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ABSTRACT In recent decades, several assistive technologies have been developed to improve the ability
of blind and visually impaired (BVI) individuals to navigate independently and safely. At the same time,
simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient
to be adopted in developing these assistive technologies. We present the first systematic literature review of
54 recent studies on SLAM-based solutions for blind and visually impaired people, focusing on literature
published from 2017 onward. This review explores various localization and mapping techniques employed
in this context. We systematically identified and categorized diverse SLAM approaches and analyzed their
localization and mapping techniques, sensor types, computing resources, and machine-learning methods.
We discuss the advantages and limitations of these techniques for blind and visually impaired navigation.
Moreover, we examine the major challenges described across studies, including practical challenges and
considerations that affect usability and adoption. Our analysis also evaluates the effectiveness of these
SLAM-based solutions in real-world scenarios and user satisfaction, providing insights into their practical
impact on BVI mobility. The insights derived from this review identify critical gaps and opportunities
for future research activities, particularly in addressing the challenges presented by dynamic and complex
environments. We explain how SLAM technology offers the potential to improve the ability of visually
impaired individuals to navigate effectively. Finally, we present future opportunities and challenges in this
domain.

INDEX TERMS Navigation, SLAM, systematic literature review, visually impaired

I. INTRODUCTION

IN recent decades, there has been increasing research inter-
est in developing assistive technologies to enhance spatial

navigation for blind and visually impaired (BVI) individuals.
In most cases, the main goal is to guide and assist BVI people
in navigating safely in unknown environments without the
help of a sighted assistant. Navigation is a complex task; it
requires finding an optimal path to the desired destination,
perceiving the surroundings, and avoiding obstacles. Cru-
cially, all of these functionalities need to accurately localize
the BVI user in the environment. There are several approaches
for localization, such as the global positioning system (GPS),
radio frequency identification (RFID), and simultaneous lo-
calization andmapping (SLAM) [1], [2]. Each has advantages
and challenges and is used in different applications.

GPS is a localization technique employed in outdoor sce-
narios owing to its affordability to the end user, wide coverage
of the Earth, and ease of integration with other technolo-
gies. However, this technique suffers from limitations like
satellite signal blockage, inaccuracy, and signal loss caused
by weather conditions, walls, and other obstacles [2]. Ap-

proaches based on RFID utilize small, low-cost tags for lo-
calization. To localize an agent, a set of RFID tags must be
installed in the environment [1]. Although localization can be
accurately performed using an RFID scheme, taking advan-
tage of this technique requires a pre-installed infrastructure.
A SLAM approach can offer a reliable alternative to RFID

and GPS. SLAM is an innovative technique that involves
simultaneously constructing an environment model (map)
and estimating the state of an agent moving within it [3]. The
SLAM architecture (Figure 1) consists of two fundamental
components: the front-end and the back-end. The front-end
receives environmental information from the sensors, ab-
stracts it into amenable models for estimation, and sends it to
the back-end [3]. The back-end is responsible for optimizing
the mapping, localization, and data fusion processes, which
collectively contribute to the accuracy and reliability of the
SLAM systems.
SLAM uses diverse types of sensors to determine an

agent’s position, location, and velocity and detect and avoid
obstacles, even in a dynamically changing unknown envi-
ronment. This technique uses infrared (IR) sensors, acoustic
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FIGURE 1. Front- and back-end in a typical SLAM system [3]

sensors, RGB cameras, inertial measurement units (IMUs),
ultrawide-band (UWB), LiDAR, RADAR, and RGB-D sen-
sors [4].

The collaborative effort between the front- and back-ends
empowers SLAM to provide a robust and real-time spatial
understanding, making it a valuable tool for various applica-
tions. The SLAM community has made tremendous strides
over the past 35 years, developing large-scale practical appli-
cations and seeing a steady transition of this technology into
the industry [3].

SLAM technology has been widely applied in various
fields, demonstrating its versatility and robustness. In au-
tonomous driving, SLAM enables vehicles to create and
update maps of their environments in real time [130]. This
capability is essential for safe and efficient road navigation,
allowing accurate localization and obstacle avoidance in dy-
namic urban environments. In robotics, SLAM is crucial for
navigation [131]. This allows robots to operate effectively
in unknown environments by simultaneously building a map
of their surroundings and determining their positions within
them. Such a capability is essential for autonomous explo-
ration, path planning, and obstacle avoidance in diverse set-
tings, ranging from indoor spaces to outdoor terrains. Aug-
mented reality (AR) relies heavily on SLAM for the accurate
placement of virtual objects in the real world, enhancing user
experiences in gaming, education, and industrial applications
[132]. In underwater robotics, SLAM helps autonomous un-
derwater vehicles navigate highly unstructured and complex
marine environments and supports exploration, research, and
maintenance [133]. For aerial vehicles, SLAM is an indis-
pensable methodology for autonomous flight performed by
unmanned aerial vehicles (UAVs) [134], along with flight
control [135], [136]. SLAM enables drones to navigate and
map areas autonomously, which is valuable for tasks such as
search-and-rescue, surveying, and environmental monitoring.
These diverse applications highlight the versatility of SLAM
and its critical role in enabling autonomous operation across
various scenarios and platforms, from urban landscapes to
ocean depths.

The evolution of portable computation and the availability
of low-cost, highly accurate, and lightweight sensors such
as cameras and IMUs make them appropriate for pedestrian

navigation. By exploiting these advances, many researchers
have recently adopted SLAM to develop assistive technology
demonstrators to help BVI people navigate unknown environ-
ments.
Since the first electronic travel aids (ETAs) emerged ap-

proximately 70 years ago, the development of navigation
devices to guide BVI people through indoor and/or outdoor
environments has remained a challenge and a key concern
for researchers [5]. From traditional to deep-learning-based
navigation approaches, researchers have always faced chal-
lenges ranging from technical issues to the limitations of user
capabilities. As BVI navigation approaches must improve
real-time performancewhile reducing the size, weight, energy
cost, and overall price of the assistive system, these studies
have put a lot of effort into coping with constraints in com-
putational issues, sensory equipment, and portable devices.
They also need to provide solutions to calculate the precise
position and orientation of the user in a real-time manner.
However, the challenges of different scenarios, including
complex and cluttered environments, noisy environments,
and large spaces, must be considered.
Furthermore, efficient and reliable obstacle detection in

both indoor and outdoor environments has always been a
concern. In this regard, other challenges include identifying
static and dynamic obstacles, predicting the risk of collision,
understanding moving objects’ motion and estimating their
speed, detecting small objects, and identifying obstacles at
different levels of the user’s body, from drops in terrain
to head level. In addition, an intuitive, user-friendly, low-
cognitive-load method to provide accurate and sufficient en-
vironmental information to the user is also considered an
important research target. These methods should be improved
to provide adjustable and customized feedback on demand for
different users.
Moreover, assistive technology should provide user safety

and independence, hands-free operations, decreased effort,
and backup in the case of system failure. In addition to
the aforementioned challenges, deep-learning-based solu-
tions also have special issues, such as designing lightweight
neural network architectures to reduce computational expense
and provide sufficient data for the training and validation of
the models.
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This SLR is designed to act as a resource for the aca-
demic and research communities. The objective of this re-
view is to explore and highlight the strengths and potential
limitations of the current SLAM applications for visually
impaired navigation. This study aims to inform and guide
subsequent research. The insights derived from this review
identify critical gaps and opportunities for future research,
particularly for tackling the challenges presented by dynamic
and complex environments. Such environments pose unique
difficulties for visually impaired navigation, and addressing
them through advanced SLAM technologies could lead to sig-
nificant improvements in both the effectiveness and reliability
of assistive solutions.

A. RELATED WORK
Thus far, many reviews have been conducted on assistive
technologies developed for BVI navigation. Several studies
reviewed walking assistance systems [5], [7]–[14] provided a
detailed classification of the developed approaches. [12] cat-
egorized walking assistants into three groups: sensor-based,
computer vision-based, and smartphone-based. The authors
explained the technologies used and inspected each approach,
and evaluated some important parameters of each approach,
such as the type of capturing device, type of feedback, work-
ing area, cost, and weight. The work by [14] introduced tech-
niques and technologies designed to assist visually impaired
individuals in their mobility and daily lives. This comprehen-
sive review analyzes multiple mobility-assistive technologies
that are suitable for indoor and outdoor environments. It of-
fers insights into the various feedback methods employed by
assistive tools based on recent technologies. In addition, [7]
reviewed wayfinding devices used by visually impaired indi-
viduals in real-world scenarios. This review aimed to provide
a comprehensive exploration of the various aids employed for
navigation while assessing their perceived efficacy.

Some studies focused on indoor navigation for BVI
users [15]–[22] and some focused on computer vision-
based navigation systems [15], [23]–[27]. Among these stud-
ies, [15] conducted a systematic literature review of state-
of-the-art computer vision-based methods used for indoor
navigation. The authors described the advantages and limi-
tations of each solution under review, and included a brief de-
scription of each method. Furthermore, [21] comprehensively
examined existing methods and systems developed within the
domain of assistive technology, with a specific focus on ad-
dressing the unique needs and challenges faced by the visually
impaired. This study places strong emphasis on evaluating
methods that have practical applications in enhancing the
lives of visually impaired individuals.

Several review papers on wearable navigation systems
have also been published [28]–[33]. [28] have conducted
a systematic review with the primary objectives of analyz-
ing wearable obstacle avoidance electronic travel aids. Their
work delves into the strengths and weaknesses of existing
ETAs, providing a thorough evaluation of hardware func-
tionality, cost-effectiveness, and the overall user experience.

[29] provided a comprehensive understanding of wearable
travel aids by focusing on their designs and usability. Their
objectives included surveying the current landscape of travel
aid design, investigating key design issues, and identifying
limitations and future research directions. Furthermore, [30]
conducted a systematic review of the literature on wearable
technologies designed to enhance the orientation and mobil-
ity of the visually impaired. This review provides valuable
insights into the technological characteristics of wearables,
identifies feedback interfaces, emphasizes the importance of
involving visually impaired individuals in prototype evalua-
tions, and highlights the critical need for safety evaluations. A
review by [31] provides a comprehensive review of computer
vision and machine-learning-based assistive methods. Exist-
ing ETAs are divided into two groups: active systems provid-
ing subject localization and object identification, and passive
systems providing information about the users’ surroundings
using a stereo camera, monocular camera, or RGB-D camera.
Focusing on guide robots, [34] reviewed the multifaceted

objectives. Their work included a comparative analysis of
the existing robotic mobility aids and state-of-the-art tech-
nologies. This review highlights the potential of guide robots
to enhance the mobility and independence of the visually
impaired.

[35] and [36] reviewed studies with the focus on object
detection and recognition. [36] performed a review on object
recognition tailored to the needs of visually impaired individ-
uals. This review examines state-of-the-art object detection
and recognition techniques, focuses on standard datasets, and
emphasizes on the latest advancements. [35] reviewed studies
specific for staircase detection systems, primarily designed to
facilitate the navigation of visually impaired individuals. The
goal of this review is to provide a comprehensive comparative
analysis of these systems considering their suitability and
effectiveness.
Other similar studies include a survey of inertial mea-

surement units (IMUs) in assistive technologies for visually
impaired people [37], a review of urban navigation for BVI
people [38], a survey paper that reviewed assistive tools based
onwhite canes [39], and review papers exploring smartphone-
based navigation devices [40]–[42]. [40] reviewed the multi-
faceted objectives in the domain of smartphone-based nav-
igation devices. They aimed to provide a comprehensive
overview of smartphone use among people with vision im-
pairment, identify research gaps for future exploration, and
delve into the use of smartphones by individuals with vision
impairment and the accessibility challenges they encounter.
To the best of our knowledge, there is no survey paper on
SLAM-based navigation systems for BVI people. Our study
aims to bridge this gap in literature.

B. CONTRIBUTION
This paper presents a systematic literature review (SLR) ad-
dressing fundamental questions regarding SLAM-based ap-
proaches for BVI navigation. This review provides insights
into technological diversity, advantages, limitations, and the
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potential to address real-world challenges. While recognizing
the broad range of potential research questions we narrowed
our focus to the four questions outlined in Table 2. The
primary contributions of this study are as follows:

• Identification of SLAM approaches: We systematically
identified and categorized the diverse SLAMapproaches
adopted in the development of assistive systems tai-
lored for visually impaired navigation. This includes
analyzing the localization and mapping techniques, sen-
sor types, computing resources, and machine-learning
methods used in these approaches.

• Advantages and limitations synthesis: Our study syn-
thesizes the advantages and limitations of these SLAM
techniques when applied to BVI navigation.

• Classification of challenges: We identify and categorize
studies that address challenging conditions relevant to
SLAM-based navigation systems for the visually im-
paired. In addition, we discuss practical considerations
that affect the usability and adoption of these systems.

• Exploration of the potential for enhancing BVI navi-
gation: We analyzed how the proposed SLAM-based
approaches improved navigation in visually impaired
individuals. In addition, we evaluated the effectiveness
of these solutions in real-world scenarios and assessed
user satisfaction to understand their practical impact on
BVI mobility.

C. PAPER STRUCTURE
The remainder of this paper is organized as follows. In Section
II, we explain the protocol, methodology, tools, and tech-
niques used to conduct SLR. The findings of our SLR and
answers to the SLR research questions are summarized in
Section III. Section IV presents the future opportunities and
potential advancements in this domain. Finally, Section V
concludes the paper.

II. SLR METHODOLOGY
A systematic literature review is one of the most common
types of literature review used to collect, review, appraise, and
report research studies on a specific topic, adhering to prede-
fined rules for conducting the review [43]. Compared with
traditional literature reviews, it provides a wider and more
precise understanding of the topic under review [44]. Various
guidelines exist for conducting SLR in different research
fields such as software engineering [45]–[47], computer sci-
ence [48], information systems [49], planning education and
research [50], and health sciences [44], [51]. To conduct this
review, we followed the guidelines for conducting systematic
reviews proposed by [52]. Figure 2 illustrates our SLR pro-
cess.

SLR consists of three key phases: planning, conducting,
and reporting the review. We defined our research questions
and motivation, keywords, and search string, as well as se-
lection criteria in the planning phase of the SLR. In the
conducting phase, we executed searches on digital sources
using predefined search strings that were established during

the planning stage. We evaluated the quality of the selected
papers and extracted relevant data aligned with SLR research
questions.
We used the PICOC criteria to identify the key elements

that needed to be considered and frame our research ques-
tions. PICOC represents Population, Intervention, Compar-
ison, Outcome, and Context [53]. Table 1 lists the PICOC
elements, relevant values, and descriptions of these elements
in our study.
In this section, we first introduce the tool we used to

manage our SLR process and then detail our methodology
for conducting our systematic literature review in planning
and conducting the review subsections.

A. SLR TOOL
Various tools have been used to conduct systematic literature
reviews. Some of them are commercial such as Covidence1,
DistillerSR2, and EPPI-Reviewer3; and some are free such
as Cadima4, Rayyan5, RevMan6, and Parsifal7. We used the
Parsifal platform to manage the SLR phases. It is an online
tool developed to support the process of performing SLR.
Parsifal provides researchers with an interface to invite co-
authors to collaborate in a shared workspace on the SLR.
During the planning phase, this tool assists the authors by
addressing the objectives, PICOC, research questions, search
strings, keywords and synonyms, selection of sources, and
inclusion and exclusion criteria. Parsifal offers tools for creat-
ing a quality assessment checklist and data extraction forms.
In the conducting phase, this tool helps the authors import
the bibtex files and select studies. It assists in identifying
and eliminating duplicates among various sources, perform-
ing quality assessments, and facilitating data extraction from
papers. Finally, it provides a method to document the entire
SLR process.

B. PLANNING THE REVIEW
The first step in conducting SLR is to establish a protocol.
The protocol outlines the review procedures and ensures
replicability. Within the protocol, we formulated our research
questions, designed a search strategy, and defined the specific
criteria for selecting relevant studies. In addition, we defined
a set of criteria presented in Table 8 to evaluate the quality of
the selected literature. Furthermore, to facilitate the extraction
of data in alignment with our research questions, we designed
a data-extraction form.

1https://www.covidence.org/home
2https://www.evidencepartners.com/products/distillersr-systematic-

review-software/
3https://eppi.ioe.ac.uk/CMS/Default.aspx
4https://www.cadima.info/
5https://rayyan.qcri.org/welcome
6https://training.cochrane.org/online-learning/core-software-cochrane-

reviews/revman
7https://parsif.al
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FIGURE 2. The process of SLR

TABLE 1. Elements of PICOC

Element Description [53] Value
Population The problem or situation Visually impaired navigation
Intervention The technology, tool or method under study SLAM
Comparison
(optional)

The technology, tool or method with which the intervention is com-
pared

-

Outcome Results that Intervention could produce Lightweight, affordable, accurate, efficient assistive technology
Context The specific context of the study Autonomous mobility of visually impaired people

1) Research Questions and Motivation

The SLAM technique is widely used for the navigation of
robots, autonomous drones, and self-driving cars, owing to
its performance, reliability, and efficiency. Therefore, we re-
viewed the literature on visually impaired navigation, which
was designed based on the SLAM technique. Our aim was
to determine the advantages and limitations of employing
this technique for visually impaired navigation as well as to
identify opportunities for future research. Furthermore, we
aimed to explore how extensively this method has been used
in this specific area of research. Table 2 presents the research
questions that guided this review, and a description of the
questions.

