuse global posi-
tional information with visual and inertial measurements in a
tightly-coupled nonlinear-optimization–based estimator. Differ-
ently from previous works, which are loosely-coupled, the use
of a tightly-coupled approach allows exploiting the correlations
amongst all the measurements. A sliding window of the most
recent system states is estimated by minimizing a cost function
that includes visual re-projection errors, relative inertial errors,
and global positional residuals. We use IMU preintegration
to formulate the inertial residuals and leverage the outcome
of such algorithm to efficiently compute the global position
residuals. The experimental results show that the proposed
method achieves accurate and globally consistent estimates,
with negligible increase of the optimization computational cost.
Our method consistently outperforms the loosely-coupled fusion
approach. The mean position error is reduced up to 50% with
respect to the loosely-coupled approach in outdoor Unmanned
Aerial Vehicle (UAV) flights, where the global position infor-
mation is given by noisy GPS measurements. To the best of
our knowledge, this is the first work where global positional
measurements are tightly fused in an optimization-based visual-
inertial odometry algorithm, leveraging the IMU preintegration
method to define the global positional factors.

I. INTRODUCTION

In order to achieve accurate and globally consistent pose
estimates in autonomous robot navigation, different sen-
sors are required. In recent years, many algorithms have
been proposed, which use visual and inertial information
to achieve accurate and high-rate pose estimates [1], [2].
However, such algorithms accumulate drift over time due
to sensor noise and modeling errors, and are not suit-
able for long-term navigation. As a consequence, global
measurements are needed to achieve accurate estimates for
long trajectories since their errors do not depend on the
distance travelled. They can be used together with visual and
inertial measurements to achieve high-rate, both locally and
globally consistent estimates. The Global Positioning System
(GPS) is an example of global position measurements widely
used for localization in outdoor applications. However, GPS
measurements are noisy and not reliable to be used as the
only sensor modality for accurate localization. More accurate
GPS systems, such as differential GPS, are possible but they
require the availability of ground stations which limits the
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Fig. 1. Representation of the proposed optimization-based multi-sensor
fusion. We distinguish three types of factors: visual (orange), inertial (blue),
and global positional factors (green). The optimization variables are the
states of the keyframes in the current sliding window and the visible
landmarks. In the bottom part of the figure, IMU measurements are depicted
with crosses on the temporal line, while keyframes and global positional
measurements are depicted with black and green arrows, respectively.

number of use cases.
Global position measurements were first fused with Visual-
Inertial Odometry (VIO) estimates in a pose-graph optimiza-
tion in [3] and [4]. However, such systems were loosely-
coupled, meaning that the relative pose updates were esti-
mated by the VIO algorithm independently of the global
position information and only then aligned to the global
frame via pose-graph optimization. In this way, the correla-
tions amongst all the sensor measurements are automatically
discarded resulting in sub-optimal results.

In this work we propose an optimization-based tightly-
coupled approach to fuse visual, inertial, and global position
measurements. The global position measurements are used
to define new factors in the optimization graph as depicted
in Fig. 1. We define a keyframe-based sliding-window op-
timization as proposed in [5], where the main difference
with respect to [5] is the addition of the global position
factors, since the number of states in the optimization
does not change. These new error terms can be efficiently
computed using the IMU preintegration algorithm [6], [7].
We take advantage of the IMU preintegrated terms, already
computed to define the inertial error between consecutive
keyframes, to create the constraints between the position
of the keyframes in the sliding window and the global
position measurements. We show in Section IV that, thanks
to the proposed formulation of the global error terms, the
increase of the computational time needed to compute and
minimize the new cost function is negligible compared to
the visual-inertial case. Another important question for the
multi-sensors fusion problem addressed in this work is how
the number of global positional factors affects the estimates.



In Section IV, we run experiments for different numbers
of global position measurements included in the estimation
process.
In all experiments, we compare our tightly-coupled approach
to a loosely-coupled based on the method proposed in [3].
The results validate our method and show that our approach
can be a step towards the target of achieving high-rate
locally and globally consistent pose estimates in long-range
navigation. To the best of our knowledge, this is the first work
that proposes a tightly-coupled approach to fuse global with
visual and inertial measurements in an optimization-based
algorithm, using the IMU preintegration method to efficiently
derive the global positional error terms.

