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Abstract— Persistent merging of maps created by different
sensor modalities is an insufficiently addressed problem. Cur-
rent approaches either rely on appearance-based features which
may suffer from lighting and viewpoint changes or require
pre-registration between all sensor modalities used. This work
presents a framework using structural descriptors for matching
LIDAR point-cloud maps and sparse vision keypoint maps.
The matching algorithm works independently of the sensors’
viewpoint and varying lighting and does not require pre-
registration between the sensors used. Furthermore, we employ
the approach in a novel vision-laser map-merging algorithm.
We analyse a range of structural descriptors and present results
of the method integrated within a full mapping framework.
Despite the fact that we match between the visual and laser
domains, we can successfully perform map-merging using struc-
tural descriptors. The effectiveness of the presented structure-
based vision-laser matching is evaluated on the public KITTI
dataset and furthermore demonstrated on a map merging
problem in an industrial site.

I. INTRODUCTION AND RELATED WORK

In multi-robot applications, heterogeneous teams of robots
can be deployed in the same environment in order to exploit
the complementary advantages of different platform charac-
teristics. For instance, lightweight unmanned aerial vehicles
(UAVs) equipped with cameras can quickly reconnoiter an
unknown terrain, while unmanned ground vehicles (UGVs)
can be used to carry heavy payloads. A typical application of
such heterogeneous setups is in search and rescue scenarios,
which involve both rapid exploration and presence on the
ground [1], [2].

An important part of multi-robot applications is relative
localization. For example, if UAVs are used for reconaissance
to be exploited by UGVs, the UGVs need to be able to
localize themselves within the maps created by the UAVs.
How this can be achieved depends on the sensors available
on the mapping robot RM and the sensors available on the
robot RL that is localizing against the map. On one hand, if
both RM and RL are equipped with cameras, visual place
recongition approaches such as presented in [3], [4], [5]
can be used. On the other hand, if both RM and RL are
equipped with a LIDAR sensor, place recognition approaches
for dense maps such as [6], [7] can be used. Furthermore,
if RM is equipped with both cameras and a LIDAR sensor,
multi-modal maps, such as presented in [8], [9], [10] can
be created, in which case either approach can be used,
depending on the sensors present on RL.

This paper focuses on the remaining case, in which either
the mapping robot is equipped with a camera and the localiz-
ing robot with a LIDAR sensor, or vice versa. For example,

Fig. 1: The figure illustrates two different maps obtained
with vision and lidar and the final alignment resulted with
our approach.

a UAV would be equipped with a camera due to weight
constraints, while a UGV would be equipped with a LIDAR
sensor which provides a more robust and accurate model of
the ground, which is required for its path planning. Previous
approaches for achieving localization in such circumstances
typically consist of either simulating visual data in laser scans
[11] or extracting the dense structure that is characteristic
for LIDAR maps from visual sensors [12]. The former
approach requires the ability to predict surface reflectivity
from camera images. While this has been shown to work
in an urban environment, in particular on streets with lane
markings, this approach might not generalize to cluttered
environments present in search and rescue scenarios. In
contrast, the latter approach has shown to be more general.
Extracting 3D structure from camera images can for instance
be achieved using patch-based multi-view stereo algorithms
(PMVS) [13], structure from motion [14] or the commercial
Pix4D mapper software. However, these 3D reconstruction
techniques are very expensive computationally and often
have trouble with untextured surfaces. Furthermore, trans-
mitting dense maps over networks typically requires more
bandwidth than the transmission of sparse visual maps.

Therefore one of our priorities is to use sparse visual data.
It was recently shown that that sparse vision maps and

dense LIDAR maps can be aligned based on geometry with
a good initial guess [15]. In contrast, we show that sparse
visual keypoint locations and LIDAR maps contain sufficient



mutual structural information and can be matched using
structural descriptors without prior registration.

We propose a framework for structure-based vision-laser
matching and evaluate it on a suite of structural descriptors
operating solely on 3D structural data, abstracting the neigh-
bourhood around a keypoint location:

• the 3D Gestalt descriptor [7] stemming from the LIDAR
mapping community, as a representative of descriptors
that performs well on dense LIDAR data,

• the neighbour-binary landmark density (NBLD) de-
scriptor [16] designed for visual feature tracking and
performing well on sparse visual keypoint maps and,

• the Boxli descriptor, a generic 3D occupancy descriptor,
which essentially downscales the point-cloud resolution.