2) Search strategy

A key step in performing SLR is to design an effective search
strategy. This strategy should be executed with reasonable
effort to retrieve relevant studies from digital libraries [54].
The exhaustive search process in systematic reviews is a
critical factor distinguishing them from traditional literature
reviews [54], leading to a wider and more precise understand-
ing of the topic under review. To design the search string we
first extracted keywords from the PICOC elements, including
population, intervention, and outcomes. We then determined
synonyms for each keyword to broaden the search string. The
list of keywords and their synonyms related to each PICOC
element is listed in Table 3.
The first part of the search string (i.e. ’visual* impair*’

OR ’blind’ OR ’visually disabled’ OR ’sight impaired’) is
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TABLE 2. Research questions for the SLR process

No. Research question Description
RQ1 What localization and mapping approaches are used for the navigation of

the visually impaired?
The target is to identify different localization and mapping techniques
adopted for the development of assistive devices for visually impaired
navigation.

RQ2 What are the advantages and limitations of SLAM techniques for BVI
navigation?

The objective is to summarize the advantages and constraints of SLAM-
based approaches for visually impaired navigation.

RQ3 What challenging situations have been addressed? The purpose of this question is to know which of the challenging condi-
tions (e.g. crowded environment, changing view point, challenging light
conditions, dynamic objects, etc.) relevant to navigation systems have been
considered.

RQ4 How does the proposed solution improve navigation using SLAM for
individuals with impaired vision?

The research question seeks to understand how SLAM techniques can
enhance mobility and navigation in individuals with visual impairments.

TABLE 3. Keywords used to design search string

Keywords Synonyms PICOC element
Visually impaired naviga-
tion

Blind navigation, Navigation assistance for the visually impaired, Navigational guidance for individ-
uals with visual impairments, Navigational support for the visually disabled, Orientation and mobility
for the visually impaired, Sight-impaired navigation, Visual impairment navigation aid, low vision
navigation, partially sighted navigation

Population

SLAM Real-time mapping and positioning, Simultaneous Localization and Mapping, Simultaneous mapping
and position tracking, mapping and localization

Intervention

Accurate, efficient, reliable
assistive technology

high-performance, precise, effective, trustworthy assistive technology Outcome

relevant to the population element of the PICOC framework.
The addition of an asterisk to the terms ’visual’ and ’impair’
allows us to include various expressions, including ’visually
impaired’ and ’visual impairment.’ The following segment
of the query, consisting of ’navigation*’ OR ’mobility’ OR
’wayfinding,’ also places emphasis on the population aspect
within the context of the systematic review. The inclusion of
an asterisk in ’navigation*’ ensures comprehensive coverage,
accounting for variations such as ’navigational.’ Regarding
the Intervention component defined in the PICOC framework,
we employed the term ’SLAM’ in conjunctionwith synonyms
identified in the literature from diverse domains where SLAM
is applied, such as robotics, autonomous driving cars, and
underwater SLAM. The last segment of the search string is
connected to the outcome element of the PICOC. Adding
keywords such as "localization" alone or the specific names
of SLAM techniques did not increase the number of related
papers. The search strings were employed on ten large citation
databases, as listed in Table 4, to carry out an exhaustive
search. We modified the base search string according to the
Search Tip in each library to satisfy specific requirements.

We utilized the Advanced Search feature in digital libraries
to gain more control over our search parameters. The title,
abstract, and keyword fields were selected to retrieve the
search results. Searching on Google Scholar is somewhat dif-
ferent from searching for other digital libraries. Unlike other
platforms, Google Scholar does not suggest various filters,
requiring the manual incorporation of filters into the search
string. Additionally, to identify English-written studies, we
adjusted the language preference settings within our Google
Scholar account to filter the search results in English.

3) Selection criteria
Table 5 presents the selection criteria used to identify the
eligible studies during the selection process. The Availability
criterion included studies accessible in full text from digital
databases. In addition, the Language criterion ensured the in-
clusion of publications written only in English. Furthermore,
the Publication Period criterion restricted the inclusion of
studies published between January 2017 and July 2023. This
timeframe was chosen to prioritize the most current and state-
of-the-art approaches in this rapidly evolving field. By focus-
ing on this recent period, we aimed to provide a comprehen-
sive yet manageable review of the latest innovations without
overwhelming readers with potentially outdated information.
The Type of Source criterion included conference and journal
papers, which were considered peer-reviewed and academ-
ically recognized sources. Books, dissertations, newsletters,
speeches, technical reports, and white papers were excluded.
Finally, the Relevance criterion played an important role
in the exclusion process; therefore, publications outside the
scope of our study were excluded based on a review of their
titles and abstracts.

C. CONDUCTING THE REVIEW
As shown in Figure 2, the review process began after the
review protocol was finalized. The conducting phase is
a multi-stage process that includes research identification,
study selection, data extraction, and data synthesis. In the
research identification step, digital libraries were searched
using adapted search strings that were specific to each library.
This search aimed to collect a pool of potentially relevant
primary studies. The next step involved the selection of stud-
ies for which the relevance of each study to the review was
evaluated. The steps involved in this process are illustrated in
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TABLE 4. Databases selected for the search procedure

Digital source Web address # of papers Last access date
ACM Digital Library http://portal.acm.org 4 22 Jul 2023
Google Scholar https://scholar.google.com 0 23 Jul 2023
IEEE Xplore http://ieeexplore.ieee.org 11 22 Jul 2023
MDPI https://www.mdpi.com 2 23 Jul 2023
PubMed https://www.ncbi.nlm.nih.gov/pubmed 3 22 Jul 2023
Science Direct http://www.sciencedirect.com 2 22 Jul 2023
Scopus http://www.scopus.com 22 23 Jul 2023
Springer Link http://link.springer.com 2 22 Jul 2023
Taley & Francis https://www.tandfonline.com 0 22 Jul 2023
Wiley Online Library https://onlinelibrary.wiley.com 1 22 Jul 2023

TABLE 5. Selection criteria

Criteria Inclusion Exclusion
Availability Available in full text Not accessible in specific databases
Language English Not written in English
Publication period From 2017 to July 2023 Prior 2017
Type of source Conferences and journals papers Books, dissertation, newsletters, speeches, techni-

cal reports, white papers
Relevance Papers relevant to at least two research questions Outside the scope of our research

Figure. 3. During the data extraction phase, the data required
from the studies were collected and analyzed. We employed
the data extraction form established during the development
phase of the review protocol to ensure accurate extraction of
information that addresses our research questions.

1) Identification
During the initial phase of our review, we conducted searches
across the digital libraries using custom-formulated queries
for each library. For each dataset, we ran three different
search strings (SS1, SS2, and SS3), as shown in Table 6,
consisting of various combinations of keywords, booleans,
and wildcard operators. These search strings were applied
to all digital libraries except Google Scholar. For Google
Scholar, we initially used keywords similar to those used in
SS1, resulting in over 11,000 results. Upon reviewing a subset
of these, we determined that a significant number were not
relevant to our topic. Consequently, we decided to use only
the primary keywords (shown in Table 3) to construct the
search string for this digital library.

We selected the search string that yielded the most results
to identify primary studies and then applied exclusion criteria
to the results obtained from the search strings used for each
library. We observed that SS3, which incorporated ’Orienta-
tion and mobility’ to refine the search by focusing on more
specialized literature, did not yield better results than SS1,
which included the general term ’mobility’, across all digital
libraries. This indicates that the broader term ’mobility’ was
sufficient to capture the necessary literature. The specificity
of SS3 did not contribute to additional relevant results. Ad-
ditionally, upon receiving the message ’Use fewer Boolean
connectors (maximum 8 per field)’ while running SS1 on
ScienceDirect, we switched to SS2 to maintain the number
of Boolean connectors within the limit.

The initial searches of all digital libraries resulted in 6,809
records. The search strings used for each digital library is

presented in Table 7.
The results obtained from digital libraries searches were

exported in the BibTex format, a process facilitated by the
export citation features available in the libraries. The BibTex
data were then imported into the Parsifal framework for sub-
sequent stages of our review. Springer and Google Scholar
do not provide direct options for exporting data in BibTex
format. To address this issue, we used Zotero and its browser
plugin, Zotero Connector, to streamline the process. With
these tools, we added paper information from webpage views
to Zotero and subsequently retrieved BibTex data.
For Springer Link, which provides only CSV files with

search results, we opened the CSV in Excel and extracted
the DOIs. These DOIs were then pasted into Zotero’s "Add
item(s) by identifier" feature. After importing the DOIs into
Zotero, we selected the appropriate folder containing the
imported papers and exported the collection to the BibTex
format using a simple right-click. As Scholar Google does not
provide easy export of a large number of records, we adopted
a similar approach: creating a library, saving search results
to that library, and exporting paper data in BibTex format
from that library. This process ensured that we obtained the
necessary data for the subsequent stages of our systematic
review.

2) Study selection
After conducting searches in the digital libraries, we applied
our selection criteria, as defined in our review protocol, to
filter out irrelevant studies. Initially, records published before
2017 were excluded. Further exclusions involved filtering out
publications that were not written in English or had not been
published in peer-reviewed venues. Following these steps, of
the initial 6809 records found in the initial search, 5431 were
excluded.
We imported the study data into the Parsifal platform in

BibTeX format, as explained in Section II-C1, which helped
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TABLE 6. Search strings applied to digital libraries, featuring keywords and operators to identify primary studies.

SS1 SS2 SS3 SS4

("Visually impaired" OR blind OR
"visual impairment*" OR "visually
disabled" OR "Sight impaired")
AND (navigation* OR mobility)
AND (SLAM OR "Simultaneous
Localization and Mapping" OR

"Real-time mapping and positioning"
OR "Simultaneous mapping and

position tracking" OR "mapping and
localization") AND (technology OR

aid OR support OR assist*)

("Visually impaired" OR blind) AND
(navigation OR mobility) AND
(SLAM OR "Simultaneous
Localization and Mapping")

("Visually impaired" OR blind OR
"visual impairment*" OR "visually
disabled" OR "Sight Impaired")

AND (navigation* OR "Orientation
and mobility") AND (SLAM OR
"Simultaneous Localization and

Mapping" OR "Real-time mapping
and positioning" OR "Simultaneous
mapping and position tracking" OR
"mapping and localization") AND
(technology OR aid OR support OR

assist*)

("conference paper" OR "journal")
AND ("Visually impaired") AND
(navigation) AND (SLAM) AND

(-review) AND ( -survey)

TABLE 7. Utilization of search strings by digital libraries

Digital source Search string Number of results
ACM Digital Library SS1 284
Google Scholar SS4 602
IEEE Xplore SS2 50
MDPI SS2 191
PubMed SS1 8
Science Direct SS2 518
Scopus SS2 1510
Springer Link SS2 2585
Taley & Francis SS2 486
Wiley Online Library SS2 575

TABLE 8. Quality assessment criteria and weights

Criteria Weight
Is there an adequate description of the context in
which the research was carried out?

0.0, 0.5, 1.0

Does the methodology take into account both local-
ization and mapping issues?

0.0, 0.1, 2.0

Is the solution proposed well presented? 0.0, 0.5, 1.0
Is there a clear statement of findings? 0.0, 0.5, 1.0
Is the research design appropriate to address the aims
of the research?

0.0, 0.5, 1.0

Does the study add value to the research community? 0.0, 0.5, 1.0

remove duplicate studies. A total of 116 duplicate papers were
excluded. We then reviewed the titles and abstracts of the
remaining studies, excluding those irrelevant to our research
topic. In this step, 779 studies were excluded.

In the next step, we performed a fast reading of the full
text of the remaining papers, excluding 265 studies that were
outside the scope of our research. We then evaluated the
quality of the studies based on the quality assessment criteria
defined in the SLR protocol. Five studies were removed
during the assessment of study quality. Table 8 lists the quality
assessment criteria for our SLR.

We carefully read 213 full-text articles to address the re-
search questions. As 166 articles were not relevant to at least
two of our research questions, they were removed, leaving 47
articles for the final stage.

To objectively assess the performance of our search strat-
egy, we employed the quasi-gold standard (QGS) technique,
as described by [54]. Using this method, a set of articles
related to the research topic is manually selected. Digital

libraries are then searched based on the research strategy
to identify related studies. Finally, the retrieved articles are
compared with QGS, and the sensitivity of the search strategy
is calculated using the following formula:

Sensitivity =
Number of relevant studies retrieved
Total number of relevant studies

× 100

In our SLR, with 30 manually selected relevant studies and
48 studies retrieved using the SLR search strategy, of which
26 were among the manually selected studies, the resulting
sensitivity was approximately 86.67%.
To provide a broader range of relevant studies, we included

papers on the forward snowballing process [55]. This pro-
cess involves identifying and accessing references in a paper
and reviewing cited papers. We used "Cited by" feature of
Google Scholar to identify these additional papers. In this
stage, 695 articles were identified. After removing duplicates
and applying selection criteria similar to those used for the
articles obtained from digital libraries, we added seven more
articles to the final collection. Consequently, 54 articles were
included in this review. Figure 3 shows a diagram of the study-
selection process.
It is important to note that the last search conducted in

digital libraries was on July 23, 2023, and that for forward
snowballing was on August 12, 2023. These dates should be
considered as the starting points for future reviews. The pub-
lications included in our review are listed in Tables 9–11 and
categorized based on their publication venues. These tables
provide an overview of the literature, including the paper title,
author names, publication year, location, and source through
which the studies were discovered. Among the 54 studies
included in our SLR, 27 were sourced from journals, as
presented in Table 9. The remaining 27 studies were presented
at conferences, as shown in Tables 10 and 11.
Additionally, Tables 12–15 summarize the perspectives

and innovations presented in the publications with insights
into their limitations and advantages. These tables demon-
strate the research issues addressed and the contributions of
each study, highlighting the strengths and potential draw-
backs of the proposed solutions. They also indicate which
solutions are open source, with only seven papers having
some or all parts of the project available as open source. Links
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A. Performing adapted search string on digital
sources

(Total=6809)
B. Performing forward snowballing

(Total=695)

Excluding studies based on date, language, and type of literature
(Exclude 5431 studies from A and 137 studies from B.)

# inclusion: 1936

Removing duplicates
(Remove 116 studies form A and 284 studies from B.)

# inclusion: 1536

Reviewing title and abstract
(Exclude 779 studies from A and 171 studies from B.)

# inclusion: 586

Fast reading full text
(Exclude 265 studies in A and 90 studies in B.)

# inclusion: 231

Assessing quality of studies
(Exclude 5 studies in A and 1 studies in B.)

# inclusion: 225

# studies included in SLR: 54

Carefully reading full text
(Exclude 166 studies in A and 5 studies in B.)

# inclusion: 54

FIGURE 3. Studies selection process

to the sources are provided in these tables if they are directly
available in the relevant papers.

3) Data extraction
Data extraction is a critical phase in the systematic literature
review process in which relevant data from selected studies
are systematically collected. To achieve this objective, we
employed the data-extraction form defined in the SLR proto-
col. This form consists of various fields designed to retrieve
answers to our research questions from each of the included
articles. Within the scope of this SLR, we defined the follow-
ing essential elements, each contributing to a comprehensive
understanding of the reviewed literature:

• Short summary of the paper: A concise overview of the
main points and findings of the study.

• Research issue and contribution: Summary of the re-
search issues addressed and contributions of the studies.

• Localization and mapping technique: Identification of
specific techniques applied for localization and map-
ping.

• Localization and mapping accuracy and robustness: As-
sessment of accuracy and robustness levels in localiza-
tion and mapping techniques.

• Running time: Analysis of the running time for localiza-
tion and mapping techniques.

• Advantages of the presented method: The strengths as-
sociated with the localization method presented in each
paper for visually impaired navigation.

• Limitations of the presented method: Identification of
weaknesses or constraints associated with the localiza-
tion technique.

• Types of obstacles addressed: Categorization of obsta-
cles, static and dynamic, as a challenge during naviga-
tion.

• Challenging conditions: Explanation of other challeng-
ing scenarios that the methods are designed to handle.

• Types of sensors: Identification of sensors employed to
receive data from the surroundings.

• Computing resources: Identification of computing re-
sources used in SLAM-based solutions.

• Improvement in navigation: Identification of how
SLAM-based methods enhance navigation for individ-
uals with impaired vision.

• Working area: Whether the method is intended for in-
door, outdoor, or both indoor and outdoor environments.

• Practical challenges and operational efficiency: Eval-
uation of the user-friendliness, cost-efficiency, weight,
comfort for extended use, adjustable fit, fatigue mitiga-
tion, and portability of the SLAM-based assistive tools.

• System prototype information: Detailed information on
functionalities, sensors, computing resources, human-
computer interaction (HCI) mechanisms, assistive tools,
and battery life.

• User evaluation: Assessment of user satisfaction of the
SLAM-based assistive tools.

• Machine learning techniques: Identification of machine
learning techniques used in assistive solutions.

• Open-source availability: Identification of open-source
contributions in the reviewed studies.

• Possible future opportunities and directions: Exploration
of potential future research areas and directions stem-
ming from these findings.