The paper is structured as following: Section I-A contains
recent work on algorithms for visual, inertial and global
measurements fusion. Section II shows our formulation of the
sliding-window optimization problem. Section III introduces
the IMU preintegration algorithm and shows how it can be
used to derive the global positional residuals. Section IV
contains experiments and discussions. Section V concludes
the paper.

A. Related Work

Two major approaches can be found in the literature
to address the visual, inertial, and global position fusion
problem: filtering methods and smoothing methods.

Filtering methods: Filtering methods carry out efficient
estimation by only updating the latest state. Many filter-based
approaches involving visual and inertial measurements are
inspired by the work in [8], where an Extended Kalman Filter
(EKF) was proposed to perform visual-inertial odometry.
In [9], an EKF was proposed to fuse inertial data, GPS
measurements and vision-based pose estimates. In this case,
the poses estimated by an independent (i.e., loosely-coupled)
visual odometry algorithm were fused with inertial and GPS
measurements in a subsequent estimation step. In [10], the
EKF includes online calibration of IMU-GPS extrinsics and
time offset.

Smoothing methods: Smoothing algorithms are classified
as full- or fixed-lag smoothers. Full-lag smoothers estimate
the complete history of the states. They guarantee the highest
accuracy but incur high computational cost. In [11], it was
proposed to use incremental smoothing technique [12] and
IMU preintegration to reduce the computational cost of the
full-batch optimization. In [13], achieving high accuracy
was prioritized over an online implementation. This work
was subsequently extended in [14] to include an extended
version of the IMU preintegration algorithm, incorporating
gravity and Earth rotation in the IMU model. Fixed-lag
smoothers (or sliding window estimators) estimate a window
of the latest states while marginalizing out the previous
states [5]. This approach is more computational efficient than
full-lag smoothers but less accurate due to accumulation of
linearization errors in the marginalization [15].
In [3], the global position measurements were fused with
poses estimated by a VIO algorithm in a sliding window
pose-graph optimization of the most recent robot states. Sim-

Fig. 2. Reference frames used in this work.

ilarly in [4], an independent VIO algorithm provided pose es-
timates that were successively fused with GPS measurements
in a pose-graph optimization. Differently from [3], in [4]
the pose-graph contains an additional node representing the
origin of the local coordinate frame in order to constrain
the absolute orientation. However, both these approaches
were loosely-coupled, i.e. the relative pose estimates were
provided by an independent VIO algorithm. Differently
from [3], [4], we propose a tightly-coupled approach where
all the measurements are included in a common optimization
problem thus considering the correlations amongst them.
In [5], it was shown that for the visual-inertial case con-
sidering all measurement correlations is crucial for high
precision estimates. In [16], it was proposed a tightly-
coupled sliding window optimization for visual and inertial
measurements with loosely-coupled GPS refinement. The
GPS measurements were assumed to be available at low-rate
and they were given the same time stamp of the temporally
closest image in order to be included in the sliding window.
Differently from [16], we tightly couple the global position
measurements using the IMU preintegration algorithm to
efficiently derive the global positional factors. This allows
to add multiple global factors per keyframe in the sliding
window with negligible extra computational cost.

II. PROBLEM FORMULATION

A. Notation

The coordinate frames used are depicted in Fig. 2. W
represents the world frame. We assume the direction of
the gravity aligned to zw axis. B is the body frame and
corresponds to the IMU frame. The camera frame is denoted
by C. We use the notation (·)w to represent a quantity in the
world frame W . Similar notation applies for every reference
frame. We use pw

bk
and qw

bk
to represent the position and

orientation of B with respect to W at time tk. The rotation
matrix representation is Rw

bk
. The velocity of B expressed

in W at time tk is vw
bk

. Global position measurements are
given by pw

pk
, where P is a point rigidly attached to B by pb

p.
For example, the point P could represent the position of the
receiver antenna in the case of GPS measurements. The value
of pb

p can be obtained from the calibration of the system. The
notation (̂·) is used to represent noisy measurements.

The keyframe-based sliding window optimization vari-
ables are X = {L,XB}, where L comprises the position



of the 3D landmarks visible in the sliding window and
XB = [x1, · · · ,xK ] comprises the system states, with K
the total number of keyframes in the sliding window. The
system state xk at time tk is given by the body position
pw
bk

, the body orientation quaternion qw
bk

, the body velocity
vw
bk

, accelerometer bak
, and gyroscope biases bgk : xk =

[pw
bk
,qw

bk
,vw

bk
,bak

,bgk ].