Furthermore, keypoints are gravity aligned, i.e., IMU mea-
surements are used to estimate the z-axis of the keypoints.
This step drastically increases efficiency in searching de-
scriptor matches. We assume limited local errors, i.e., a
drift on the open loop solution of up to 5% for odometry
measurements and a maximum error for the IMU-based z-
axis estimation of 5%.

State-of-the-art methods are employed to efficiently yield
high matching results at good computational performance,
including descriptor projection and dynamic place segmenta-
tion. For efficient feature matching we downscale descriptor
dimensionality by employing descriptor projection as pre-
sented in [17]. Specifically, this paper presents the following
contributions:

• The presentation of an algorithm using structural de-
scriptors to merge sparse vision and dense laser maps.

• A comparison of different structural descriptors w.r.t.
vision-laser matching.

• Discussion of the parametrization of the proposed map
merging pipeline.

• Evaluation of the approach on the public KITTI dataset
[18], and demonstration on an industrial indoor dataset,
as depicted in Fig. 1.

II. APPROACH

This section describes the steps of our approach starting
with data acquisition, filtering and registration, structural
description, projection and matching, to place recognition
and verification. An overview of the approach is depicted in
Fig. 2. The approach requires no prior registration between
the used vision and laser data. The structural descriptors how-
ever use IMU measurements to estimate gravity alignment
of the z-vectors for their orientations’ reference frames.

A. System input and registration

The proposed system has two separate inputs from the
LIDAR and the vision pipeline, i.e., depth and IMU mea-
surements on one side, camera image stream and IMU
measurements on the other side.

Keypoint maps MV from vision- and IMU-only data
are obtained using an efficient visual inertial odometry
algorithm. Our approach is experimentally evaluated using
ORB_SLAM2 [5] but is not limited to this choice. This

Fig. 2: System diagram of the approach for matching and
fusing vision-laser maps using structural descriptors.

process yields a loop-closed keypoint map, consisting of
optimized camera tracks and sparse visual keypoints.

Several options are available to build maps from LIDAR
data. The registration was tested using scan-registration with
ICP and a pose-graph based continuous-time framework
which both yield sufficiently accurate maps. Since the vision
keypoint maps considered are sparse, the resulting LIDAR
map can be density filtered to the average density of the
vision base map MV , resulting in the laser base map ML.

Optionally, the quality of the maps can be further im-
proved by performing batch post-processing e.g., loop-
closure, which is not a prerequisite for the vision-laser
matching of Sec. II-D.

B. Structural descriptors

A structural descriptor di ∈ Rn is an abstracted de-
scription of the surrounding structure in the neighbourhood
Ωi ⊂M of a keypoint pi.

The n × m matrix of all descriptors is Σ =
{d0,d1, ...,dm−1}. We compare three structural descriptor
schemes on both ML and MV , i.e., 3D Gestalt [7], Boxli
and Neighbour-binary landmark density (NBLD) descriptors
[16]. We select key points PL and P V by choosing a
random 10% subset of the point clouds ML and MV , i.e.,
PL ⊂ ML and P V ⊂ MV respectively. For achieving
rotation invariance of the used descriptors, the descriptors
are aligned relative to their neighbourhood Ωi. Therefore
the method by [17] is employed to normalize orientations.

The z-axis of each orientation’s reference frame is aligned
with the gravity vector g which is estimated by an IMU,
leaving one rotational degree of freedom in yaw. Let λi,j be
the sorted eigenvalues in ascending order of the covariance
matrix Ci for each Ωi. The eigenvector ei,0 corresponding
to the smallest eigenvalue λi,0 is derived, i.e., the surface
normal. Subsequently ei,0 is projected on the ground plane
forming the local x-axis for the descriptor. As this operation
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Fig. 3: Left: Cylindrical binning shape used for NBLD and
Gestalt descriptors. Right: Cuboid 3D grid used for Boxli
descriptor.

has 2 possible solutions, we force the x-component of ei,0
to point towards the observer of pi.

In some cases the calculated orientations may be unstable
due to small noise drastically changing their values:

1) If the shape of Ci is very cylindrical, i.e., the smallest
eigenvalues are of similar size λi,1−λi,0∑2

j=0 λi,j
< 0.9 the

orientation may be any vector within a plane spanned
by ei,0 and ei,1

2) If the surface normal is almost parallel to the z-axis,
i.e., arccos(ei,0 · (0, 0, 1)T ) < 10◦ ei,0.

Descriptors with orientations fulfilling any of the two criteria
are discarded.