• The research questions addressed: Identification of spe-
cific SLR research questions addressed by each study.
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TABLE 9. List of journal publications included in SLR

Ref. Title Authors Published Year Source
[56] Sonification of navigation instructions for people with visual

impairment
Dragan Ahmetovic and Federico Avanzini and Adriano
Baratè and Cristian Bernareggi and Marco Ciardullo and
Gabriele Galimberti and Luca A. Ludovico and Sergio Ma-
scetti and Giorgio Presti

International Journal
of Human-Computer
Studies

2023 Science@Direct

[57] Sensing and Navigation of Wearable Assistance Cognitive
Systems for the Visually Impaired

Li, Guoxin and Xu, Jiaqi and Li, Zhijun and Chen, Chao and
Kan, Zhen

IEEE Transactions
on Cognitive and
Developmental
Systems

2023 IEEE Digital
Library

[58] Mixture reality-based assistive system for visually impaired
people

Jucheng Song and JixuWang and Shuliang Zhu andHaidong
Hu and Mingliang Zhai and Jiucheng Xie and Hao Gao

Displays 2023 Science@Direct

[59] Research on Design and Motion Control of a Considerate
Guide Mobile Robot for Visually Impaired People

Zhang, Bin andOkutsu,Mikiya andOchiai, Rin and Tayama,
Megumi and Lim, Hun-Ok

IEEE Access 2023 Scopus

[60] UNav: An Infrastructure-Independent Vision-Based Navi-
gation System for People with Blindness and Low Vision

Yang, Anbang and Beheshti, Mahya and Hudson, Todd
E and Vedanthan, Rajesh and Riewpaiboon, Wachara and
Mongkolwat, Pattanasak and Feng, Chen and Rizzo, John-
Ross

Sensors 2022 PubMed

[61] Multi-Floor Indoor Localization Based onMulti-Modal Sen-
sors

Zhou, Guangbing and Xu, Shugong and Zhang, Shunqing
and Wang, Yu and Xiang, Chenlu

Sensors 2022 Scopus

[62] Knowledge driven indoor object-goal navigation aid for vi-
sually impaired people

Hou, Xuan and Zhao, Huailin and Wang, Chenxu and Liu,
Huaping

Cognitive Computa-
tion and Systems

2022 Wiley Online
Library

[63] Indoor-Guided Navigation for People Who Are Blind:
Crowdsourcing for Route Mapping and Assistance

Plikynas, Darius and Indriulionis, Audrius and Laukaitis,
Algirdas and Sakalauskas, Leonidas

Applied Sciences
(Switzerland)

2022 Scopus

[64] AMulti-Sensory Guidance System for the Visually Impaired
Using YOLO and ORB-SLAM

Xie, Zaipeng and Li, Zhaobin and Zhang, Yida and Zhang,
Jianan and Liu, Fangming and Chen, Wei

Information 2022 MDPI

[65] Egocentric Human Trajectory Forecasting with a Wearable
Camera and Multi-Modal Fusion

Qiu, Jianing and Chen, Lipeng and Gu, Xiao and Lo, Frank
P.-W. and Tsai, Ya-Yen and Sun, Jiankai and Liu, Jiaqi and
Lo, Benny

IEEE Robotics and
Automation Letters

2022 Scopus

[66] A wearable navigation device for visually impaired people
based on the real-time semantic visual slam system

Chen, Zhuo and Liu, Xiaoming and Kojima, Masaru and
Huang, Qiang and Arai, Tatsuo

Sensors 2021 PubMed

[67] Multimodal sensing and intuitive steering assistance im-
prove navigation and mobility for people with impaired
vision

Slade, Patrick and Tambe, Arjun and Kochenderfer, Mykel
J.

Science Robotics 2021 Scopus

[68] Assistive Navigation Using Deep Reinforcement Learning
Guiding Robot With UWB/Voice Beacons and Semantic
Feedbacks for Blind and Visually Impaired People

Lu, Chen-Lung and Liu, Zi-Yan and Huang, Jui-Te and
Huang, Ching-I and Wang, Bo-Hui and Chen, Yi and Wu,
Nien-Hsin and Wang, Hsueh-Cheng and Giarré, Laura and
Kuo, Pei-Yi

Frontiers in Robotics
and AI

2021 Scopus

[69] IndoorWearable Navigation SystemUsing 2D SLAMBased
on RGB-D Camera for Visually Impaired People

Hakim, Heba and Fadhil, Ali Advances in
Intelligent Systems
and Computing

2021 Scopus

[70] An RGB-D Camera Based Visual Positioning System for
Assistive Navigation by a Robotic Navigation Aid

Zhang, He and Jin, Lingqiu and Ye, Cang IEEE/CAA Journal
of Automatica Sinica

2021 IEEE Digital
Library

[71] Hierarchical visual localization for visually impaired people
using multimodal images

Cheng, Ruiqi and Hu, Weijian and Chen, Hao and Fang,
Yicheng and Wang, Kaiwei and Xu, Zhijie and Bai, Jian

Expert Systems with
Applications

2021 Scopus

[72] Indoor Topological Localization Based on a Novel Deep
Learning Technique

Liu, Qiang and Li, Ruihao and Hu, Huosheng and Gu,
Dongbing

Cognitive Computa-
tion

2020 Scopus

[73] Combining Obstacle Avoidance and Visual Simultaneous
Localization and Mapping for Indoor Navigation

Jin, SongGuo and Ahmed, Minhaz Uddin and Kim, Jin Woo
and Kim, Yeong Hyeon and Rhee, Phill Kyu

Symmetry 2020 MDPI

[74] Wearable travel aid for environment perception and naviga-
tion of visually impaired people

Bai, Jinqiang and Liu, Zhaoxiang and Lin, Yimin and Li, Ye
and Lian, Shiguo and Liu, Dijun

Electronics (Switzer-
land)

2019 Scopus

[75] An ARCore based user centric assistive navigation system
for visually impaired people

Zhang, Xiaochen and Yao, Xiaoyu and Zhu, Yi and Hu, Fei Applied Sciences
(Switzerland)

2019 Scopus

[76] Virtual-Blind-Road Following-Based Wearable Navigation
Device for Blind People

Bai, Jinqiang and Lian, Shiguo and Liu, Zhaoxiang and
Wang, Kai and Liu, Dijun

IEEE Transactions
on Consumer
Electronics

2018 IEEE Digital
Library

[77] An indoor wayfinding system based on geometric features
aided graph SLAM for the visually impaired

Zhang, He and Ye, Cang IEEE Transactions
on Neural Systems
and Rehabilitation
Engineering

2017 PubMed

[78] Plane-Aided Visual-Inertial Odometry for 6-DOF Pose Es-
timation of a Robotic Navigation Aid

Zhang, He and Ye, Cang IEEE Access 2020 Scopus

[79] SRAVIP: Smart Robot Assistant for Visually Impaired Per-
sons

Albogamy, Fahad and Alotaibi, Turk and Alhawdan, Ghalib
and Mohammed, Faisal

International Journal
of Advanced
Computer Science
and Applications

2021 Forward
Snowballing

[80] A Lightweight Approach to Localization for Blind and Vi-
sually Impaired Travelers

Crabb, Ryan and Cheraghi, Seyed Ali and Coughlan, James
M

Sensors 2023 Forward
Snowballing

[82] Wearable system to guide crosswalk navigation for people
with visual impairment

Son, Hojun and Weiland, James Frontiers in Electron-
ics

2022 Forward
Snowballing

[83] Indoor Low Cost Assistive Device using 2D SLAM Based
on LiDAR for Visually Impaired People

Hakim, Heba and Fadhil, Ali Iraqi Journal
for Electrical
& Electronic
Engineering

2019 Forward
Snowballing
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TABLE 10. List of conference papers included in SLR - part 1.

Ref. Title Authors Published Year Source
[84] Efficient Real-Time Localization in Prior Indoor

Maps Using Semantic SLAM
Goswami, R. G. and Amith, P. V. and Hari, J. and
Dhaygude, A. and Krishnamurthy, P. and Rizzo, J.
and Tzes, A. and Khorrami, F.

9th Inter. Conf.
on Automation,
Robotics and
Applications
(ICARA)

2023 IEEE Digi-
tal Library

[85] Detect and Approach: Close-Range Navigation Sup-
port for People with Blindness and Low Vision

Hao, Yu and Feng, Junchi and Rizzo, John-Ross and
Wang, Yao and Fang, Yi

European Conf. on
Computer Vision

2022 Springer
Link

[87] PathFinder: Designing a Map-Less Navigation Sys-
tem for Blind People in Unfamiliar Buildings

Kuribayashi, Masaki and Ishihara, Tatsuya and Sato,
Daisuke and Vongkulbhisal, Jayakorn and Ram,
Karnik and Kayukawa, Seita and Takagi, Hironobu
and Morishima, Shigeo and Asakawa, Chieko

CHI Conf. on
Human Factors
in Computing
Systems

2023 ACM Digi-
tal Library

[88] A Novel Perceptive Robotic Cane with Haptic Nav-
igation for Enabling Vision-Independent Participa-
tion in the Social Dynamics of Seat Choice

Agrawal, Shivendra and West, Mary Etta and Hayes,
Bradley

IEEE Inter. Conf.
on Intelligent
Robots and
Systems

2022 Scopus

[89] A Multi-Sensory Blind Guidance System Based on
YOLO and ORB-SLAM

Rui, Chufan and Liu, Yichen and Shen, Junru and Li,
Zhaobin and Xie, Zaipeng

IEEE Inter. Conf.
on Progress in
Informatics and
Computing (PIC)

2021 IEEE Digi-
tal Library

[90] Indoor Navigation Assistance for Visually Impaired
People via Dynamic SLAM and Panoptic Segmenta-
tion with an RGB-D Sensor

Ou, Wenyan and Zhang, Jiaming and Peng, Kunyu
and Yang, Kailun and Jaworek, Gerhard and Müller,
Karin and Stiefelhagen, Rainer

Inter. Conf.
on Computers
Helping People
with Special
Needs

2022 Scopus

[91] AWearable Robotic Device for Assistive Navigation
and Object Manipulation

Jin, Lingqiu and Zhang, He and Ye, Cang IEEE Inter. Conf.
on Intelligent
Robots and
Systems

2021 Scopus

[92] Multi-functional smart E-glasses for vision-based in-
door navigation

Xu, Jiaqi and Xia, Haisheng and Liu, Yueyue and Li,
Zhijun

Inter. Conf.
on Advanced
Robotics and
Mechatronics
(ICARM)

2021 Scopus

[93] Personalized Navigation that Links Speaker’s Am-
biguous Descriptions to Indoor Objects for Low Vi-
sion People

Lu, Jun-Li and Osone, Hiroyuki and Shitara, Akihisa
and Iijima, Ryo and Ryskeldiev, Bektur and Sarcar,
Sayan and Ochiai, Yoichi

Inter. Conf. on
Human-Computer
Interaction

2021 Springer
Link

[95] Guiding Blind Pedestrians in Public Spaces by Un-
derstandingWalking Behavior of Nearby Pedestrians

Kayukawa, Seita and Ishihara, Tatsuya and Tak-
agi, Hironobu and Morishima, Shigeo and Asakawa,
Chieko

Proc. ACM
Interact. Mob.
Wearable
Ubiquitous
Technol.

2020 ACM Digi-
tal Library

[96] A Navigation Aid for Blind People Based on Visual
Simultaneous Localization and Mapping

Chen, Cing-Han and Wang, Chien-Chun and Lin,
Sian-Fong

IEEE Inter. Conf.
on Consumer
Electronics

2020 IEEE Digi-
tal Library

[97] Can we unify perception and localization in assisted
navigation? an indoor semantic visual positioning
system for visually impaired people

Chen, Haoye and Zhang, Yingzhi and Yang, Kailun
and Martinez, Manuel and Müller, Karin and Stiefel-
hagen, Rainer

Computers
Helping People
with Special
Needs: 17th Inter.
Conf., ICCHP

2020 Scopus

[98] Indoor Localization for Visually Impaired Travelers
Using Computer Vision on a Smartphone

Fusco, Giovanni and Coughlan, James M. 17th Inter. web for
all Conf.

2020 ACM Digi-
tal Library

[99] Human-Robot Interaction for Assisted Wayfinding
of a Robotic Navigation Aid for the Blind

Zhang, He and Ye, Cang Inter. Conf. on Hu-
man System Inter-
action, HSI

2019 Scopus

[100] AMulti-Sensor Fusion System for Improving Indoor
Mobility of the Visually Impaired

Zhao, Yu and Huang, Ran and Hu, Biao Chinese
Automation
Congress (CAC)

2019 IEEE Digi-
tal Library

[101] NavigationAgents for theVisually Impaired: A Side-
walk Simulator and Experiments

Weiss, Martin and Chamorro, Simon and Girgis,
Roger and Luck, Margaux and Kahou, Samira E. and
Cohen, Joseph P. and Nowrouzezahrai, Derek and
Precup, Doina and Golemo, Florian and Pal, Chris

Proceedings of
Machine Learning
Research

2019 Scopus

[102] Real-time localization and navigation in an indoor
environment using monocular camera for visually
impaired

Ramesh, Kruthika and Nagananda, S. N. and Ra-
masangu, Hariharan and Deshpande, Rohini

5th Inter. Conf.
on Industrial
Engineering and
Applications
(ICIEA)

2018 IEEE Digi-
tal Library
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TABLE 11. List of conference papers included in SLR - part 2.

Ref. Title Authors Published Year Source
[103] Indoor Navigation using Text Extraction Eden, Jake and Kawchak, Thomas and Narayanan, Vijaykr-

ishnan
IEEE Inter.
Workshop on Signal
Processing Systems
(SiPS)

2018 IEEE Digital
Library

[104] Autonomous Scooter Navigation for People with Mobility
Challenges

Mulky, Rajath Swaroop and Koganti, Supradeep and Shahi,
Sneha and Liu, Kaikai

IEEE Inter. Conf.
on Cognitive
Computing (ICCC)

2018 IEEE Digital
Library

[105] Localizing people in crosswalks using visual odometry: Pre-
liminary results

Lalonde, Marc and St-Charles, Pierre-Luc and Loupias,
Délia and Chapdelaine, Claude and Foucher, Samuel

Inter. Conf. on Pat-
tern Recognition Ap-
plications and Meth-
ods (ICPRAM)

2018 Scopus

[106] Plane-aided visual-inertial odometry for pose estimation of
a 3D camera based indoor blind navigation

Zhang, He and Ye, Cang British Machine Vi-
sion Conf. (BMVC)

2017 Scopus

[107] CCNY Smart Cane Chen, Qingtian and Khan, Muhammad and Tsangouri,
Christina and Yang, Christopher and Li, Bing and Xiao,
Jizhong and Zhu, Zhigang

IEEE 7th Annual
Inter. Conf. on
CYBER Technology
in Automation,
Control, and
Intelligent Systems
(CYBER)

2017 IEEE Digital
Library

[108] A Cloud and Vision-Based Navigation System Used for
Blind People

Bai, Jinqiang and Liu, Dijun and Su, Guobin and Fu,
Zhongliang

Inter. Conf. on artifi-
cial intelligence, au-
tomation and control
technologies

2017 ACM Digital
Library

[109] Indoor positioning and obstacle detection for visually im-
paired navigation system based on LSD-SLAM

Endo, Yuki and Sato, Kei and Yamashita, Akihiro and Mat-
subayashi, Katsushi

Inter. Conf. on
Biometrics and
Kansei Engineering
(ICBAKE)

2017 Scopus

[110] SeeWay: Vision-Language Assistive Navigation for the Vi-
sually Impaired

Yang, Zongming and Yang, Liang and Kong, Liren and Wei,
Ailin and Leaman, Jesse and Brooks, Johnell and Li, Bing

IEEE Inter. Conf. on
Systems, Man, and
Cybernetics (SMC)

2022 Forward
Snowballing

[111] The Methods of Visually Impaired Navigating and Obstacle
Avoidance

Shahani, Siddharth and Gupta, Nitin Inter. Conf. on Ap-
plied Intelligence and
Sustainable Comput-
ing (ICAISC)

2023 Forward
Snowballing

[112] The Design of Person Carrier Robot using SLAM and Ro-
bust Salient Detection

Yun, Youngjae and Gwon, Taeyang and Kim, Donghan 18th Inter. Conf. on
Control, Automation
and Systems
(ICCAS)

2018 Forward
Snowballing
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III. RESULT
In this section, the findings of SLR are presented. Figure 4
shows the number of studies included in this review, which fo-
cused on BVI navigation using SLAM techniques. As shown
in the figure, although only papers published in the first half of
2023 are included in this review, they constitute a substantial
portion of the total. The growth in the number of studies in this
domain suggests an advancement in SLAM techniques and an
increase in their usage for developing navigation technologies
for visually impaired individuals. This section is divided into
four parts to answer the research questions. It discusses the
types of SLAM techniques used to develop assistive tech-
nologies for visually impaired navigation, delves into the
advantages and limitations of these techniques, highlights the
challenging scenarios addressed, and presents the attributes
of the SLAM technology that contribute to the enhancement
of visually impaired navigation.
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FIGURE 4. Publications included in this review on SLAM-based BVI
navigation, by year

A. RQ1. WHAT LOCALIZATION AND MAPPING
APPROACHES ARE USED FOR THE NAVIGATION OF THE
VISUALLY IMPAIRED?
Given the variety of SLAM systems designed with differ-
ent sensors, applications, and scenarios, this section focuses
specifically on reviewing the types of SLAM used for the
navigation of the visually impaired. It is a key technology
in robotics and computer vision and has the potential to
assist visually impaired individuals with navigation. This can
help visually impaired individuals provide real-time location
information, maps, and spatial awareness. Among the 54
studies surveyed, three strategies were common, as shown in
Table 16. In this table, we use the exact terms mentioned in
the literature for the localization and mapping techniques.

To further understand the technical features employed in
these solutions, the detailed information is presented in Tables
17–19. These tables focus on the localization and mapping
components of the assistive system, specifically highlighting
the sensor types, computing resources, and application of ma-
chine learning-based methods. By examining these features,
we can gain deeper insight into how these systems are struc-

tured and the diverse technologies utilized to achieve accurate
and efficient SLAM for assistive navigation. It is important to
note that this information relates only to the localization and
mapping components of the assistive navigation solutions.
Details of the entire system are provided in Tables 34–38.
This section is divided into three subsections, where we

discuss the localization and mapping approaches, the sensor
types used for these approaches, and the computing resources
required to perform these approaches.