B. Optimization-based Visual, Inertial, and Global Informa-
tion Fusion

The keyframe-based visual-inertial localization and map-
ping problem is formulated as a joint nonlinear optimization
which solves for the maximum a posteriori estimate of X .
Using the problem formulation as proposed in [5] with some
minor changes, the cost function to minimize is written as

JV I(X ) =

K−1∑
k=0

∑
j∈Jk

∥∥ej,kv

∥∥2
Wj,k

v
+

K−1∑
k=0

∥∥eki ∥∥2Wk
i

+ ‖ep‖2 .

(1)
JV I(X ) contains the weighted visual ev, inertial ei, and
marginalization residuals ep.
The visual residuals are ej,kv = zj,k−h(lwj ), which describe
the re-projection error of the landmark lwj ∈ Jk, where
Jk is the set containing all the visible landmarks from
the keyframe k in the sliding window. The function h(·)
denotes the camera projection model and zj,k the 2D image
measurement. We refer to [5] for additional details. The
inertial residuals ei are formulated using the IMU preinte-
gration algorithm as proposed in [7], [17]. The derivation
of the global positional residuals is inspired by the IMU
preintegration algorithm as we describe in Section III. The
error term ep denotes the prior information obtained from
marginalization. We adopt the marginalization strategy pro-
posed in [5]. Namely, when a new frame is inserted in
the sliding window we distinguish two cases. In the case
the oldest state in the sliding window is not a keyframe,
it is marginalized out and all its landmarks are dropped to
keep sparsity. In the case the oldest state is a keyframe, the
landmarks visible from such frame but not in the most recent
keyframe are also marginalized out.

Global positional residuals are added to (1) to derive the
cost function proposed in this work, as

J(X ) = JV I(X ) +

K−1∑
k=0

∑
j∈Gk

∥∥ej,kg

∥∥2
Wk

g

, (2)

where Gk contains the global positional measurements con-
nected to the state xk by an error term.
Next, we derive the global residual terms ej,kg leveraging the
outcome of the IMU preintegration algorithm and infer the
residual weights Wk

g.

III. DERIVATION OF GLOBAL POSITION RESIDUALS

A. IMU Preintegration

In this section, we review the IMU preintegration al-
gorithm focusing on the derivation of the quantities then
utilized in Section III-B for the formulation of the global

positional residuals. We use the IMU preintegration deriva-
tion proposed in [17], which is based on the continuous-
time quaternion-based formulation in [18] and includes the
manipulation of IMU biases as in [7].
IMU residuals are formulated as relative constraints between
consecutive states using accelerometer ât = at + bat

+
Rt

wg
w + na, and gyroscope ŵt = wt + bwt + nw mea-

surements. The accelerometer and gyroscope additive noises
are modeled as additive Gaussian noise na ∼ N (0, σ2

a · I)
and nw ∼ N (0, σ2

w ·I), where I is the identity matrix. Biases
are modeled as random walks ḃat

= ηba and ḃwt
= ηbw ,

with ηba ∼ N (0, σ2
ba
· I) and ηbw ∼ N (0, σ2

bw
· I).

Given the time interval [tk, tk+1], pw
bk

, vw
bk

, and qw
bk

can be
propagated in such time interval by using the accelerometer
and gyroscope measurements. The propagation in the world
frame requires the knowledge of the initial state. This implies
that every time the estimate of the initial state changes, e.g.
when it is updated in an optimization step, repropagation
is needed. The main benefit of the IMU preintegration
algorithm is to avoid the need of repropagation at every
optimization step, which results in saving of valuable com-
putational resources.
The propagation is executed in the local frame Bk instead
of the world frame as

Rbk
w pw

bk+1
= Rbw

w (pw
bk

+ vw
bk

∆tk −
1

2
gw∆t2k) +αbk

bk+1

Rbk
w vw

bk+1
= Rbk

w (vw
bk
− gw∆tk) + βbk

bk+1

qbk
w ⊗ qw

bk+1
= γbk

bk+1
, (3)

where αbk
bk+1

, βbk
bk+1

, and γbk
bk+1

are the preintegration terms,
which only depend on the inertial measurements as well as
biases.
In the discrete-time case using Euler numerical integration
method, the mean of α, β and γ can be computed recursively
as