Furthermore, the neighbourhood Ω has a temporal extent
rt, meaning that only points within the neighbourhood which
were acquired close in time are considered in the calculation,
i.e., we prevent re-observations of places to be accounted for
in the same descriptor. In the following we define the three
structural descriptor schemes evaluated in this work.

a) Boxli: Boxli descriptors define a cuboid 3D grid of
expansion r and height h around each keypoint into n3dim
cells as illustrated in Fig. 3:

Ωi = pi + {x ∈ R3|x1, x2 ∈ [−r, r], x3 ∈ [−h
2
,
h

2
]} ⊂ R3

(1)
Each grid cell holds the count nk,l,m of encapsulated points.

The Boxli descriptor is then:

di = (n1,1,1, n1,1,2, n1,1,3, ...) (2)

b) 3D Gestalt: The 3D Gestalt has proven to be a very
successful descriptor for laser-based place recognition [7]. It
defines a cylinder of radius r and infinite height around each
keypoint pi:

Ωi = pi + {x ∈ R3|x3 ∈ (−∞,∞), ‖x1, x2‖ ≤ r} ⊂ R3

(3)
Each cylinder is evenly divided into nra radial and naz
azimuthal bins, where each contains average height µaz,r and
variance σ2

az,r of the enclosed points, as illustrated in Fig. 3.
Additionally, the overall planarity pli and cylindricality cyi
values are computed per cylinder from the eigenvalues,
yielding the complete descriptor di.

pli =
2λi,2 − 2λi,1∑2

j=0 λi,j
, cyi =

λi,1 − λi,0∑2
j=0 λi,j

(4)

di = (µ1,1, σ
2
1,1, µ1,2, σ

2
1,2, ..., pli, cyi) (5)

The values pli and cyi are a measure for the planarity and
cylindricality respectively of a neighbourhood. The values
range from 0 to 1.

c) NBLD: Neighbour-binary landmark density (NBLD)
is a structural descriptor designed for sparse visual keypoints
and uses binary comparisons between bins. It has shown to
be very successful in place recognition using the 3D locations
of sparse visual keypoints, also expressing high performance
on data undergoing appearance changes [16]. Like the Gestalt
descriptor, the NBLD operates on a virtual cylinder around
each keypoint pi. The cylinder is however bounded in z:

Ωi = pi+{x ∈ R3|‖x1, x2‖ ≤ r, x3 ∈ [−h
2
,
h

2
]} ⊂ R3 (6)

Additionally to naz azimuthal and nra radial bins, NBLD
also has a regular binning nh in z. The descriptors’ binary
values encode the density differences between bins, i.e.,
each bin density ρaz,r,z is compared to all densities of
its neighbouring bins ρneighbours and the according feature
dimension assigned 1 or 0:

bdaz,r,z =

{
1 ρaz,r,z > ρneighbours

0 ρaz,r,z ≤ ρneighbours
(7)

di = (bd1,1,1, bd1,1,2, bd1,1,3, ...) (8)

C. Descriptor projection

In practice, not every dimension of a generic structural de-
scriptor design carries useful information and therefore more
dimensions in descriptors do not necessarily increase the
separability of matches and non-matches. However, the time
required for matching features, which is performed in the
next step, increases quadratically with descriptor dimensions.
Using only a combination of most expressive descriptor
dimensions is desirable. We therefore find a projection Ab

of the descriptors to a lower dimensionality b that improves
separability, which is a variant of the procedure proposed in
[17]:

Σb = Ab ·Σ (9)

with Ab ∈ Rb×n ⊂ A ∈ Rn×n. For calculating A, artificial
noise is added to the keypoints while a matching between
the keypoint and the noisy keypoint is postulated. Then
the distributions of matched and unmatched descriptors are
calculated. The best SNR lies in the descriptor dimension
with largest eigenvalues for the distribution of differences,
i.e., between the covariances CM and CU for matched and
unmatched descriptors respectively.