1) Approaches
The majority of studies have leveraged established SLAM
techniques, such as ORB-SLAM, while some studies have
developed new solutions tailored to their needs. For example,
[73] proposed visual simultaneous localization and mapping
for the moving-person tracking (VSLAMMPT) method. The
proposed method was designed to assist people with disabili-
ties, particularly visually impaired individuals, in navigating
indoor environments. Additionally, various studies have used
the SLAM components of existing frameworks, such as AR-
Core and ZED camera SLAM.
It is worth noting that several studies have employed VIO

and SLAM as the core components in their proposed systems,
whereas others have employed them to enhance the robust-
ness of localization [71], for comparison with alternative
localization approaches [68], or to develop new localization
methods [80]. For example, [80] presented a novel local-
ization approach specifically designed for individuals with
visual impairment. This method combines visual landmark
identification, VIO, and spatial constraints derived from a
two-dimensional (2D) floor plan.
SLAM methodologies can be categorized into feature-

based, direct, and optical-flow techniques. Feature-based
methods extract and describe feature points in an image,
which are then matched across different images for tracking
and mapping. On the other hand, direct methods directly
calculate the luminosity changes of pixel blocks. Optical flow
methods utilize the optical flow changes in feature points,
pixel gradient points, or the entire image to track and map
the environment [66].
SLAMalgorithms are further categorized into optimization-

and filtering-based methods, each with distinct approaches
to map creation and agent localization. Optimization-based,
often referred to as Graph SLAM, treats the problem as a large
optimization task, where the goal is to find the set of poses
and landmark positions that best explain the observed sensor
measurements. This is typically achieved by constructing a
graph in which nodes represent agent poses or landmarks
and edges represent constraints or observations between
them. The solution is determined by minimizing the global
cost function, which represents the error between the pre-
dicted and actualmeasurements, using nonlinear optimization
techniques. On the other hand, filtering-based SLAM uses
recursive Bayesian filters, such as the ExtendedKalman Filter
(EKF) or Particle Filter, to incrementally update the map and
the agent’s position as new sensor data arrive.
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TABLE 12. A summary of perspectives and innovations in SLAM-based navigation solutions, with insights into limitations and advantages - Part I.

Ref. Open-source Research Issue Contribution Advantages Limitations
[56] • Addressing sonification techniques

for navigation instruction
Innovative sonification for BVI nav-
igation

Publicly available localization ap-
proach

Prone to drift, utilizing markers for
user positioning

[57] • Enhancing indoor navigation for
BVI with wearable technologies

Low-cost wearable, SLAM naviga-
tion, multitarget recognition

Non-intrusive wearable device, Map
reuse,

Network impact, cognitive feedback
needs

[58] • Improving perception and indepen-
dent task completion for BVI

Mixed reality, real-time perception,
remote assistance

Improves perception, functions in di-
verse indoors, advanced interactive
platform, sensor integration

Network status influence

[59] • Addressing guide robots’ lack of
consideration for user status and ob-
stacle properties

Introduced considerate robot design
and spatial risk map for navigation

Robot adapts speed and movement,
enhancing natural interaction
without disturbing others; calculates
pedestrian directions

Needs improved speech recognition,
real-world testing with BVI, effec-
tive environmental interaction

[60] • Addressing limitations of sensor-
based navigation for BVI

Infrastructure-independent vision-
based navigation for BVI

Map-evolution feedback loop en-
sures dynamic updates, and offline
computation allows for continued
use during signal loss.

Requires a dense reference image
database; difficult to adapt to diverse
environments.

[61] • Improving high-precision indoor lo-
calization in complex multi-floor en-
vironments

Hybrid localization framework com-
bining visual and wireless signals for
high-precision indoor localization

Multi-modal sensor integration,
fusion-based localization, and GAN-
based approach for efficient, high-
precision multi-floor localization

Implementation complexity, low po-
sitioning accuracy, and dependence
on fingerprint database and offline
maps

[62] • Applying object-goal navigation to
aid BVI in indoor settings

Migration of object-goal navigation
to assistive devices and a knowledge-
driven approach

Active assistance with context-
aware, knowledge-driven navigation
for improved indoor object-goal
guidance

Dependency on unlabelled images,
scene understanding complexity, and
generalization to unfamiliar environ-
ments.

[63] • Operationalizing Web 2.0 social net-
working for indoor navigation assis-
tance

Innovative integration of Crowd-
sourcing and social networking for
indoor navigation

Constant access to a 24/7 indoor
route database, offline functionality,
and flexible, user-friendly wearable
devices

Relies heavily on social networking,
high processing power, and stable In-
ternet connectivity

[64] • Enhancing guidance systems for BVI
with multi-sensory integration for
improved indoor navigation

Integration of ORB-SLAM with
YOLO, dense map generation, and
practical prototype implementation

Obstacle avoidance with multi-
sensory feedback, dense navigation
maps, and real-time target detection,
implemetation of a practical smart
cane

Dense map may not always align
with reality, pathfinding has high
computational costs, and target de-
tection is trained based on a generic
dataset.

[65] Trajectory
dataset 1

Forecasting egocentric camera wear-
ers’ trajectories in crowded spaces

A new egocentric dataset, a
Transformer-based model with
cascaded cross-attention, and
demonstration of socially compliant
robot navigation

An egocentric view with multi-
modal fusion for trajectory forecast-
ing; Socially compliant robot navi-
gation and assists visually impaired
individuals.

Not mentioned

[66] • limited navigation options, wear-
able devices, semantic visual SLAM,
cost-effective solutions

Semantic SLAM integration, real-
time solution, efficient resource allo-
cation

Real-time semantic understanding,
efficient resource allocation,
enhanced navigation accuracy, voice
broadcast for destination assistance

Remote server challenges including
internet access dependency, security,
and privacy concerns

[67] ✓ Decreasing cognitive burden, in-
creasing walking speed with a mul-
timodal augmented cane

Improving mobility with sensors, in-
tuitive steering, and advanced nav-
igation features, increasing walking
speed

Enhanced mobility, faster walking,
precise steering, reduced cognitive
load, fewer collisions, increased con-
fidence, reliable obstacle avoidance,
failure backup, selecting preferred
walking speed by user

Heavy, requiring mechanical assem-
bly

[68] • Enhancing navigation with improved
robotic assistance in dynamic envi-
ronments.

A novel haptic-guided robot with en-
hanced navigation, dynamic obsta-
cle avoidance via UWB, and voice-
enabled beacon feedback

Enhanced environmental
information, intuitive navigation,
precise UWB positioning, semantic
feedback, and DRL-based obstacle
avoidance.

Dynamic obstacles impact SLAM
accuracy; implicit learning in the
simulator may cause real-world un-
certainties.

[69] • Efficient indoor navigation aid. Multi sensor utilization, efficient al-
gorithm utilization, and real-time
voice guidance.

Cost-effective, real-time navigation,
accurate mapping, obstacle detec-
tion, efficient path planning.

Limited to static, simple environ-
ments.

[70] • Enhancing navigation accuracy and
robustness in large indoor spaces for
assistive technologies.

Introduced DVIO for enhanced 6-
DOF pose estimation and VPS for
accurate assistive navigation.

Enhanced pose accuracy, real-time
updates, effective wayfinding, obsta-
cle avoidance, and significant pose
error reduction.

Pose drift remains an issue in com-
plex environments.

1 https://github.com/Jianing-Qiu/TISS (Accessed on 3 May 2024)

Systems such as ORB-SLAM and RTAB-Map are feature-
and optimization-based, employing features and graph op-
timization for mapping and localization. Conversely, LSD-
SLAM and DSO are examples of direct and optimization-
based SLAM. Some systems, such as Semantic SLAM, may
adopt either approach, depending on their implementation.
It is important to note that the method and type of SLAMs
are not directly mentioned in all papers, so the information
provided here is a general categorization based on common
practices within each category.

The reviewed studies demonstrate the versatility of SLAM

in various navigation scenarios. The specific implementation
and aspects addressed in each study varied depending on
the application. SLAM can be employed in environments
that lack a map and can dynamically create it while navi-
gating. This involves simultaneous map creation and local-
ization within an environment. Alternatively, SLAM can be
employed to generate maps for subsequent navigation. In
this case, SLAM first builds a map of the environment and
then the map is utilized during navigation. Studies have also
used SLAM odometry for navigational tracking. Odometry
provides a continuous estimate of the position and orientation
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TABLE 13. A summary of perspectives and innovations in SLAM-based navigation solutions, with insights into limitations and advantages - Part II.

Ref. Open-source Research Issue Contribution Advantages Limitations
[71] • Improving visual localization in

challenging outdoor settings.
Unified Dual Desc network enhanc-
ing descriptor extraction and multi-
modal integration for assistive local-
ization.

Enhances robustness using multi-
modal imaging, advanced descrip-
tors, and sequential integration for
outdoor navigation.

Lacks real-time execution capability
in assistive device.

[72] • Enhancing independence for visu-
ally impaired through semantic en-
vironmental understanding and nav-
igation.

Integrates ConvNets for semantic
mapping; enhances topological lo-
calization.

Enhanced accuracy, semantic guid-
ance, robustness to changes.

Computational inefficiency, subopti-
mal performance in motion blur ef-
fects.

[73] • Addressing the lack of comprehen-
sive solutions for indoor navigation
and obstacle avoidance.

Integration of dynamic person-
detection method (EER–ASSL) and
VSLAM for real-time navigation
assistance in cluttered environments.

Enhanced smooth movement, reli-
able obstacle avoidance, effective
navigation in dynamic environments.

Limited instruction capabilities, the
decrease in person detection perfor-
mance under varying lighting condi-
tions and speed.

[74] • Addressing lack of integrated nav-
igation and object recognition sys-
tems.

Integration of lightweight CNN-
based object recognition and visual
SLAM for improved environment
perception and navigation.

Load cognitive decrease, safe and
quick navigation, enhanced percep-
tion, and real-time performance on
smartphones.

Unable to detect small-size obstacles
and obstacle detection limitations.

[75] • Addressing lack of user-centric in-
door navigation aids for visually im-
paired.

ARCore integration, adaptive path
planning, and dual-channel user in-
teraction for indoor navigation.

Enhanced mapping, obstacle-
avoiding path planning, and
intuitive dual-channel interaction for
improved indoor navigation.

Reliance on existing indoor scenario
CAD maps.

[76] • Addressing gaps in localization,
way-finding, and route following for
visually impaired navigation.

Dynamic subgoal route following,
visual SLAM integration, and wear-
able optical see-through glasses for
enhanced indoor navigation.

Enhances precision with visual
SLAM, cost-effective sensors,
efficient obstacle avoidance, safe
indoor navigation with dynamic
subgoal selection.

Not mentioned

[77] • Addressing accumulative pose error,
GPS-denied navigation, and real-
time pose estimation.

New 6-DOF pose estimation method
using floor and wall information, and
a real-time wayfinding system.

Reduces accumulative pose error and
provides real-time wayfinding

System less effective in simple tasks,
weight causes discomfort, and fails
at high walking speeds over 0.6 m/s.

[78] • Addressing accurate 6-DOF pose es-
timation challenges through inno-
vative visual-inertial odometry for
robotic navigation aids.

A plane-aided VIO method and
a plane-consistency check for en-
hanced pose estimation accuracy.

Improved accuracy, a plane-
consistency check, practical
implementation for assistive
navigation, and outperformance
of state-of-the-art methods.

Not mentioned

[79] • Enhancing navigation in an
indoor public environment for
pre-scheduled tasks with user-
independent robotic solutions.

Innovative user-independent robotic
assistance for indoor navigation.

Enhancing inclusivity and
efficiency: user-independent robotic
assistance.

It is not mentioned how the proposed
approach handles crowds in the pub-
lic places under study.

[80] ICOSR
repository 2

Developing a lightweight indoor lo-
calization system using a 2D floor
plan of the environment rather than
a 3D model.

Innovative localization algorithm in-
tegrating visual landmarks, VIO, and
2D floor plans.

Smartphone-based, lightweight, and
robust localization approach.

Noisy distance estimates due to im-
precise bounding boxes.

[82] Raw data
supporting

the
conclusion

Addressing the need to ensure safe
street crossing

Introducing a comprehensive wear-
able system for safe urban naviga-
tion, integrating real-time computer
vision and prior maps.

Utilizes pre-built LiDAR maps, such
as those publicly available and cre-
ated for autonomous vehicles, sup-
ports user’s preferred walking speed.

Dependent on specific crosswalk
textures, lacks dynamic obstacle
handling, may face instability with
changing features, and outdoor noise
interference.

[83] • Integration of navigation and object
recognition.

Integration of navigation, object
recognition, and low-cost sensors.

Integrated navigation and object
recognition, low-cost sensors,
efficient path planning, accurate
real-time object identification in
static scenarios.

Restricted to static simple environ-
ments.

[84] • Enhancing real-time global indoor
localization using Semantic SLAM
and a priori maps for GPS-deprived
environments.

Implementing vector-based semantic
extraction from floor plans, efficient
particle filter localization, and lever-
aging loop closures for active seman-
tic point cloud.

Real-time, accurate localization; in-
tegration of semantic information;
using deep learning for enhanced ro-
bustness and efficiency.

Visual aliasing, limited semantic
classes.

[85] • Addressing navigation challenges
for BVI by developing a wearable
solution for real-time guidance to
target objects in unfamiliar settings.

Introducing a wearable navigation
system with real-time object local-
ization, visual SLAM, and trajectory
estimation for efficient user guid-
ance.

High accuracy, vision-based, real-
time assistance, continuous object
tracking, and portable system design.

Not explicitly mentioned.

2 https://www.openicpsr.org/openicpsr/project/183714/version/V1/view (Accessed on 3 May 2024)

of an agent based on the sensor readings.
Our analysis, underscored by the classifications in Ta-

ble 16, indicates a strong preference for feature-based and
optimization-based SLAM approaches for visually impaired
navigation. This preference is likely due to the robustness and
efficiency of these methods in processing visual data, which
is key for real-time assistive navigation.

Figure 5 provides insight into the use of various localiza-
tion and mapping techniques for visually impaired navigation
from 2017 to the date when SLR was conducted (July 2023).

This figure illustrates that visual techniques has consistently
been used across all years. Although many other techniques
also operate based on visual data, we mentioned each of these
techniques, as indicated in the referenced studies.
The utilization of semantic SLAM and Cartographer

SLAM signifies a recent trend towards leveraging advanced
spatial understanding and mapping capabilities for visually
impaired navigation. Semantic SLAM incorporates higher-
level scene interpretation and enhances users’ contextual
awareness. On the other hand, Cartographer SLAM provides
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TABLE 14. A summary of perspectives and innovations in SLAM-based navigation solutions, with insights into limitations and advantages - Part III.

Ref. Open-source Research Issue Contribution Advantages Limitations
[87] • Addressing the challenge of navi-

gation in unfamiliar indoor spaces
by designing a map-less system,
PathFinder

Developing a map-less navigation
robot system incorporating sign
recognition and intersection
detection, using scenario-based
participatory design with five blind
participants.

Enhanced navigation confidence,
provided key sign information,
offered audio feedback, ensured
safe, independent mobility by
PathFinder

Limited study environments,
assumed environments without steps
or floor transitions, no empirical
comparison with participants’
regular aids, inability to recruit
younger participants and insufficient
number of guide dog users, possible
positive bias from participants who
have previously participated in
studies, physical demand, Bluetooth
connectivity issues, privacy
concerns, inability to navigate
in congested spaces, surrounding
people may not recognize that
users are disabled as they don’t use
traditional aids.

[88] • Enhancing independent navigation
and social seat selection with a per-
ceptive robotic cane system.

Introducing a robotic cane with com-
puter vision for navigation and social
seat selection, featuring vibrotactile
feedback and successful pilot valida-
tion.

Independent navigation, social
norm-aware seat selection, intuitive
vibrotactile feedback, and effective
pilot-validated guidance.

Potential suboptimal chair detection,
discrepancy between user prefer-
ences and performance.

[89] • Overcoming limitations of existing
blind navigation methods by inte-
grating multi-sensory feedback for
comprehensive and intuitive mobil-
ity.

Integration of YOLO and ORB-
SLAM, enhanced by novel
algorithms, provides reliable
multi-sensory guidance

Enhanced accuracy, multi-sensory
feedback, real-time object detection,
dense navigation maps, and compre-
hensive guidance improve mobility
and safety.

Not explicitly mentioned

[90] • Addressing gap: aiding visually im-
paired in dynamic indoor navigation,
obstacle detection, and social dis-
tancing.

Wearable RGB-D assistant system
aiding indoor localization, mapping,
and dynamic obstacle detection.

Dynamic object detection, enhanced
obstacle avoidance, panoptic seg-
mentation for scene understanding,
robust tracking without additional
models, and RGB-D sensor integra-
tion.

Imperfect panoptic segmentation,
leading to errors in object
recognition; computational
complexity, influenced by the
number of dynamic objects present
in the scene.

[91] • Addressing the gap: wearable device
aiding visually impaired with indoor
object manipulation tasks.

Hand-worn assistive device, RGBD-
VIOmethod, effective human-device
interface.

Enhanced pose estimation, depth
information utilization, improved
human-device interaction, effective
object manipulation.