α̂bk
i+1 = α̂bk

i + β̂bk
i δt+

1

2
R(γ̂bk

i )(âi − bai)δt
2

β̂bk
i+1 = β̂bk

i + R(γ̂bk
i )(âi − bai

)δt

γ̂bk
i+1 = γ̂bk

i ⊗
[

1
1
2 (ŵi − bwi

)δt

]
, (4)

where αbk
bk

= βbk
bk

= 0 and γbk
bk

is equal to the identity
quaternion. R(γ̂k

j ) is the rotation matrix representation of
γ̂k
j . The covariance Pbk

bk+1
can be also calculated recursively,

we refer to [17] for the derivation.
As proposed in [7], we update αbk

bk+1
,βbk

bk+1
,γbk

bk+1
using

their first-order approximation with respect to the biases if
the change in the estimate of the biases is small. Otherwise,
propagation is redone. The inertial residuals eki are derived
from (3) as

eki =


Rbw

w (pw
bk+1
− pw

bk
− vw

bk
∆tk + 1

2g
w∆t2k)− α̂bk

bk+1

Rbw
w (vw

bk+1
− vw

bk
+ gw∆tk)− β̂bk

bk+1

2[(qw
bk

)−1 ⊗ qw
bk+1
⊗ (γ̂bk

bk+1
)−1]xyz

bak+1
− bak

bwk+1
− bwk

 .
(5)



We leverage the formulation of the position error term in (5)
to derive the global positional residuals as formulated in the
next section.

B. Global Position Residuals

The global positional measurements are given by {pw
pj
}

at time {tj}. We model the measurement uncertainty with
additive Gaussian noise so that

p̂w
pj

= pw
pj

+ np, (6)

where np ∼ N (0, σ2
p · I). Given a state in the current sliding

window xk at time tk and a measurement p̂w
pj

at time tj ∈
[tk, tk+1) the global position residual is defined as

ej,kg = Rbk
w (p̂w

bj − pw
bk
− vw

bk
∆tk +

1

2
gw∆t2k)− α̂bk

bj
, (7)

where the measurement p̂w
pj

is transformed in p̂w
bj

as

p̂w
bj = p̂w

pj
−Rw

bjp
b
p, (8)

with Rw
bj

= Rw
bk
γ̂k
j .

To define the global residuals, the state position is propagated
using inertial measurements in the time interval [tk, tj ]. We
express the error term in (7) in the reference frame Bk

and take advantage of the computation of the preintegration
terms in (4). In fact, α̂bk

bj
can be efficiently obtained during

the recursive calculation of α̂bk
bk+1

, in (4), since tj < tk+1

and imu measurements are buffered in [tk, tk+1]. The same
applies for γ̂k

j . This allows to minimize the computational
time required to include the error term (7) in the cost function
(2). To derive the residual weights Wk

g, we rewrite (7) as

ej,kg =Rbk
w (−pw

bk
− vw

bk
∆tk +

1

2
gw∆t2k)

− α̂bk
bj

+ Rbk
w p̂w

pj
−R(γ̂k

j )pb
p. (9)

In (9), α̂bk
bj

, p̂w
pj

and γ̂k
j are the noisy measurements. The

covariance of γ̂k
j depends on gyroscope noise and bias. Since

gyroscope noise is already considered in the computation
of α̂bk

bj
(the reader can refer to [17] and [7] for additional

details) and it is usually smaller than accelerometer noise,
we omit γ̂k

j in the derivation of Wk
g.

As consequence, the residual weights depend on the covari-
ance of α̂bk

bj
and p̂w

pj
as

Wk
g =α̂ Pbk

bj
+ Rbk

w (σ2
p · I)(Rbk

w )t, (10)

where α̂P
bk
bj

is the top-left 3x3 part of Pbk
bj

. The covariance
Pbk

bj
differs from the covariance of the inertial residuals (i.e.,

Pbk
bk+1

) since it is derived from a sub-set of the inertial
measurements in [tk, tk+1].
When a state connected to global position residuals needs
to be marginalized, the global residuals are transformed in
the prior linear error term together with inertial and visual
residuals.