ATA = C−1
M −C

−1
U (10)

This projection training can be performed in 3 different ways:
1) train on laser only,
2) train on vision only,
3) train on both, i.e., postulate matches between laser

keypoint and corresponding vision keypoint.
As expected, the third method provides the best results
as it models the matching we aim to perform. However,
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Fig. 4: Comparison of the structural descriptor matching
quality over the number of projected descriptor dimensions
using Matthews Correlation Coefficient.

we want to avoid pre-training to be adaptive to unknown
environments and therefore assume no prior knowledge about
the registration between LIDAR and vision maps. Our design
choice is therefore to train the descriptors on either vision
or laser. Intuitively, vision maps in general contain higher
noise and training on these may yield the identification of
the most robust dimensions. However, our experiments do
not show one of the first two methods being superior over
the other. In our experiments, we use the vision trained
projection matrix AV for projecting the descriptors Σ to a
lower dimensionality, choosing the b best dimensions of AV .
Fig. 4 shows an exemplary evaluation of different descriptor
dimensions projections. Matching quality saturates at much
lower descriptor dimensionality than using all descriptors
dimensions. Since AV is trained on real data, it needs to be
retrained for different environments. However, as we train
AV uni-modal, i.e. either on vision or on laser data, AV

can adapt to new environments without supervision.

D. Descriptor matching

A kd-tree of the laser dataset’s descriptors Σb,L is built
and queried for each keypoints’ k nearest neighbours of
the vision dataset Σb,V . The results are vote scores ZL,V
between the datasets. Fig. 5 illustrates a histogram over
votes between vision and laser. For creating the image, the
same path is followed both by a LIDAR and a camera
system, resulting in the expected dominant main diagonal of
1-to-1 correspondences of places and off-diagonals, which
correspond to place-revisits, on the vote space. Please note
that we chose to evaluate our approach on a dataset where
both sensors visit the same area to yield many possible place
matches. In the envisioned use-case of map merging, a vote
space of distinct vote clusters and not continuous diagonals
of clustered votes are expected.

The voting space is further aggregated into places to
enable analysis and improvements with place density thresh-
olding.

Fig. 5: The vision-laser vote space histogram accumulates all
votes from the vision query on the laser database. Areas of
high density (black) correspond to the accumulation of many
votes. High densities on the main diagonal (highlighted with
blue box) correspond to direct place matches, off diagonals
(red box and green box) correspond to revisits of places. The
corresponding trajectory segments of the evaluation dataset
are illustrated on the top.

E. Place segmentation and geometric verification

Places are commonly defined by spatial regions or
keyframes that are queried in a database of descriptors.
One common problem in segmenting places is the choice
of a feasible place size to aggregate the votes within that
region. Popular approaches are fixed-sized grids in the time
domain [7] or keyframe queries [19]. We found that dynamic
place segmentation, as proposed in [4] yields higher place
recognition quality than fixed-size grids or keyframes. In
this approach the place segmentation problem is treated as a
continuous 2D probability estimate on the matching matrix,
i.e., places are segmented along path segments scoring high
vote densities. Rotating the vote space, facilitates the seg-
mentation process, by enabling trajectory-aligned vote-space
segmentation.

The full rotated vote space is initialized as a single node
in this decomposition. The algorithm then recursively splits
the space in x- and y-direction, based on density gradients
within a node. The decomposition stops if a maximal decom-
position depth is reached or if the maximal density gradient
within a node is lower than a threshold. Fig. 6 shows the
segmentation of the 20 % densest matching segmentations
for the evaluation dataset. We threshold on the density
for an individual structural descriptor scheme above which
segmented areas are considered as place correspondence
candidates. To account for varying robot velocities, the time
index of keypoints is converted into the travelled distance.

The approach assumes that maps are recorded following
robot trajectories, i.e., both the query and the database data



Fig. 6: Place segmentation candidates on rotated vote-space
after dynamic place segmentation for KITTI05. The image
shows the rotated vote-space of Fig. 5 and the resulting high-
density place-matching segments as small boxes overlaid.
The 20% densest segments of the evaluation dataset are
illustrated as small boxes. Most high density segments accu-
mulate around the (rotated) main diagonal and off diagonals.

were recorded, travelling forward or backward on close con-
tinuous trajectories. Since we cannot always assume robots
to follow similar trajectories in the context of map-merging,
we limit the segmentation size to a low maximal extent.

The place-correspondence candidates which are a col-
lection of descriptor matches ΣM can finally be checked
for a consistent transform from one place to the matching
candidate. This is achieved by calculating the individual
transforms T i,j of each keypoint match in a segmented
region and building a histogram on the transformations. If
the likelihood of the dominant transform exceeds a threshold,
the place-correspondence is accepted as a match.

Finally, the match constraint is propagated to the vision
and laser maps yielding a registration between them.

III. EXPERIMENTS

The described procedure has been evaluated on the KITTI
dataset [18] using data from stereo cameras and 3D LIDAR
data. We use sequence 05 of the dataset consisting of a
trajectory of 2.2 km in an urban environment, with several
loop closures. The particular sequence was chosen for its
richer urban environment, compared to highway sequences
and the presence of several loop closures which visually aids
understanding the vote histograms.