Not mentioned

[92] • Addressing the challenge of indoor
navigation, integrating SLAM and
deep learning enhances environmen-
tal perception.

Introducing multi-functional smart
E-Glasses for enhanced indoor nav-
igation and lightweight object detec-
tion.

Real-time navigation, high object de-
tection precision, and robust SLAM
integration.

Future enhancements aim to improve
device comfort, portability, and size,
addressing user concerns and en-
hancing overall usability.

[93] • Addressing the gap in understanding
between visually impaired individu-
als’ perceptions and their actual sur-
roundings for navigation technology.

Introducing personalized navigation
system with object detection and de-
scription, and re-training models.

Personalized navigation, object de-
tection, reduced time for finding des-
tinations, and improved interaction.

Model re-training challenges, en-
vironmental complexity, and high
computational cost.

[95] • Addressing the need for a guiding
system to facilitate seamless walking
in public spaces.

Introducing a comprehensive system
aiding blind pedestrians by under-
standing nearby pedestrians’ behav-
ior.

Convenient suitcase design, accurate
motion tracking, effective tactile in-
terface for enhanced navigation.

Weight discomfort, space
constraints, speed adjustment
difficulties, and technological
improvements for enhanced
usability.

[96] • Addressing the need for advanced
navigation aid for the visually im-
paired using VSLAM technology.

Introducing a navigation aid sys-
tem merging VSLAM with pre-
established maps.

Not explicitly mentioned Not explicitly mentioned

[97] • Addressing the need for unified in-
door navigation, integrating scene
perception and visual localization.

Introducing a unified semantic visual
localization system, enhancing ob-
stacle avoidance and spatial aware-
ness.

Real-time awareness,
comprehensive understanding,
and obstacle avoidance.

Restricted camera field of view and
inconsistencies in semantic segmen-
tation results impacting user confi-
dence.

[98] Upon
publication

Addressing indoor navigation
challenges through smartphone-
based computer vision without new
infrastructure.

Real-time app development, robust
localization algorithm, and user-
friendly navigation.

Cost-effective deployment, enhances
usability, improves localization
accuracy, promises full-featured
wayfinding, and camera-agnostic
navigation for ease of use.

Challenges in wide, open indoor
spaces due to limitations in current
approach, suggesting potential for
augmented reality integration.

SLAM in 2D and 3D across various platforms and sensor
configurations, offering innovative solutions to tackle the
diverse challenges associated with BVI navigation.

ORB-SLAM algorithms, including ORB-SLAM (pub-
lished in 2015), ORB-SLAM2 (published in 2017), andORB-
SLAM3 (published in 2021), have gained popularity because
of their robustness and performance. This can be attributed
to its efficient feature extraction and matching techniques,
making it well suited for real-time navigation applications.

Customized techniques have been developed to meet spe-
cific needs. This trend indicates that researchers have adjusted

the SLAM techniques to better match the specific require-
ments of their intended applications. This suggests closer
integration of SLAM with domain-specific needs.

2) Sensor type

The sensors employed in SLAM solutions for BVI navigation
are diverse and include various types of cameras, LiDAR,
IMU, and other specialized sensors. As shown in Figure 6,
we categorized the sensors into three types: cameras, LiDAR,
and other sensors.
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TABLE 15. A summary of perspectives and innovations in SLAM-based navigation solutions, with insights into limitations and advantages - Part IV.

Ref. Open-source Research Issue Contribution Advantages Limitations
[99] • Addressing the indoor wayfinding

problem
Introducing specialized robotic nav-
igation aid, VIO method, guiding
modes, and Human Intent Detection
for enhanced navigation assistance.

Enhanced VIO method, two guiding
modes, and automated mode selec-
tion.

Validation in larger spaces, user
feedback incorporation, and opera-
tional restrictions.

[100] • Addressing independent indoor
corridor navigation through multi-
sensor fusion and semantic mapping.

Semantic mapping, multi-sensor
fusion, real-time performance
enhancement

Enhanced corridor navigation, se-
mantic mapping, landmark detec-
tion, real-time performance, multi-
sensor fusion for improved naviga-
tion experience.

Object recognition limitations, arrow
direction detection issue, training re-
quirement for unknown objects.

[101] SEVN-data 3 Enhancing Reinforcement Learning
environments to develop a naviga-
tion assistant tailored for the BVI
community.

Developing a benchmark dataset and
Reinforcement Learning training en-
vironment to advance navigation
agent capabilities using real-world
imagery and neural architecture.

SEVN offers realistic training with a
rich, annotated dataset and a multi-
modal fusion model for effective
BVI navigation.

SEVN offers an extensible
Reinforcement Learning
environment, but improved model
performance requires.

[102] • Addressing real-time localization
and navigation in indoor settings
with a monocular camera, focusing
on computational efficiency, user-
friendly interfaces, and integrated
algorithms.

Introducing a non-filter based visual
SLAM with integrated object detec-
tion and distance-depth estimation
algorithms, using a single monocular
camera for BVI indoor navigation.

Utilizing a single camera and simpler
SLAM algorithm for cost-effective,
efficient real-time performance.

Not mentioned

[103] • Enhancing indoor localization for vi-
sually impaired shoppers using text
extraction, addressing gaps in tradi-
tional visual assistance systems.

Expanding SLAM algorithm for
larger spaces using GIST/SURF
features and navigating through
text-rich environments.

Simplistic setup, no markers needed,
and efficient real-time localization.

Operates only within length dimen-
sion of the aisle, limited by text den-
sity.

[104] Android APIs Enabling safe autonomous naviga-
tion for elderly and visually impaired
in crowded environments.

Design of an intelligent autonomous
scooter with advanced sensor fusion,
SLAM techniques, and hybrid map-
ping solutions.

Improved safety and autonomy, hy-
brid mapping for diverse environ-
ments, precise steering control.

Not mentioned

[105] • Localizing pedestrians in crosswalks
using visual odometry, addressing
challenges in uniform textures and
repetitive landmarks.

Introducing a prototype for localiz-
ing pedestrians in crosswalks using
visual odometry.

Accurate on weakly textured sur-
faces, addressing scaling issues in
monocular camera setups.

Initialization issues, tracking loss
due to strong orientation variations,
and challengeswith oscillatorywalk-
ing patterns.

[106] • Improving indoor pose estimation
accuracy for navigation aids using
plane features in feature-sparse envi-
ronments.

Introducing PAVIOmethod, utilizing
plane features and factor graph opti-
mization to improve pose estimation
for indoor navigation.

Improved pose estimation accuracy
and robustness, enhanced stability,
accurate 3D mapping.

Not mentioned

[107] • Addressing indoor navigation chal-
lenges to enhance mobility and inde-
pendence.

Implementation of SmartCane with
Google Tango for real-time indoor
navigation and demonstration of its
effectiveness.

Enhanced indoor navigation with
real-time path planning, multimodal
feedback, and an intuitive control
panel interface.

Requiring further user evaluation to
assess effectiveness

[108] • Developing a cloud and vision-based
system for safe navigation and de-
tailed perception.

Integrating cloud computing with
vision-based navigation, enhancing
perception, and improving object
recognition for blind individuals.

Detailed perception, real-
person safety support, abundant
surrounding information, and
improved object recognition.

Requiring extensive vision-based
mapping, struggles with similar
scenarios, and needs improved scene
parsing, currency validation, and
object recognition.

[109] • Addressing the need for specialized
navigation systems for visually im-
paired individuals using SLAM tech-
nology for real-time guidance.

Introducing a wearable camera with
LSD-SLAM for real-time position-
ing, obstacle detection, and route
guidance.

Efficient calculation power, robust
performance, accurate mapping, dy-
namic adaptation, real-time assis-
tance.

Requires high-contrast environments
for accurate mapping; low contrast
may need external positioning solu-
tions.

[110] • Addressing the need for an innova-
tive navigation system using vision-
language model-based approach.

First BVI navigation system using
spoken instructions, visual-language
integration, and heuristic-based path
planning for improved success.

Running on portable devices, pro-
vides BVI navigation without heavy
labeling or 3D model reconstruction
in complex indoor environments.

Navigation reliability drops for long
distances.

[111] • Addressing real-time navigation la-
tency, safe route selection, and accu-
rate obstacle detection.

Integration of Web of Things, pre-
dictive analytics, YOLOv4 Tiny, and
SLAM for enhanced obstacle recog-
nition and navigation.

Enhanced obstacle recognition, nav-
igation, and safe route selection.

Requiring high-contrast
environments; needing external
updates when contrast is insufficient
for accurate mapping.

[112] • Addressing the need for efficient
navigation solutions for visually im-
paired individuals and patients with
lower body injuries indoors.

Developed a person carrier robot in-
tegrating Hector SLAM and Robust
Salient Detection for safe navigation
and obstacle avoidance.

Enhanced safety, improved mobility,
and effective object detection for in-
door navigation.

Sensitive to strong light, issues with
reflective surfaces, and occasional
collisions due to slow processing
speed.

3 https://github.com/mweiss17/SEVN-data (Accessed on 12 May 2024)

Camera The common use of visual sensors in SLAM
techniques can be attributed to advances in computer vision
and image processing, which enhance navigation capabilities
by providing rich environmental information. This makes
visual-sensor-based SLAM techniques the most commonly
used in the implementation of assistive technologies for the
BVI people, offering a cost-effective, versatile, and accurate
solution for real-time navigation and spatial awareness. The
literature under review used the following types of cameras:
RGB, RGB-D, stereo, monocular, and other specialized cam-

eras.
RGB cameras are widely used due to their ability to capture

rich color information, which is beneficial for visual odome-
try and object recognition. They are cost effective and widely
available, making them a popular choice for the development
of accessible navigation aids.
RGB-D cameras provide both color and depth informa-

tion, enabling more accurate mapping and localization. Depth
information helps in understanding the 3D structure of the
environment.
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TABLE 16. Localization and mapping approaches used for visually impaired navigation, with "NA" denoting data not available.

Widely applicable techniques
Technique Type Method Sensor type Reference(s)
Cartographer Scan matching Optimization-based LiDAR [59], [61], [87], [95]
Hector SLAM Scan matching Optimization-based LiDAR [69], [83], [112]
LiDAR SLAM Scan matching Rao-Blackwellized particle filter LiDAR [67], [68], [79]
FastSLAM [121] Feature-based Particle filter-based LiDAR [82]: mapping
Kinect Fusion Feature-based Optimization-based Visual [58]
LSD-SLAM Direct Optimization-based Visual [109], [111]
OpenVSLAM Feature-based Optimization-based Visual [60], [93], [97]
ORB-SLAM Feature-based Optimization-based Visual [64], [89]
ORB-SLAM2 Feature-based Optimization-based Visual [57], [62], [76], [92], [96], [101],

[82]: localization
ORB-SLAM3 Feature-based Optimization-based Visual [63], [65]
Pose-graph SLAM Feature-based Optimization-based Visual [77]
RTAB-Map Feature-based Optimization-based Visual [104]
Semantic SLAM Feature-based [66], [84] ,

NA [100]
Optimization-based [66], Particle
filter-based [84], NA [100]

Visual [66], [84], [100]

Visual SLAM Feature-based Optimization-based Visual [71], [72], [74], [85], [102], [108]
DSO Direct Optimization-based Visual [105]
VIO (Visual Inertial
Odometry)

Feature-based Optimization-based Visual [56], [98], [99]

Customized solution
DVIO Feature-based Optimization-based Visual [70]
PAVIO Feature-based Optimization-based Visual [78], [106]
Dynamic-SLAM Feature-based Optimization-based Visual [90]
RGBD-VIO Feature-based Optimization-based Visual [91]
VSLAMMPT Feature-based Optimization-based Visual [73]

Spatial tracking frameworks
Google ARCore Feature-based Likely optimization-based Visual [75]
ZED camera’s SLAM Likely feature-based Not explicitly stated Visual [103]
Apple iOS ARKit-based Likely feature-based Update process is implemented us-

ing a particle filter [80]
Visual [80], [110]

Intel RealSense SLAM Likely feature-based Not explicitly stated Visual [88]
Google Tango’s built-in
SLAM

Likely feature-based Not explicitly stated Visual [107]

Stereo cameras also provide depth perception through two
slightly offset lenses that simulate binocular vision. They are
effective in capturing detailed depth information and are use-
ful in applications where precise depth estimation is required.

Monocular cameras are simpler than stereo and RGB-D
cameras. They rely on visual odometry and other techniques
to estimate depth and motion, making them lightweight and
suitable for mobile applications.

Specialized cameras, including fisheye, 3D time-of-flight,
and wide-angle cameras, provide specialized capabilities,
such as a wide field of view or precise depth measurement,
which can enhance the SLAM performance in specific sce-
narios.

LiDAR LiDAR sensors are highly accurate in measuring
distances and are effective in creating detailed 3D maps of
the environment. Studies use LiDAR alone to build a map of
the environment or in combination with other sensors such as
IMU and cameras to enhance the robustness and accuracy of
SLAM systems.

Other sensorsVarious studies combined different types of
sensors to leverage the strengths of each type and provide
more robust and reliable navigation solutions. For example,
integrating an IMUwith a camera helps achieve better motion
tracking and stability. This trend towards integrating multiple
sensors highlights increasing efforts to enhance the robust-
ness and reliability of SLAM solutions.

Table 20 provides a detailed breakdown of the sensor types
employed in the reviewed studies, highlighting the preva-

lence of different sensor modalities and their combinations
in SLAM-based assistive technologies for BVI individuals.
The reviewed papers show a clear preference for RGB-D

cameras, indicating their effectiveness in providing both the
visual and depth information necessary for accurate SLAM
applications. The use of LiDAR is important in applications
that require precise mapping. Over the years, there has been
a noticeable trend towards integrating multiple sensors and
combining their strengths to achieve more robust and reli-
able SLAM solutions for visually impaired navigation. The
integration ofmachine learning-based techniqueswith SLAM
systems is particularly prevalent in solutions that utilize RGB-
D cameras. This highlights the effectiveness of combining
this type of data with advanced AI algorithms. This trend is
likely to continue as technology advances, offering more so-
phisticated and adaptable solutions in complex and dynamic
environments.

3) Computing resource

To process data and run localization and mapping algorithms,
the reviewed studies adopted two classes of computational re-
sources: local and remote. Local computations are performed
in situ on devices, such as smartphones, tablets, laptops,
portable microcontrollers, and UP board computers. In some
cases, algorithms were applied on PCs. Table 21 categorizes
the computing resources used in the reviewed studies for
localization and mapping tasks. Information regarding the
computing resources for the entire navigation assistive system
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FIGURE 6. Overview of sensor types in studies under review

is detailed in Tables 36-38

a: Local computing resources

Smartphones: Smartphone are widely used as communi-
cation gadgets, and their technology continues to grow to
the point that it is possible for smartphones to implement
functional navigation systems. Because smartphones inte-
grate diverse sensors such as IMU, GPS, and cameras, they
can be used as a convenient tool for collecting environmen-
tal information. In addition, their computational power can
be exploited to perform various navigation operations. For
example, the system proposed by [74] implemented all al-
gorithms relevant to data acquisition, ground segmentation,
moving direction search, global path planning, indoor and
outdoor localization, and object detection on a smartphone
and achieved real-time performance. Without an additional
depth sensor, [75] took advantage of an ARCore-supported
smartphone to track pose and to build a map of the surround-
ings in real time. However, despite the significant advantages
of smartphones, such as their small size, low weight, easy
portability, and low cost, their computing power is not suf-
ficient for some approaches.

Laptops and PCs: Some of the reviewed approaches per-
form all or part of the required calculations locally on a
portable computer, such as a laptop. Despite higher comput-
ing power compared to a smartphone, and greater security
compared to remote computational resources, the laptop’s
heavier weight and large size are considered major disadvan-
tages, especially during long trips. PCs provide even higher
computing power, which is essential for complex SLAM
operations; however, they lack portability.
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TABLE 17. Comparison of core technical features for localization and mapping techniques, with a specific focus on sensor types, computing resources,
and whether machine learning-based methods are employed for localization and mapping tasks - Part I.

Ref. Sensor type Computing Resource Localization &Mapping Technique ML-Based Localization and Mapping
[56] Camera Smartphone Native AI library for iOS devices Not explicitly mentioned
[57] RGB-D camera Remote server ORB-SLAM2 •
[58] A depth, an RGB, and four gray scale

cameras, an IMU
Hololens2 device, GPU Iterative Closest Point (ICP) for camera

pose estimation, Kinect Fusion algorithm
for real-time 3D reconstruction

Not explicitly mentioned

[59] Wheel encoder and LiDAR Notebook PC Cartographer •
[60] RGB camera Cloud server and Nvidia Jetson AGX

Xavier
Visual place recognition, weighted aver-
aging, and perspective-n-point (PnP) for
localization, OpenVSLAM and Colmap
to generate a topometric map

NetVLAD for global descriptors and Su-
perPoint for local descriptors

[61] LiDAR Not mentioned Cartographer to build SLAM maps on
each floor

•

[62] RGB-D camera Jetson AGX Xavier ORB-SLAM2 for localization; down-
sampling, octomap, and 2D occupancy
grid mapping for an accurate dense map-
ping

•

[63] IMU, stereo and IR (depth) cameras Cloud server ORB-SLAM3 •
[64] RGB-D camera Raspberry Pi ORB-SLAM •
[65] Monocular RGB Not mentioned ORB-SLAM3 to obtain ground-truth

camera trajectory
•

[66] RGB-D camera High performance portable processor,
cloud server

Semantic visual SLAM based on ORB
feature to generate sparse, dense, and se-
mantic maps

ENet for pixel-level semantic segmenta-
tion

[67] LiDAR Raspberry Pi BreezySLAM •
[68] LiDAR Intel NUC computer GMapping for mapping and estimating

the destination’s location
•

[69] RGB-D camera Raspberry Pi3 B+ Hector SLAM for building the environ-
mental map and locating the user on the
map

•

[70] RGB-D Camera, IMU UP Board computer A VIO system developed based on
VINS-Mono

•

[71] RGB-D-IR camera A portable computer, Nvidia Jetson TX2 Hierarchical visual localization pipeline
with deep descriptors, geometric verifi-
cation, and sequence matching.