Sampling Strategy: We define Gk as the set containing the
global position measurements in the time interval [tk, tk+1),
which are connected to the state xk by error term in (7). N

is the cardinality of Gk such that N = |Gk|. Since we use the
recursive formulation of the IMU preintegrated terms in (4)
to compute α̂bk

bj
in (7), increasing N only has a minor affect

on the optimization computational cost. As soon as a new
measurement is available, it is included in Gk and a new
residual (7) is added to the optimization. In Section IV, we
evaluate how different maximum values of N affect the pose
estimates.

IV. EXPERIMENTS

We evaluated our approach on two visual-inertial datasets
with global position measurements: an indoor one (the
EuRoC dataset [19], Section IV-A) and an outdoor one
(from [4], Section IV-B). Since the EuRoC dataset provides
global position measurements from a motion capture system,
we corrupted the motion capture system measurements with
Gaussian noise to simulate noisy global position measure-
ments. The second dataset, instead, provides global position
measurements from a GPS and ground-truth from a total
station.

As a vision front-end, we used the one of SVO [20].
The vision front-end deals with feature detection and track-
ing from images. Features correctly tracked in subsequent
frames are then triangulated and added to the sliding-window
optimization. The vision front-end is also responsible for
the selection of the keyframes. We limited the number of
keyframes in the sliding-window to 10. We used the Ceres
Solver [21] to solve the optimization problem. The vision
front-end and the sliding-window solver run in two separate
threads. All the experiments ran on a laptop equipped with
a 2.60GHz Intel Core i7 CPU.

A. EuRoC Dataset

1) Setup: The EuRoC dataset contains eleven sequences
recorded from a hex-rotor helicopter. Five sequences are
recorded in an industrial machine hall and six in an office
room. The sequences recorded in the industrial hall are
labeled as MH and those in the office room as V . Every
sequence is classified as easy, medium, or hard depending
on illumination conditions, scene texture and vehicle motion.
Hard sequences contain challenging illumination conditions
and fast motion. Hardware synchronized stereo images and
IMU measurements are available at a rate of 20 Hz and 200
Hz, respectively. We ran the experiments in a monocular
setup using only images from the left camera. In every
sequence, a motion capture system was used to record
ground-truth. The ground-truth measurements were corrupted
with zero-mean Gaussian noise to simulate noisy global
position measurements. The Gaussian noise was defined as
nmc ∼ N (0, σ2

mc · I), σmc = 20 cm. The additive Gaussian
noise np in (6) was set equal to nmc. For initialization, we set
the initial position equal to the corresponding noisy motion
capture system measurement.

2) Results: The proposed method was evaluated in terms
of estimated trajectory accuracy and solver time. We used
the trajectory evaluation toolbox in [22] to compute the
evaluation metrics. Each state xk in the optimization window



is connected to N = |Gk| global positional residuals, where
Gk is the set containing the global positional measurements
in the time interval [tk, tk+1). We were interested in how the
cardinality of Gk influences the trajectory estimates and for
the experiments in this section we evaluated |Gk| = [1, 2, 3,
4]. We also included as reference the VIO estimates, in this
case no global residual terms are included in the optimization
and the sliding window cost function is (1).

Accuracy: Table I contains the absolute trajectory error
(ATE) [22], [23] obtained on all the EuRoC sequences. We
included the results for the VIO-only case, i.e. without fusion
of global positional (GP) measurements, the loosely-coupled
approach, and our proposed tightly-coupled approach with N
∈ [1,2,3,4]. For the VIO-only case, the estimated trajectory
is aligned to the ground-truth using the posyaw alignment
method in [22]. When N ≥ 1 (i.e., when GP measurements
are considered), no alignment is applied. Each configuration
was run three times and the ATE median value is reported.
By comparing the VIO-only to the loosely- and tightly-
coupled results, we can see that the ATE decreases when
global positional factors are included in the sliding window.
In our proposed tightly-coupled approach, the residual in (7)
constrains the position estimate at tk to be consistent with the
global positional measurement allowing to reduce the error
that accumulates in the visual-inertial estimates. The largest
improvement between the VIO-only case and the tightly-
coupled approach with N=1 is in sequence MH05, where
the ATE decreases from 0.306 m to 0.056 m. The estimate
accuracy is improved by adding more global residuals per
keyframe (i.e., N>1). Increasing N from 1 to 2 allows
to reduce the ATE in every sequence, with the largest
and smallest improvements in sequence V203 and MH01,
respectively. The average decrease of the ATE for all the
EuRoC sequences is equal to 0.010 m. Increasing N from 2
to 3 improves the ATE in every sequence but the benefit is
smaller than the previous case (i.e., increasing N from 1 to 2).
The average decrease of the ATE on all the EuRoC sequences
is equal to 0.005 m. A further increase of N from 3 to 4 has
a minor effect on the estimate accuracy. The ATE remains
the same for the sequence MH01, MH05, V101, V201, and
V203, and it slightly decreases for other sequences.
In Fig. 3, we show the relative pose error, computed as