The vision and LIDAR data were independently converted
into maps as described in Sec. II-A. For evaluating the
descriptors’ performances both vision and laser point-cloud
were individually loop-closed and aligned using the GPS
ground-truth. The known transformation between stereo cam-
era and 3D LIDAR is only used for the evaluation against
ground truth and not in the vision-laser matching system
itself.

We furthermore demonstrate the approach in a machine
hall, an industrial indoor environment on independently
recorded data with partial overlap between vision and LIDAR
maps. In a first experiment, a UGV equipped with a 3D laser
scanner explored the machine hall. Later, a human carrying

a camera explored some parts of the machine hall and the
nearby corridors (see Fig. 1).

A. Evaluation

Our evaluation point is set after place segmentation and
before geometric verification, as we regard geometric ver-
ification as an additional step, which can be applied to
place segmentations independent of the way segmentations
were acquired. We use precision, recall and Matthews Cor-
relation Coefficient (MCC) to evaluate the quality of the
proposed method and the performance of different structural
descriptors on KITTI. A threshold on the vote-density td
is used to distinguish between positives and negatives. We
mark a match as true positive, if the euclidean distance
rL,V between the matching keypoints is within the matching
radius rgt,near, while the density dL,V > td. False positives
are accounted, if rL,V is greater than a threshold rgt,far,
while dL,V > td. True negatives fulfill the conditions rL,V >
rgt,far and dL,V < td. Finally false negatives are counted,
if rL,V < rgt,far and dL,V < td.

As we do not have ground truth data for the machine hall
dataset, we facilitate this dataset for demonstration purposes
of our method. The vision and laser machine hall datasets
were manually aligned, and we use the data to identify
common true positives and false positives, i.e., in which
regions our method performs good or bad.

B. Parametrization

The method requires several settings:
• the number of point-cloud points to use as keypoints,
• the dimensionality b of the descriptor projection Ab,
• the number k of descriptor matches per query descriptor,
• the threshold td on the vote density to distinguish

positive and negative votes,
• the ground truth radii rgt,near and rgt,far are only

needed in the evaluation, to assign the true or false
predicate to matching candidates,

• the descriptor settings.
We hand-tuned the descriptors according to the following
parametrization choices.

The number of keypoints can be chosen arbitrarily, but
should not be too sparse. We used 10% of our point-clouds
as keypoints.

As shown in Sec. II-C, the MCC score saturates with a
much lower number of descriptor dimensions and therefore
most of the descriptor space can be captured in a 50
dimensional subspace.

The number of nearest-neighbours k is set according to
the keypoint density within the neighbourhood of a keypoint,
i.e. the estimate of self-similar keypoints near an evaluated
keypoint, a rule of thumb is to use 5 to 15 matches.

We furthermore set td to a value that maximizes the MCC
performance of our method, while providing good precision
and recall rates. This corresponds to the approximate spacial
overlap of the datasets, i.e., the 5% densest regions are
selected as positives for full coverage, linearly scaling down
with lower coverage.



TABLE I: Parameters used in the evaluation.

KITTI Machine hall
Ωd (r, h, rt) = (20m, 18m, 50s) (r, h, rt) = (6m, 6m, 20s)
ndim (naz , nra, nz) = (16, 4, 8) (naz , nra, nz) = (16, 4, 6)

(nx, ny , nz) = (5, 5, 8)
k 10 10
b 50 50
td 5% 3%
rgt (near, far) = (20m, 30m) (near, far) = (6m, 10m)1
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Fig. 7: Precision-recall curves for KITTI05, the parameters
were chosen according to Tab. I. The points and values of
the maximum MCC scores are illustrated.

The ground truth radii rgt for evaluation should be set
equal to or greater than the descriptor radius.

We found the binning of descriptors as depicted in Tab. I to
provide good results by trying different settings. The neigh-
bourhood Ωd should be set according to the environment, the
sensor characteristic and estimated speed of the robot. The
radius r determines the minimal expected overlap between
the vision and LIDAR map. However, the choice of too
large radii may encode the travelled trajectory rather than
the local structure. The height h can be set to values that
realistically capture the vertical extent of the measurements
and rt corresponds to the minimal time the robot requires to
cover the area around a keypoint.

The parameters for our evaluation are collected in Tab. I.
Considering recent advances in robust estimation lower

precision rates are commonly acceptable as false positives
may be filtered [20], [21].