NetVLAD and Dense Desc for advanced
descriptor extraction.

[72] RGB-D camera Odroid XU3 board, remote server Off-the-shelf algorithm [120] for 3D in-
door mapping; a two-stream ConvNet for
topological localization.

ConvNet replaces BoW for semantic
info; Inception-v3 enhances object
recognition, aiding localization.

[73] Two monocular cameras Not mentioned Followed a similar structure as ORB-
SLAM2.

•

[74] RGB-D camera, IMU A smartphone with Qualcomm Snap-
dragon 820 CPU 2.0 GHz

Vins-mono for indoor localization; ORB-
SLAM2 and Vins-mono for building a
indoor map repository.

•

[75] Smartphone’s camera A HUAWEI P20 smartphone with Kirin
970 CPU

Roberto Lopez Mendez ARCore SLAM
as the base for visual odometry and area
learning

Not explicitly mentioned

[76] Fisheye and depth camera An embedded CPU board ORB-SLAM2 for the building of the
virtual-blind-road (offline by a sighted
person) and the localization (online)

•

[77] SwissRanger SR4000 3D camera A Lenovo ThinkPad T430 laptop 2-step graph SLAM •
[78] SwissRanger SR4000 camera, IMU Up Board computer PAVIO: Fusing visual, inertial, and plane

features for robust SLAM localization
and mapping.

•

[79] Encoder, IMU, laser distance sensor Raspberry Pi 3 Model B and B+ Gmapping for building a 2D occupancy
grid map on the environment

•

[80] iPhone 11 Pro camera and IMU iPhone 11 Pro ARKit VIO for relative movements;
ARKit mapping for semantic labels;
Monte Carlo localization

YOLOv2 for object detection to facilitate
effective localization

Embedded systems and microcontrollers: Embedded
systems such as Nvidia Jetson boards, Raspberry Pi, and UP
boards provide a balance between computational power and
portability. They are commonly used in the reviewed studies
for performing SLAM operations locally. For instance, [58]
utilized a Hololens2 device with a GPU for real-time 3D
reconstruction, whereas [62] used a Jetson AGX Xavier for
ORB-SLAM2 and dense mapping. Raspberry Pi devices are
also popular due to their low cost and sufficient computing
power for many SLAM tasks [67], [69].

b: Remote computing resources

An alternative solution is to transfer all or part of the calcula-
tions to the remote computing resources. To reduce local com-
puting costs, [57] adopted an embedded computer and a re-
mote server. In the proposed vision-based assistance system,
before transferring the input images to the server, the images
were time-stamped and encrypted on an embedded computer.
The remote server was equipped with a CPU and GPU to run
parallel ORB-SLAM2 and artificial intelligence algorithms
for indoor navigation, object detection, face recognition, and
scene text recognition. Experiments confirmed that the use
of remote servers under a smooth network connection, such
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TABLE 18. Comparison of core technical features for localization and mapping techniques, with a specific focus on sensor types, computing resources,
and whether machine learning-based methods are employed for localization and mapping tasks - Part II.

Ref. Sensor type Computing Resource Localization &Mapping Technique ML-Based Localization and Mapping
[82] RGB-D camera, compass sensor Jetson Xavier AGX, NVidia FastSLAM for mapping, ORB-SLAM2

for local pose estimation in the pre-built
map

An extra thread aligns predicted seman-
tics with key features.

[83] LiDAR, ultrasonic sensor, Raspberry pi
camera

Raspberry Pi3 B+ Hector SLAM for constructing a 2D-map
of the environments and localization

•

[84] RGB-D camera, IMU Nvidia Jetson AGX Xavier microproces-
sor

RTAB-Map for semantic point cloud
generation and global localization

MobileNetV2 with PPM for constructing
semantic point cloud

[85] Monocular camera Nvidia Jetson Xavier NX Developer kit Visual SLAM for user movement estima-
tion and stationary object localization

•

[87] LiDAR, IMU Nvidia RTX 3080 graphic board Cartographer for constructing a LiDAR
map

•

[88] RGB-D camera, IMU Dell G15 laptop with an RTX 3060 GPU SLAM implementation by RealSense for
creating an initial 2D occupancy grid and
estimating user pose

•

[89] RBG-D camera Uzel US-M5422 edge server, Raspberry
Pi 4B

Improved ORB-SLAM for generating a
dense navigation map and real-time po-
sitioning

•

[90] RGB-D camera Laptop Dynamic-SLAMbased onORB-SLAM2
for estimating user’s ego-pose and build-
ing a static feature point map

Non-Prior dynamic object detection pre-
ceding local mapping

[91] RGB-D camera, IMU Google Pixel 3 smartphone RGBD-VIO for mapping and accurately
estimating the device’s pose

•

[92] RealSense D435i camera Remote server based on Intel i7-8700
CPU, nvidia GTX1080 GPU

ORB-SLAM2 for environmental map-
ping and positioning of the user

•

[93] Google glasses camera GPU server OpenVSLAM for mapping and locating
user’s indoor positions

•

[95] LiDAR, IMU Laptop Cartographer for estimating the current
location and direction of a user

•

[96] RGB-D camera, IMU Not mentioned ORB-SLAM2 for mapping and localiz-
ing the user

•

[97] RGB-D camera Nvidia Jetson AGX Xavier processor OpenVSLAM for robust mapping and lo-
calization in real time.

•

[98] iPhone 8’s IMU and rear-facing camera iPhone 8 Visual-Inertial Odometry with sign
recognition and geometric constraints.

Not explicitly mentioned

[99] RGB-D camera, IMU UP Board computer Visual-Inertial Odometry for 3D map-
ping and pose estimation

•

[100] RGB-D, LiDAR Laptop Semantic SLAM based on a 2D SLAM
technique for determining the corridor
area and mapping to a semantic map

YOLOv3 for landmark detection,
Places365 for place recognition

[101] Vuze+ camera Not mentioned ORB-SLAM2 for generating 3D posi-
tions and 2D connectivity graph from
Vuze+ footage

•

[102] Monocular camera Intel i7 processor Non-filter based visual SLAM using
trained objects as landmarks for localiza-
tion

ACF detector for object detection to iden-
tify trained objects of interest for local-
ization.

[103] ZED camera Nvidia Jetson TX2 ZED camera’s SLAM for navigating to-
ward an aisle in a grocery store.

Not mentioned

[104] Stereo camera, laser Nvidia Jetson TX2, Raspberry Pi, and
Arduino.

RTAB-MAP for obtaining fine-grained
mapping of the 3D spatial world.

•

[105] Monocular camera Not mentioned Visual odometry for user localization
during street crossings

•

[106] 3D time-of-flight camera , IMU UP Board computer Plane-aided visual-inertial odometry
(PAVIO) for pose estimation of an
robotic navigation aid

•

[107] Wide-angle lens camera, gyroscope, ac-
celerometers, and infrared sensor on
Google Tango.

Google Tango Google Tango’s built-in SLAM for map-
ping the environment and localizing the
user.

•

[108] Stereo camera Cloud server Visual SLAM for mapping the environ-
ment and localizing the user.

•

as 4G or WiFi, can meet the computational requirements of
the proposed system. However, although the high computing
power of remote servers is considered a significant advantage,
constant Internet access over a secure connection is required.
Moreover, the performance of the entire system would be
affected by the network condition.

B. RQ2. WHAT ARE THE ADVANTAGES AND LIMITATIONS
OF SLAM TECHNIQUES FOR BVI NAVIGATION?

Although SLAM techniques offer significant benefits for
navigation across various applications, their use in improving

mobility for BVI individuals presents unique considerations.
In general applications, the advantages of SLAM include
accurate real-time mapping and localization, adaptability to
unknown environments, and the ability to function without an
external infrastructure. These advantages are essential when
applied to BVI navigation. For instance, the ability to provide
real-time accurate spatial information is crucial for safe nav-
igation and obstacle avoidance.

Conversely, some limitations of SLAM in general applica-
tions, such as computational complexity and sensor depen-
dencies, pose significant challenges in the BVI context. The
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TABLE 19. Comparison of core technical features for localization and mapping techniques, with a specific focus on sensor types, computing resources,
and whether machine learning-based methods are employed for localization and mapping tasks - Part III.

Ref. Sensor type Computing Resource Localization &Mapping Technique ML-Based Localization and Mapping
[109] Monocular camera A single CPU LSD-SLAM for estimating the user’s po-

sition and constructing a 3D environmen-
tal map

•

[110] Camera, IMU, LiDAR Smartphone visual-inertial SLAM based pose estima-
tion and 2D scene-graph map construc-
tion using iOS ARKit.

Not explicitly mentioned

[111] Kinect camera Not mentioned LSD-SLAM for assessing the user’s lo-
cation and building an environmental
map

•

[112] Laser Range Finder (LRF) sensor PC Hector SLAM for map building and
odometry calculation

•

TABLE 20. Classification of sensor type

Sensor Type References
Camera only [56], [60], [65], [73], [75], [85], [93], [101],

[102], [105], [109]
Camera, IMU [98]
RGB-D camera [57], [62], [64], [66], [69], [71], [72], [89],

[90], [97]
RGB-D, LiDAR [100]
RGB-D, IMU [70], [74], [80], [84], [88], [91], [92], [96],

[99]
LiDAR [61], [67], [68], [112]
LiDAR, IMU [87], [95]
Stereo camera, other sensors [63], [104], [108]
3D time-of-flight [77]
3D time-of-flight, IMU [78], [106]
Fisheye, depth camera [76]
Others [58], [59], [79], [82], [83], [103], [107],

[110], [111]

need for lightweight, portable devices with a long battery
life is critical for BVI users, who rely on these systems for
extended periods. In addition, robust performance in diverse
environments, including crowded spaces and varying lighting
conditions, is vital for effective BVI navigation. Unique to
BVI applications is the need to translate complex spatial
data into intuitive, non-visual feedback. Furthermore, the
integration of semantic information to provide context about
the environment (e.g., identifying doors, stairs, or pedestrian
crossings) in order to interact with the environments during
navigation is particularly valuable for BVI users, but may be
less critical in other SLAM applications. In the following sub-
sections, we explore in detail the advantages and limitations
of SLAM techniques when applied to BVI navigation.

1) Advantages
Unlike many localization approaches, such as RFID- or GPS-
based methods, which require infrastructure setup, SLAM
does not depend on pre-existing infrastructure. It operates
autonomously by creating maps and understanding the sur-
roundings in real-time. SLAM relies on data captured by
sensors already present on many mobile devices, such as
smartphones, and offers a cost-effective solution for accurate
localization and mapping without the need for additional
hardware or subscription services.

One of the most important advantages of SLAM is its po-
tential for real-time positioning, which determines the agent’s

current location and orientation. Systems leveraging ORB-
SLAM, for instance, excel in pose estimation by integrat-
ing various data types, including visual, inertial, and depth
information, thus enhancing accuracy beyond conventional
methods [64]. This feature is pivotal not only for effective
navigation but also for obstacle detection and avoidance,
ensuring the safety and confidence of visually impaired users
as they navigate through immediate environments [64], [89].
SLAM’s ability to reuse and update maps incrementally

allows for a high degree of environmental adaptation. Its
capacity to relocalize within prebuilt maps or expand them as
necessary ensures that users can rely on updated information
for navigation [75], [76]. This adaptability is further enhanced
by the capability of the system to handle dynamic environ-
ments, making it invaluable for visually impaired users who
require real-time path adjustments in response to moving
obstacles [73], [90].
Detailed environmental mapping facilitated by SLAM,

ranging from two-dimensional layouts to complex 3D geo-
metric and semantic maps, provides comprehensive spatial
understanding [59], [67], [72]. Environmental awareness is
critical for path planning and collision avoidance. Further-
more, the integration of semantic mapping enriches spatial
understanding by adding contextually rich information to
maps, thereby facilitating more informed decision-making
and interaction with the environment [66], [100].
The integration of different types of sensors and technolo-

gies with SLAM significantly expands the scope of its appli-
cation. By integrating techniques such as object detection al-
gorithms or combining RGB-D and IMU sensor data, SLAM
systems achieve a multilayered perception of the environment
[64], [84]. Sensor fusion enhances a system’s ability to detect
and classify objects, accurately navigate, and handle dynamic
elements within the environment, thereby offering a more
holistic assistive solution [84].
The cost-effectiveness of SLAM-based solutions attributed

to their reliance on widely available low-cost sensors makes
this technology particularly interesting. Systems employing
monocular cameras or wearable RGB-D cameras exemplify
how SLAM can be implemented in a cost-effective manner
without compromising functionality, thus making advanced
navigational aids accessible to more users [69], [85]. The
advantages of SLAM, derived from the literature, are listed
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TABLE 21. Categorization of computing resources used for localization and mapping tasks.

Computing resource Description References
Remote/Cloud servers Used for high-computation tasks, leveraging the power of remote resources. [57], [60], [63], [66], [72], [92], [93], [108]
Smartphones/Tablets Common in applications prioritizing portability and accessibility. [56], [74], [75], [80], [91], [98], [107], [110]
Nvidia Jetson For balancing computational power and portability. [60], [62], [71], [82], [84], [85], [87], [97], [103], [104]
Raspberry Pi Chosen for its affordability and sufficient power. [64], [67], [69], [79], [83], [89], [104]
Laptops and PCs Employed for tasks needing robust computational capabilities and flexibil-

ity in hardware.
[59], [77], [88], [90], [95], [100], [112]

UP Board computer Used for handling intensive computation tasks while maintaining a compact
form factor.

[70], [78], [99], [106]

Other specific systems Includes a variety of specific embedded solutions tailored to the require-
ments of each study.

[58], [68], [72], [76], [89], [102], [104], [109]

in Table 22.

2) Limitations
Although SLAM technologies show great potential for im-
proving navigation aids for the visually impaired, they are not
without their limitations. These limitations can significantly
impact the effectiveness and reliability of SLAM-based assis-
tive systems.

A notable challenge is the computational complexity and
the associated demand for system resources. The imple-
mentation of advanced SLAM algorithms and the integra-
tion of deep learning frameworks for semantic understand-
ing introduce significant computational overhead [57], [72].
This complexity can compromise the real-time performance,
which is crucial for assistive navigation. The need for appro-
priate hardware to process high-resolution data further under-
scores this limitation, potentially restricting the deployment
of SLAM-based systems [89].

The effectiveness of SLAM is dependent on its environ-
mental characteristics. Accurate mapping and localization
depend on the presence of distinct geometric features. In
environments lacking such features or dynamically changing
settings, SLAM systems may struggle to maintain accurate
localization, thereby leading to navigation errors [77]. This
limitation is particularly evident in feature-poor areas such as
long corridors or spaces with uniform surfaces, where loss of
localization can occur [62].

Another critical limitation is the dependence on initial data
or pre-existing maps. Some SLAM systems require sighted
individuals to pre-map the environment, which can limit the
flexibility and immediate usability of unmapped or altered
spaces [75], [76]. This reliance on prior mapping can be a
significant hurdle for deploying SLAM-based navigation aids
in diverse and changing environments [82], [96].

Drifting errors present a substantial challenge for main-
taining the long-term accuracy of SLAM systems. Over time,
small inaccuracies can accumulate, leading to significant de-
viations from the true trajectory, which can disorient users
and compromise the navigation safety [56]. In addition, the
ineffectiveness of some SLAM systems for generating dense
navigation maps limits their utility in providing the detailed
guidance required for visually impaired navigation, necessi-
tating further algorithmic enhancements [64].

The performance of SLAM in dynamic environments,
characterized by moving obstacles and changing conditions,

remains a critical concern. Systems may fail to adapt quickly
to such changes, leading to potential navigation errors and
safety risks for visually impaired users [68].
Some SLAM applications require external calibration or

setup, such as placement of calibration boards in specific
environments. This requirement can limit the spontaneity
and ease of use of SLAM-based navigation aids because it
imposes additional constraints [105]. Table 23 outlines the
overall limitations of SLAM, derived from the publications
under review.

C. RQ3. WHAT CHALLENGING SITUATIONS HAVE BEEN
ADDRESSED?
This section explores various challenging situations ad-
dressed by SLAM-based navigation-assistive systems for
BVI individuals. We categorized these challenges into two
main groups: those relevant to environmental complexities
and those related to the sensors used for receiving environ-
mental data. Additionally, we discuss practical challenges and
considerations that impact the usability and adoption of these
systems.

1) Technical and methodological challenges
Optimal pathfinding, perception of surroundings, and ob-
stacle avoidance are crucial for navigation. Precise local-
ization of a visually impaired user within the environment
is essential for the effective operation of these functions.
Our surveyed papers addressed the localization and mapping
problems using various techniques. Some of these studies
explored other navigation-related challenges. We categorized
these challenges into two groups: those relevant to environ-
mental complexities, and those related to the sensors used to
receive environmental data. Dynamic obstacles and crowded
spaces constitute the challenges in the first group, whereas
challenges related to changing lighting conditions and the
rapid motion of users that results in motion blur fall into
the second group. Table 24 lists studies that investigated
these challenges through the integration of SLAM with other
approaches. In the following section, we discuss the studies
that address these challenges.

a: Environmental complexities
Crowded scenarios Navigating crowded environments
presents significant challenges for the visually impaired, lead-
ing to increased collision risks and difficulties in maintaining
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TABLE 22. Key features of SLAM that benefit visually impaired navigation.