proposed in [24], in the sequence V203, which is labeled as
difficult. The top-view of the trajectory is in Fig 4. We see
in the top plot of Fig. 3 that the relative translation error
visibly decreases when global residuals are included in the
estimator. Adding more than one error term per keyframe
(i.e., N > 1) helps improving the estimates. Increasing N
from 1 to 2 reduces the ATE from 0.098 m to 0.074 m as
shown in the bottom line of Table I. The ATE decreases by
0.017 m with further increase of N to 3. Increasing N from
3 to 4 does not provide any improvement.

The rotation error is also decreased by the addition of
the global positional measurements in the sliding window
optimization as shown in the bottom plot of Fig. 3. However,
the effect is smaller compared to the improvement achieved
on the translation error. This result was expected since the

TABLE I
ATE [M] ON THE EUROC SEQUENCES.

Sequence VIO-only
(no GP)

Loosely-
coupled

([3])

Tightly-
coupled

(proposed)
N=1 N=2 N=3 N=4

MH01 0.188 0.081 0.031 0.029 0.022 0.022
MH02 0.140 0.085 0.036 0.032 0.027 0.025
MH03 0.133 0.110 0.048 0.039 0.034 0.033
MH04 0.186 0.119 0.068 0.058 0.051 0.048
MH05 0.306 0.115 0.056 0.044 0.039 0.039
V101 0.061 0.081 0.041 0.036 0.034 0.034
V102 0.103 0.097 0.048 0.042 0.036 0.035
V103 0.179 0.099 0.068 0.050 0.047 0.042
V201 0.065 0.087 0.038 0.027 0.026 0.026
V202 0.103 0.127 0.046 0.038 0.036 0.033
V203 0.232 0.177 0.098 0.074 0.057 0.057

8.0 16.0 25.0 33.0 41.0

Distance traveled [m]

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
sl

at
io

n
er

ro
r

[m
]

VIO(no GP)

N=1

N=2

N=3

N=4

8.0 16.0 25.0 33.0 41.0

Distance traveled [m]

0

2

4

6

8

10

R
ot

er
ro

r
[d

eg
]

Fig. 3. Relative translation and rotation error in EuRoC V203 difficult. Each
plot contains evaluation for different values of N = |Gk| as well as VIO-only
estimates, i.e. global positional (GP) measurements are not included in the
estimation process.

estimator has only access to global positional information
(i.e., no global orientation).

Timing: Increasing the value of N only slightly affects
the processing time. The processing time was defined as the
duration between the time at which the front-end receives
an image and the time at which its optimized pose is
available from the sliding window optimization. In Fig. 5,
we evaluate how the processing time varies with respect to
N and compare to the VIO-only case. The median is 26.2 ms
for the VIO-only case and 27.7 ms for N = 1. The increase of
just 1.5 ms shows that the formulation of the global residuals
in (7) allows to efficiently include new measurements in the
sliding window optimization. As observed in Fig. 5, adding
more residual terms has a very negligible impact on the
processing time.
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Fig. 4. Trajectory top-view of the sequence V203 difficult. The two
zoomed-in sections in the right column highlight how the drift accumulated
in the VIO-only case is corrected depending on the number of global
residuals N per keyframe included in the sliding window.
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Fig. 5. Optimizer time with respect to N. The value on the y axis represents
the processing time, which is the duration between the time at which the
front-end receives an image and the time at which its optimized pose is
available from the sliding window optimization.