The overall best choices for feature matching however are
the parametrizations scoring highest correlation scores, such
as MCC.

C. Results on KITTI dataset

The precision-recall curves for KITTI05 are illustrated in
Fig. 7. These results were obtained by varying the density
threshold td on the place segmentation.

Both the 3D Gestalt and the Boxli descriptors show poor
performance throughout the experiments, whereas NBLD
yields good results at moderate precision values for high
recall. It turns out that the Gestalt descriptor is susceptible
to the two different modalities’ distribution characteristics.
Gestalt’s mean and variance features show to be poorly re-
producible between the modalities. Furthermore, does Boxli

1As we do not have external ground truth, these values were used for
evaluating the manually aligned dataset.
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Fig. 8: Overview of the KITTI dataset. The matching is
illustrated shown for the 5% densest matches and divided
into true positive (green) and false positive (red) matches.
For illustration purposes we only plotted 10% of the true
positives and false positives respectively.
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Fig. 9: Overview on the machine hall dataset. The matching
is illustrated by the 3% densest matches and divided into true
positive (green) and false positive (red) matches. The match
a) - b) is an example of a true positive, c) - d) an example
of a false positive. a) - d) are further investigated in Fig. 10.

perform only slightly better than random. Our experiments
indicate that the encoding of point counts does not generalize
well between modalities. This is mainly due to different
sampling characteristics of the sensor modalities’ mapping
techniques with laser equally sampling surfaces and vision
being more densely sampled in well textured areas.

Taking a closer look at the NBLD performance in contrast
to the environment, we can identify regions of high and
low performance. In Fig. 8 map regions counted as true
positives (green) and false positives (red) are highlighted. In
KITTI, the matching shows best performance in regions with
keypoints covering larger areas, i.e. regions that have points
widely distributed over the x-y-plane. Our experiments show
that the maximal descriptor radius of NBLD expresses best
performance above 15 meters for the KITTI dataset, which is
a reasonable choice, meaning that one descriptor can capture
the local structure, i.e., street and neighbouring houses on
both sides. Since the environment is very homogeneous,
we cannot identify a special structural characteristic that
has superior performance. The high recall rates indicate
that most place-matches are found by the proposed method.
Furthermore, consecutive steps can be applied to filter false
positives, including geometric verification or techniques of
robust estimation.

D. Results on Machine Hall dataset

We furthermore demonstrate the approach on the machine
hall dataset which only has partial overlap between the maps.
For this dataset only the NBLD descriptor was used, as it



Fig. 10: Example for a true positive match (top row) and a
false positive match (bottom row). On the left are the vision
queries, on the right side the corresponding laser database
matches. The algorithm performs well in distinct structural
regions, but fails in self-similar corridors. The indices a) -
d) correspond to the matching locations depicted in Fig. 9.

has shown superior performance over the other descriptor
candidates. Since the machine hall is an indoor environment,
the extent of the descriptors showed good performance on
lower extent, i.e., a radius of 6 meters was chosen. In the
machine hall dataset, distinct structural corners and transi-
tions between open areas and corridors show best matching
performance, whereas the algorithm had difficulties with self-
similar corridors. Fig. 9 illustrates the found true (green) and
false (red) positives in the machine hall dataset. In Fig. 10
we illustrate a common case for a true positive and a false
positive. Furthermore, we discovered a matching trap. Here,
the end of a corridor in the laser map received a cluster of
votes from several locations of a non overlapping corridor in
the vision map, i.e. no segment of this corridor was present
in the laser database. This also implies that one location
in the laser database was allowed to receive many votes
from different locations in the vision map. However, for the
presented paper, we do not want to exclude place revisits.
We plan to investigate methods within the vote matching
and place segmentation step to mitigate this effect in future
work.

IV. CONCLUSIONS

Multi-modal matching is a very challenging and still
unsolved problem. In this paper, we have presented a variant
of vision-laser matching based on structural features and
place recognition between those domains. The presented
algorithm requires only the point-cloud data of the different
sources as inputs, independent from specific visual features
or laser intensity values. We have shown an approach that
can identify place matching candidates for data without
prior registration. These results demonstrate, that a density
based descriptor, such as NBLD has great potential for the
matching between laser and vision in the application of
multi-modal map merging.

For future work we aim to reduce preliminary filtering and
extend our evaluation with a variety of datasets. Ultimately,
we aim to design adaptive descriptors that express good

recognition rates without supervision and therefore adapting
to different environments as well as automatic ways for
setting parameters.
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