Advantages Description Ref.
Accurate localization SLAM provides precise positioning within an envi-

ronment, essential for effective navigation and obsta-
cle avoidance.

[56]–[58], [62], [64], [67]–[70], [73]–[78], [82],
[83], [85], [88]–[93], [95], [97]–[99], [102], [106]–
[109]

Environmental mapping SLAM constructs maps of surroundings, enabling
spatial awareness for navigation.

[57]–[61], [64], [67], [69], [70], [72]–[77], [79], [83],
[84], [87]–[90], [92], [93], [96], [97], [99], [100],
[104], [107]–[112]

Map reuse Previously created maps can be reused to enhance the
efficiency and reduce the need for constant remap-
ping.

[57], [75], [76], [93], [109]

Loop closing SLAM corrects trajectory drifts by recognizing previ-
ously visited locations, thereby improving long-term
accuracy.

[57], [63], [84]

Semantic mapping SLAM integrates contextual information into maps,
thereby enhancing the understanding of the environ-
ment and its elements.

[66], [84], [100]

Object localization SLAM identifies and positions objects within the
environment, facilitating interaction and navigation
around the obstacles.

[72], [85], [88], [91]

Dense navigation maps SLAM generates detailed maps that provide rich en-
vironmental data that are crucial for complex naviga-
tion tasks.

[64], [66], [89]

Incremental map updating SLAMcontinuously updatesmapswith new informa-
tion, ensuring that they remain accurate and current.

[64], [69], [89], [109], [111]

Integration with other technologies SLAM can be combined with other technologies and
algorithms to enhance functionality and performance.

[64], [68], [72], [83]–[85], [89], [92], [98], [102]

Integration of sensors SLAM utilizes a variety of sensors to enrich the
environmental perception and mapping accuracy.

[58], [84], [91], [99], [100], [104]

Cost-effectiveness and accessibility SLAM’s reliance on commonly available sensors
makes it an affordable solution for widespread use.

[57], [60], [66], [67], [69], [73]–[76], [80], [83], [85],
[98], [102]

Ground-truth trajectory SLAM delivers accurate path tracking, aiding the
development of reliable navigation instructions.

[63], [65]

Integration with 2D map SLAM data can be integrated with 2D maps to en-
hance the navigation accuracy and functionality.

[63], [70], [75], [77], [80], [98]–[100]

Dynamic environment handling SLAM can be adapted to changes within environ-
ment, maintaining reliable navigation in the presence
of moving obstacles.

[73], [90], [100], [104], [109], [111]

Re-localization SLAM can quickly regain accurate positioning after
temporary tracking loss, ensuring continuous and re-
liable navigation.

[57]

personal spaces. The absence of visual information makes
it difficult to measure distance, perceive crowd density, and
locate landmarks or places of interest.

Navigation in crowded environments also poses challenges
for assistive technologies. For example, in assistive systems
that operate based on SLAM, the presence of numerous
dynamic elements, such as moving individuals and objects,
introduces ambiguity into feature detection and tracking,
leading to difficulties in accurately estimating the pose of
the user and structure of the environment. The dynamic na-
ture of crowds also hinders loop closure detection, disrupts
map consistency, and contributes to drift. Moreover, the lack
of distinct visual landmarks in crowded scenes represents
a reliable localization challenge, which potentially reduces
the robustness and accuracy of the overall SLAM system.
Addressing these challenges requires the development of new
approaches to address the complexity of such environments
effectively. Several studies have investigated this issue.

[59] presented a guide mobile robot engineered for the
complexities of navigating different environments while con-
sidering dynamic objects and human presence. The robot
could handle crowded environments with multiple dynamic

objects. To accomplish this, the robot leveraged a spatial
risk map, which is a tool that evaluates potential object-
occupied spaces, to chart a path that effectively minimizes
disruptions. This study presents experiments in which a robot
successfully guided a user through the passage of multiple
objects and people. The research used Cartography SLAM
for off-line mapping. It’s important to note that this paper
did not address the dynamic environment through SLAM, but
rather used SLAM solely as a tool to pre-build the map of the
environment.

In another study, [65] introduced an egocentric human
trajectory forecasting model that was designed for navigation
in crowded environments. The model predicts the path of
the sensor wearer using their past trajectories, nearby pedes-
trian trajectories, scene semantic and depth data. The authors
collected an egocentric human trajectory forecasting dataset.
As they could not use GPS or motion capture systems for
recording the trajectory, they used ORB-SLAM3 to obtain
the ground-truth sensor wearer trajectory. The trajectories
obtained using ORB-SLAM3 were used to train the egocen-
tric human trajectory forecasting model. It is important to
note that this study, like the previous one, did not handle the
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TABLE 23. Limitations of SLAM for visually impaired navigation.

Limitations Description Ref.
Complexity and computational
requirements

SLAM’s advanced algorithms can demand significant computational power, impacting real-time
performance and efficiency.

[57], [72], [89], [90]

Dependency on environmental
features

The accuracy of SLAM depends on the presence of distinct environmental features, which limits
its effectiveness in feature-poor or dynamically changing environments.

[77], [109], [111]

Dependence on initial
data/prior maps

Some SLAM systems require pre-mapped environments or initial data setups by sighted individu-
als, thereby reducing the flexibility in unmapped or altered spaces.

[75], [76], [82], [84],
[93], [96], [109], [112]

Loss of localization in feature-
poor areas

SLAM may experience frequent localization losses in areas lacking sufficient feature points, such
as blank corridors or plain walls, thereby compromising navigation reliability.

[62]

Dependency on external cali-
bration

The need for external calibration in certain SLAM applications can limit their spontaneity and
practicality in unprepared environments.

[105]

Drifting error Accumulating drifting errors in SLAM can reduce the long-term accuracy, leading to potential
navigation inaccuracies and user disorientation.

[56]

Dense maps fail to align with
real-world conditions

The inability of certain SLAM systems to generate detailed dense maps can restrict their effective-
ness in providing a comprehensive navigation guidance.

[64]

Vulnerability in dynamic envi-
ronments

SLAM systems may struggle to adapt to dynamic environments with moving obstacles, thereby
posing navigation challenges and safety risks.

[68]

TABLE 24. Challenges addressed in reviewed studies using SLAM
techniques

Related to Challenges Reference(s)

Environment Crowded places [59], [65], [68], [95], [104]
Dynamic object [59], [68], [71], [73], [90], [100],

[109], [111]

Sensor Fast motion [72]
Illumination [61], [71], [72], [74], [81]

crowded environment through SLAM itself, but rather used
SLAM as a tool for obtaining the trajectory ground-truth.

In addition, [68] addressed challenges in crowded environ-
ments using a combination of SLAM and Ultra-Wideband
(UWB) positioning. However, the SLAM algorithm was
found to be less effective in environments with dynamic
obstacles such as pedestrians. The algorithm finds features
of dynamic obstacles moving along with the robot as the
assistive device, and thus, it was misled that the robot did not
move at all. However, using UWB positioning mitigates this
issue.

In [95], the method addressed crowded environments by
recognizing and predicting people’s behavior while anticipat-
ing the collision risk. The system advises users to adjust their
walking speed (on-path mode) or to choose alternative routes
(off-path mode). This involves comparing the 3D point cloud
map to real-time LiDAR and IMU sensor data. The system
then predicts the future position and velocity of the user in
order to avoid collisions.

An intelligent autonomous scooter was developed in [104]
for navigating environments with small safety margins and
highly dynamic pedestrian traffic such as sidewalks with
numerous obstacles and pedestrians. The authors proposed
a hybrid mapping solution that combines far-field and near-
field mapping to navigate through dynamic environments.
This approach utilizes sensor fusion to adapt dynamically to
complex and cluttered environments. However, it should be
noted that this study conducted system tests in a completely
static environment without moving objects, such as pedestri-
ans. Furthermore, the RTAB-MAP SLAM systemwas used in

this study without any adaptation to dynamic environments.
Dynamic objects Several publications have not directly

addressed the challenge of crowded environments, and have
only focused on dealing with the presence of dynamic objects
within the scene. In the system proposed by [90], dynamic
objects can be identified, and average depth information can
be provided to the user. When a dynamic object belongs to a
predefined class such as a person, it can also be tracked be-
tween frames in the SLAM pipeline. The system is capable of
identifying and tracking dynamic objects after ego-motion es-
timation to obtain average depth information. Subsequently,
it can estimate the poses and speeds of these tracked dynamic
objects and relay this information to the users through acous-
tic feedback. Depth information helps users maintain social
distancing in public indoor environments such as shopping
malls.
To address the challenge of dynamic objects, [73] proposed

a new method called visual simultaneous localization and
mapping for moving person tracking (VSLAMMPT). This
method was designed to handle dynamic environments in
which objects constantly move. The system also uses ex-
pected error reduction with active-semi-supervised learning
(EER–ASSL)-based person detection to eliminate noisy sam-
ples in dynamic environments. This aids in accurate detection
and avoidance of dynamic obstacles.

[100] utilized YOLOv3 to detect common objects in a
corridor, including people, whichwere identified as obstacles.
The system sends information about obstacles to users every
five seconds when the distance between the user and obstacle
is less than 10 m. For example, it may notify the user, "A
person is located 2.8 meters ahead."

b: Sensor-related challenges
Changes in lighting condition Lighting changes pose a
hurdle to visual SLAM systems. Illumination variations al-
ter the visual features, interfere with accurate detection and
matching across frames, impact pose estimation, and map-
building robustness. SLAM relies on distinctive features for
operation; however, lighting changes introduce ambiguities,

VOLUME 11, 2023 25



Bamdad et al.: SLAM for Visually Impaired People: a Survey

noise, and errors, which affect the accuracy. Overcoming this
challenge requires robust algorithms for dynamic lighting to
ensure stable and precise localization and mapping.

The method proposed in [71] tackles the challenge of
illumination changes using a deep descriptor network called a
Dual Desc, which is designed to be robust against various ap-
pearance variations including illuminance changes. The net-
work used multimodal images (RGB, Infrared, and Depth) to
generate robust attentive global descriptors and local features.
These descriptors were used to retrieve coarse candidates
from query images, and 2D local features, along with a 3D
sparse point cloud, were used for geometric verification to
select the optimal results from the retrieved candidates. The
authors mentioned that their dataset included images captured
at different times of the day, which resulted in illumination
changes between the query and database images. Despite
these changes, the proposed method achieved satisfactory
localization results.

The authors of [72] evaluated the influence of lighting con-
ditions on the performance of their novel localization method.
The authors captured training images during the day and test
images at night and simulated changes in lighting conditions
by switching some of the lights off in locations without
windows. The results showed that changes in the lighting
conditions had a minor impact on the proposed method.

[61] mentioned that the proposed localization scheme was
verified in a typical office building environment with dra-
matically changing lighting conditions throughout the day;
however, it does not provide detailed results or discussion on
how changing lighting conditions affect the performance of
the system.

The method proposed by [81] addressed changes in illu-
mination as a challenge using the COLD and IDOL datasets,
whichwere recorded under different weather and illumination
conditions (cloudy, night, and sunny) using different mobile
platforms and camera setups. These datasets were used to
evaluate the strength of the localization and recognition al-
gorithms with respect to the variations caused by human ac-
tivities and changes in illumination conditions. The study also
mentioned the use of Histogram ofOrientedGradients (HOG)
for feature extraction, which provides preferable invariant
results for lighting and shadowing.

Motion blur Blurred images in visual SLAM can lead to
inaccuracies in feature detection andmatching, causing issues
with pose estimation, map building, loop closure, and visual
odometry. These inaccuracies can also impact depth measure-
ments and map quality. To address this issue, strategies such
as using high-frame-rate sensors, incorporating IMUs, and
employing motion-deblurring techniques can be employed to
improve the accuracy of localization and mapping in SLAM
systems.

Motion blur can be caused by fast or sudden movements
of the user during navigation, which can affect localization
performance. [72] studied this challenge and evaluated the
robustness of the localization methods. They captured 2316
blurred images on the testing day. The results show that the

proposed method performed poorly in this experiment, indi-
cating that fast motion or sudden changes in user movement
can pose a challenge to the system. The reason for this poor
performance is that the object detection scores did not exceed
the threshold during the experiment.

2) Practical challenges and considerations
In addition to the technical and methodological aspects, we
recognized the importance of practical challenges and consid-
erations that can significantly affect the usability and adoption
of SLAM-based assistive systems. Therefore, we included an
evaluation of the practical challenges and operational effi-
ciency, as summarized in Tables 25 and 26. The information
in these tables has either been directly extracted from the ar-
ticle or can be easily inferred from the article’s text. These ta-
bles provide information on user-friendliness, cost-efficiency,
weight, comfort for extended use, adjustable fit, fatigue mit-
igation, and portability of the assistive tools described in
the reviewed studies. For instance, while smartphones and
lightweight devices such as eyeglasses-mounted sensors [74]
and ARCore-supported smartphones with haptic gloves [75]
are generally well received because of their high portability
and ease of use, heavier devices such as guiding robots [68]
and rolling suitcase-shaped device [95] are noted to cause
user fatigue over extended periods. The augmented cane
[67], although found to improve confidence and workload for
novice and expert users, also faced usability challenges owing
to its weight. Clear instructions and easy learning curves,
as seen in electronic glasses with haptic modules [57], play
a significant role in enhancing user satisfaction. However,
the cost efficiency of these technologies varies, with some
solutions being more affordable and accessible.

D. RQ4. HOW THE PROPOSED SOLUTION IS EXPECTED
TO ENHANCE MOBILITY AND NAVIGATION FOR VISUALLY
IMPAIRED?
This section discusses how the approaches proposed by the
studies included in our SLR have the potential to improve
navigation for BVI people. These studies focused on diverse
attributes, such as accurate pose estimation, semantic map-
ping, sensor fusion, and algorithmic innovations, to improve
the quality of BVI navigation. Table 27 presents the catego-
rization of attributes that contribute to enhancing the mobility
and navigation of visually impaired individuals.
To understand the impact of these solutions further, we

examined their effectiveness in real-world scenarios. Various
localization and mapping techniques have been assessed on
the basis of their accuracy, robustness, consideration of dy-
namic objects, and running time. This evaluation provides
insight into the performance of these techniques in practical
environments.
In addition, we considered user-based evaluations to gauge

user satisfaction and the practical applicability of the pro-
posed system. These evaluations include feedback from ac-
tual users, which is crucial for understanding real-world us-
ability and acceptance of assistive technologies.
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TABLE 25. Practical challenges and operational efficiency - Part I.

Ref. Assistive tool User-friendliness Cost-
efficient

Weight Comfort
for
extended
use

Adjustable
fit

Fatigue
mitigation

Portability

Clear
instructions

Easy to learn

[56] Smartphone ✓ ✓
[57] Electronic glasses

and leg-mounted
haptic modules

✓ ✓ Light ✓ ✓ ✓ High

[58] Microsoft Hololens2 ✓ Light ✓ High
[59] Wheeled guide mo-

bile robot
✓ Light ✓ Easy-to-

hold handle
Moderate

[60] Android application ✓ ✓ Light ✓ ✓ ✓ High
[61] Not a user-based evaluation: only a technical test.
[62] Helmet; white cane ✓ Light ✓ Moderate
[63] Smartphone ✓ Need time to

learn interpreting
tactile signals

[64] Smart cane ✓ Light High
[65] No prototype implemented; the proposed approach for trajectory forecasting was tested with a robot.
[66] A forehead-mounted

camera, an earphone,
a computing resource
bag

Not a user-based evaluation: only a technical test performed. ✓ Heavy Heavyweight Heavyweight Moderate

[67] Augmented cane ✓ ✓ ✓ Heavy
(1kg)

Heavyweight ✓ Heavyweight Moderate

[68] Guiding robot ✓ ✓ USD 17000 Heavy
(25kg)

Comfortable
handle
feedback;
some users
noted
slewing
and speed
change
discomfort.

The robot
is relatively
large at
41x43x25
cm3.

[69] Head-mounted cam-
era

Not a user-based evaluation: only a technical test performed. ✓ Light

[70] Smart cane Not a user-based evaluation: only a technical test performed.
[71] Auxiliary glasses Not a user-based evaluation: only a technical test performed.
[72] No prototype implemented: Only a technical test performed.
[73] Smart eyeglasses Limited

instructions
✓ High

[74] Eyeglasses-mounted
sensors + smartphone

✓ Participants
trained in 10
minutes

✓ Light Prolonged
beeping
may cause
discomfort.

Glasses
weight
strains the
nose.

High

[75] ARCore-supported
smartphone + haptic
gloves

✓ A 5-minute
tutorial

✓ High

[76] Optical see-through
glasses

✓ High

[77] Smart cane Heavy Low
comfort

Heavyweight Bulky
tablet hangs
on neck,
heavy cane

[78] Computer-vision-
enhanced white cane

Not a user-based evaluation: only a technical test performed.

[79] Smart robot No information available.
[80] Smartphone ✓ ✓ ✓ ✓ ✓ High

Furthermore, we provide a detailed overview of the compo-
nents and technologies used in assistive navigation systems.
This helps to understand the practical implementations and
innovations proposed by the studies. By examining the system
prototypes, we gained insights into the design and func-
tionality of assistive solutions beyond the localization and
mapping components. This offers a comprehensive view of
how these technologies enhance the mobility and navigation
of the visually impaired.