Comparison to loosely-coupled: The proposed tightly-
coupled fusion was compared to a loosely-coupled approach
based on the method proposed in [3]. The loosely-coupled
pose-graph optimization runs on a sliding window that
contains the most recent keyframes selected by the VIO
algorithm and the global position measurements. The newest
frame in the sliding window corresponds to the most recent
frame processed by the VIO pipeline. Each keyframe is
connected to one global measurement. At every optimization
step, the transformation between the VIO local frame and
the global frame is estimated. Global position measure-
ments are expressed with respect to such global frame. This
transformation is applied to the most recent VIO output to
obtain drift-free global pose estimates at the same rate of
the VIO estimates. We refer to [3] for more details on the
loosely-coupled approach. Fig. 6 shows the results of the
two methods on sequence V203. Our tightly-coupled method
outperforms the loosely-coupled approach in terms of both
translation and rotation error with N ∈ [1,2,3,4] in every
EuRoC sequence, as shown in Table I. Due to the noise in
the global position measurements, the loosely-coupled fusion
provides estimates less accurate than the VIO pipeline for
sequence V202.
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Fig. 6. Relative translation and rotation error in EuRoC V203 difficult.
Comparison between the tightly-coupled fusion approach proposed in this
work and the loosely-coupled method based on [3]. We used N=1 in the
tightly-coupled method.
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Fig. 7. Top-view trajectory in flight sequence 3. Ground truth (GT), VIO
(no GPS), loosely-coupled, and tightly-coupled trajectories are depicted.

B. Outdoor Dataset with GPS Measurements

1) Setup: In this second set of experiments, we evaluated
our approach on the dataset kindly provided by the authors
of [4]. This dataset contains three flight sequences from
an UAV equipped with a commercial stereo visual-inertial
sensor, GPS, and ground-truth from a Leica total station. The
three flight sequences have a travelled distance of 404.1 m,
483.3 m, and 1033.3 m, respectively. The GPS data, acquired
at 5 Hz, provides the global positional measurements. For our
monocular visual front-end, we only used images from the
left camera. Due to the unavailability of ground-truth orienta-
tion, we only reported the position error (mean and standard
deviation) after the alignment. Fig. 7 shows the top-view of
the third flight sequence, which contains a 1033.3 m long
trajectory. For initialization, the initial position corresponds



TABLE II
POSITION ERROR FOR THE OUTDOOR DATASET

Flight Position
Error [m]

VIO
(no GPS)

Loosely-
coupled

([3])

GOMSF
([4])

Tightly-
coupled

N=1
(proposed)

1 mean 0.83 0.64 0.33 0.28
std 0.40 0.24 0.16 0.13

2 mean 1.28 0.35 0.29 0.24
std 0.63 0.17 0.13 0.09

3 mean 3.63 0.45 0.43 0.38
std 1.59 0.20 0.20 0.18

to the first GPS measurement.
2) Results: As observed in Table II, our tightly-coupled

approach gives more accurate position estimates than the
loosely-coupled. The largest improvement is 56% in the first
flight sequence and the smallest is 15% in the third flight
sequence.

In the same table, we also included the best results of
the loosely-coupled method proposed in [4], named GOMSF.
GOMSF differs from [3] by the addition of a virtual node
representing the local coordinate frame. VIO estimates are
expressed in such coordinate frame. We can observe that our
method also improves the mean position error with respect
to GOMSF by 15%, 17%, and 10%, respectively, in all three
flight sequences. The difference in improvement with respect
to [4] is very likely due to the different front-end utilized:
while we use the monocular SVO front-end, GOMFS uses
the stereo OKVIS front-end [5].

V. CONCLUSION

Visual and inertial measurements are suitable to obtain
locally accurate pose estimates but accumulate large drift in
long-term navigation. To achieve high-rate, accurate, locally
and globally consistent estimates, global positional informa-
tion can be fused with visual and inertial measurements. We
proposed in this paper a tightly-coupled optimization-based
methodology to solve the multi-sensors fusion problem. We
formulated the fusion problem as a keyframe-based sliding
window optimization where the global measurements are
employed to derive the new global factors. We leveraged the
computation of the IMU preintegrated terms to include the
global positional factors in the optimization with negligible
increase of the computational cost compared to the visual-
inertial case. Experimental results showed that the proposed
approach efficiently achieves accurate and globally consistent
position estimates and consistently outperforms the state-of-
the-art loosely-coupled approach.
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