1) Attributes enhancing mobility and navigation

SLAM technology is primarily used to provide precise local-
ization, which is critical for assistive navigation systems. Pre-
cise localization provides accurate information regarding a
user’s position in the environment in which the user navigates.
This accuracy enables the system to offer feedback on obsta-
cles, pathways, and points of interest, thereby allowing BVI to
navigate safely and confidently. Real-time assistance has also
emerged as the key feature. Providing immediate feedback
on the environment enables users to travel efficiently and
safely, which leads to increased mobility and independence.
Semantic mapping generates maps beyond geometric data.
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TABLE 26. Practical challenges and operational efficiency - Part II.

Ref. Assistive tool User-friendliness Cost-
efficient

Weight Comfort
for
extended
use

Adjustable
fit

Fatigue
mitigation

Portability

Clear
instructions

Easy to learn

[82] Head-worn camera Easily
understood
commands

10-minute
training

Commercially
available
hardware

Heavy
(5.5lbs ≈
2.49kg)

High

[83] Sensors attached to a
white cane

Not a user-based evaluation. ✓ Not a user-based evaluation: only a technical test performed.

[84] No prototype implemented; the proposed approach for real-time global localization was tested with an agent.
[85] Chest-mounted cam-

era
Not a user-based evaluation ✓ Light Not explicitly mentioned. High

[87] Suitcase-shaped
robot

Improved with
intuitive

terminology

Positive usability
scores

- Heavy
(40lbs ≈
18.14 kg)

Physical
demand

- Heavyweight Bulky and
heavy

[88] Robotic cane
[89] Smart cane The focus of the paper is primarily on the technical aspects of the multi-sensory blind guidance system.
[90] Smart glasses Light
[91] Hand-worn device Not a user-based evaluation: only a technical test performed. 52.5 grams
[92] Smart E-glasses Areas for

improve-
ment

[93] Google glasses Information not provided; Only a technical test conducted with a laptop PC as a navigator.
[95] A rolling suitcase-

shaped device
✓ Short training

session (10-20
minutes)

Heavy Weight dis-
comfort

Heavy and
bulky

Space limi-
tations

[96] System testing was not feasible as the system was in the experimental stage.
[97] Smart glasses Not a user-based evaluation: only a technical test performed.
[98] Smartphone ✓ ✓ ✓ Light ✓ ✓ ✓ High
[99] White-cane mounted

camera
Information not provided; Only a technical test performed.

[100] TurtleBot2 robot
(to be replaced by
portable device) +
wearable sensors

Heavy Heavy and
bulky

Bulky

[101] Paper develops a Reinforcement Learning environment to create a navigation assistant tailored for the BVI community, without user-based evaluation.
[102] Smartphone ✓ Light ✓ ✓ ✓ High
[103] No prototype implemented; the proposed approach was tested within a research building.
[104] Intelligent

autonomous scooter
High cost Heavy Bulky

[105] Wearable camera Light High
[106] Computer-vision-

enhanced white cane
Not a user-based evaluation: only a technical test performed.

[107] Smart cane + Google
Tango

225 grams High:
light and
compact,
usable in
multi-floor

[108] Helmet-mounted
camera + android-
based smartphone

Not a user-based evaluation: only a technical test performed.

[109] Wearable camera Not a user-based evaluation: only a technical test performed.
[110] iPhone 12 Pro Max Effective

language
instructions

Intuitive
navigation
process

Light - High

[111] Wearable camera Not a user-based evaluation: only a technical test performed.
[112] Person carrier robot

(wheelchair)
Heavy Bulky

Such representations contain not only spatial information but
also the semantic meanings of objects and features within
the environment. This semantic understanding offers a deeper
insight into the environment. This contextual awareness is
particularly beneficial for enhancing navigation accuracy, as
it enables navigation systems to make decisions based on se-
mantic context, improving obstacle avoidance, path planning,
and overall navigation efficiency.

By employing robotic systems such as small robots,
smart canes, and sensor-equipped suitcases, some studies
have provided guidance, obstacle avoidance capabilities, and
increased spatial awareness, thereby effectively providing

independent navigation for visually impaired individuals.
Smartphone-based solutions harness the ubiquitous nature of
smartphones that are equipped with cameras and sensors.
These solutions offer navigation assistance by using widely
available and familiar devices. Both indoor and outdoor nav-
igation capabilities offer a seamless transition between en-
vironments, ensuring that users receive consistent support,
regardless of the scene in which they navigate. Innovative
localization and mapping algorithms enhance navigation ef-
ficiency and effectiveness through tailored modifications of
existing SLAM frameworks or through the creation of novel
solutions. Ultimately, these advancements have led to an im-
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proved overall experience for individuals with visual impair-
ment. Although these studies focused on different features
and attributes, they all aimed to enhance mobility, indepen-
dence, and overall quality of life for BVI people.

2) Effectiveness of localization and mapping techniques in
real-world scenarios
The effectiveness of the localization and mapping techniques
in real-world scenarios varies across studies. Tables 28-30
summarize these evaluations, highlighting key attributes such
as the working area, localization and mapping accuracy level,
robustness level, consideration of dynamic objects, and run-
ning time. The robustness and accuracy levels reported in
these tables are extracted from each paper’s context; each
rating reflects conditions specific to that paper and is not
necessarily superior or inferior to the other approaches. Thus,
these values are not comparable due to differing conditions
across the papers.

Many studies, such as [57], [59], and [62], have demon-
strated high localization and mapping accuracy, particularly
in indoor environments. These studies employed techniques
such as ORB-SLAM2 and Cartographer to ensure reliable
feature matching and adaptive navigation.

Robustness is another critical factor, with many systems
proving to be resilient under various conditions. Studies such
as [61] and [71] reported high robustness owing to the inte-
gration of multiple sensors and multi-modal imaging. These
systems can navigate complex environments and maintain
accurate localization.

However, some studies highlighted some challenges. For
instance, [68] indicated that SLAM-based systems struggle
with dynamic environments, leading to unstable navigation
and orientation errors. Similarly, [82]pointed out issues with
SLAM-relative poses in changing or occluded feature scenar-
ios that affect navigation stability.

The running time is another essential consideration, with
many studies emphasizing real-time performance. Systems
such as those described in [66] and [67] provide real-time per-
formance, which is crucial for assistive navigation. However,
some systems, such as those in [72], face longer computa-
tional times owing to their increased complexity, which can
be a drawback in real-world applications.

Overall, the evaluation of localization and mapping tech-
niques across different studies revealed a range of perfor-
mance levels. High accuracy and robustness are common
in controlled indoor environments, whereas dynamic and
complex scenarios pose significant challenges. Insights from
these evaluations are crucial for understanding the practical
applicability and limitations of SLAM-based assistive sys-
tems for visually impaired individuals.

3) User-based evaluations
This section analyzes the user-based evaluations conducted to
assess the satisfaction of the proposed SLAM-based assistive
systems. By examining these evaluations, we gained insights
into the real-world applicability and user acceptance of these

technologies. Several studies conducted user-based evalua-
tions with actual participants to assess the effectiveness of and
satisfaction with their proposed systems. These evaluations
provided valuable insights into the usability and acceptance
of assistive technologies. Tables 31 and 32 summarize studies
that include user-based evaluations.
Three methods for assessing user satisfaction were iden-

tified: user studies, interviews, and surveys. Additionally,
some studies involved only visually impaired participants,
some involved only blindfolded users, and some included
both groups to test their systems. Most studies used user
studies as the primary evaluation method. Some studies also
employed interviews or surveys after initial user studies to
gather additional information on user satisfaction. The tables
also show the experimental sites where the evaluations were
conducted.
For example, [56] involved nine BVI participants on a uni-

versity campus to evaluate a sonification system and collect
feedback on pleasantness, annoyance, precision, quickness,
and overall appreciation. Similarly, [57] conducted evalua-
tions with two BVI and three blindfolded participants in a
laboratory setting, focusing on the task success rates, com-
pletion times, and feedback from verbal and haptic cues.
The study by [58] included five BVI and three blindfolded

participants, achieving user satisfaction scores between six
and nine out of ten. Another study by [59] evaluated their sys-
temwith ten blindfolded participants, noting improvements in
acceptance and trust levels.

[62] found moderate to high satisfaction among eight
blindfolded participants, who found the system acceptable
and useful for indoor navigation. In contrast, [77] highlighted
that while users found the wayfinding function useful, they
expressed discomfort owing to the weight of the device.
Overall, the user-based evaluations indicated that participants
generally found the proposed systems beneficial for naviga-
tion, with varying levels of satisfaction based on the specific
features and implementation of each system.
Some studies only conducted technical tests, without in-

volving direct user feedback. These studies are summarized
in Table 33. For example, [65] and [66] focused on the
technical performance of their systems and conducted tests in
controlled environments but did not report user satisfaction.
The absence of user-based evaluations limits our under-

standing of how these systems perform in real-world scenar-
ios and their acceptance among users. Future research should
aim to incorporate comprehensive user studies to complement
technical assessments and provide a more holistic view of a
system’s effectiveness and usability.

4) System prototype information
To provide a comprehensive understanding of the assistive
solutions proposed in the reviewed studies, we present the
information regarding the system prototypes in Tables 34-
38. These tables include data on the functionalities, sen-
sors used, computing resources, human-computer interaction
(HCI) mechanisms, assistive tools, battery life, and whether
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TABLE 27. Attributes of SLAM-based navigation systems that contribute to enhancing BVI navigation, along with referenced papers emphasizing
each feature.

Features Description Reference(s)
Precise Localization Using SLAM algorithms, these solutions accurately estimate the position and orientation of visually

impaired users. Precise localization is essential for visually impaired navigation systems in order to
ensure accurate real-time guidance, obstacle avoidance, and spatial awareness, ultimately enhancing
independent and safe mobility.

[64], [67], [69], [70],
[73], [75]–[78], [82],
[89], [90], [93], [95],
[97], [102]

Real-time assistance This feature ensures that BVI users receive immediate feedback about their environment. Therefore,
they can be guided to navigate safely and efficiently, thereby enhancing their overall mobility and
independence.

[57], [66], [67], [69],
[77], [82], [85], [88],
[92]

Semantic mapping Semantic mapping involves creating detailed environmental representations that go beyond geometric
data and enables visually impaired users to navigate with a deeper understanding of their surroundings.

[66], [72], [84], [97],
[100]

Both indoor and outdoor
navigation

Systems that serve both indoor and outdoor settings allow users to transition seamlessly between
different environments while receiving consistent support.

[56], [65], [67], [68],
[74], [85], [104], [108],
[111]

Innovative algorithms Innovative algorithms lead to advancements in navigation techniques. These approaches contribute to
a more efficient and effective navigation, ultimately improving the overall experience of the visually
impaired.

[66], [73], [77], [78],
[91], [102], [106],
[110]

Robotic navigation These solutions employ robotic systems, such as robots, smart canes, scooter, and suitcases, which are
equipped with sensors to assist BVI in navigating their environment.

[59], [64], [67], [68],
[70], [78], [87], [89],
[99], [104], [106],
[107], [112]

Smartphone based Equipped with cameras and sensors, tablets and smartphones can be considered versatile navigation
tools. These solutions offer assistance through devices that are widely available and familiar.

[63], [74], [75], [80],
[98], [102], [104],
[107]–[111]

the solutions are machine learning-based. Notably, the spec-
ifications in these tables cover the entire assistive system,
and not just the localization and mapping components, as
presented in Tables 17-19.

Functionalities include the capabilities and features of the
assistive system, such as navigation, object recognition, and
obstacle avoidance. Sensors specify the types of sensors used
in assistive devices such as cameras, LiDAR, and IMUs.
Computing Resource indicates the hardware used for process-
ing, including local devices, such as smartphones and laptops,
as well as remote servers. HCI describes the interactionmech-
anisms used to provide feedback to the user, such as audio
and haptic feedback. The assistive tool details the form factor
of assistive devices, such as smart glasses, canes, and robot
systems. Battery Life provides information on the operational
duration of a device on a single charge. ML-based indicates
whether the assistive solution incorporates machine learning
algorithms.

Table 39 categorizes the papers based on the functionalities
offered by assistive systems, highlighting the diverse capa-
bilities ranging from basic navigation and obstacle avoid-
ance to advanced features such as scene understanding and
social networking. Table 40 classifies the papers based on
the HCI mechanisms employed, showing the prevalence of
audio feedback and the growing trend towards multimodal
feedback incorporating haptic and tactile cues. Finally, Table
41 categorizes the studies based on the form factor of the
assistive tool, revealing the diversity of approaches, including
smartphone-based, wearable devices, handheld devices, and
robotic systems.

a: Functionalities
The analysis of the data in the tables shows the diverse
range of approaches and technologies used to create assistive

systems for visually impaired navigation. Most systems focus
on navigation and obstacle avoidance, but many also include
advanced features such as scene understanding and social net-
working. The use of sensors is diverse, with RGB-D cameras
being the most commonly used because of their capability to
capture both color and depth information, especially for the
localization and mapping components of assistive systems.

b: HCI
The HCI mechanisms vary, with audio feedback being the
most commonly usedmethod. Several systems also use haptic
feedback and a few incorporate visual hints for users with
partial vision. These feedback mechanisms are essential for
real-time navigation assistance and for enhancing user experi-
ence. Several studies used multimodal feedback for real-time
navigation assistance, as indicated by the HCI column. These
include combinations of audio, haptic, and grounded kines-
thetics to enhance user experience and provide comprehen-
sive navigation aids. This multimodal approach ensures that
users receive complementary information, thereby enhancing
the robustness and reliability of assistive systems.

c: Assistive tool
The form factors of assistive tools vary among the stud-
ies. Wearable devices such as smart glasses and helmets
are designed to be worn on the body and provide hands-
free assistance. Handheld devices, such as smart canes, are
traditional mobility aids enhanced by modern technology.
These smart canes include sensors to detect obstacles and
provide real-time feedback through vibrotactiles or steering.
This approach leverages the familiarity and comfort of using a
cane, while adding significant technological advancements to
aid navigation and spatial awareness. Some prototypes incor-
porate both wearable and handheld components; for example,
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TABLE 28. Effectiveness of localization and mapping techniques in indoor environments as indicated by the literature. (Part I)

Ref. Localization & mapping accuracy level Robustness level Considers
dynamic object

Running time

[57] High: Ensuring safe indoor navigation High: Utilizes robust ORB-SLAM2 technique
for reliable feature matching and adaptive nav-
igation.

• Affected by 0.15-1 sec transmission time to re-
mote server

[58] Not provide specific details High: Instant localization, robust map building • Real-time
[59] High: Confirmed through user-guided tests Not provide specific details ✓ Not mentioned
[60] High: With an average error of less than 1 meter High: Combined advantages of OpenVSLAM

and Colmap
• High: Average response time of 2 to 3 seconds

for localization
[61] High: With 0.62m for 3D and 1.24m for 2D High: Cartographer for mapping with optimiza-

tion techniques
• Moderate: For localization is under 0.25 seconds

[62] High: Accurate mapping, guiding users precisely
to target goals

High: Reliable performance with accurate map-
ping

• Moderate: Some delays in mapping, but overall
meets real-time requirements

[63] Moderate: Needs improved SLAM stability and
accuracy due to scaling issues

High: due to SLAM loop closing, real-time cor-
rection

• Not mentioned

[64] Moderate: Effective mapping and localization
but has deviations and mismatches impacting
overall accuracy

High: The integration of ORB-SLAM with
YOLO ensures robust navigation and obstacle
detection in various environments

• Moderate: Real-time map-building but slow path
planning

[66] High: With centimeter-level accuracy High: Real-time performance, centimeter-level
accuracy, semantic mapping integration, and re-
source optimization

• Real-time performance ensured through careful
computing power allocation

[69] Not explicitly mentioned High: Hector SLAM algorithm ensures robust
mapping and localization accuracy.

✓ Real-time

[70] High: With significant error reduction and effec-
tive 2D mapping alignment.

High: Enhanced by floor plan integration, error
reduction techniques, and superior performance
in real-time pose estimation.

• Real-time

[72] High: Achieved 96.3% localization accuracy;
outperforms other models despite pre-training
limitations.

High: Demonstrates robustness through accurate
SLAM technique, semantic mapping, and deep
learning integration for indoor localization.

• High: Longer computational time due to in-
creased complexity or resource requirements.

[73] High: Demonstrates superior accuracy compared
to ORB-SLAM2 in dynamic environments.

High: Demonstrates robustness through ad-
vanced SLAM techniques for obstacle removal
and dynamic environment adaptability.

✓ Not mentioned

[75] High: Rigorous comparison and real-time re-
liance on CAD maps ensure precise localization.

High: Advanced localization and flexible path
planning for accurate and safe navigation.

• Not mentioned

[76] High: Key-frame matching and fisheye camera
enhance feature detection and accuracy.

High: ORB-SLAM2 for precise localization and
obstacle avoidance in effective indoor naviga-
tion.

Dynamic
obstacle in

experiment path

Short: Visual SLAM and dynamic subgoal selec-
tion optimize efficiency for real-time localization
and mapping.

[77] High: Superior to plane-based graph SLAM High: Efficiently addresses all 6-DOF and out-
performs traditional SLAM methods

• 59.4 ms average per frame

[78] High: Demonstrated by superior performance in
pose estimation accuracy and robustness in vari-
ous environments.

High: Enhanced by integrating plane features
and employing a plane consistency check for
accurate pose estimation.

• Not mentioned

[79] Not mentioned Not mentioned ✓ Real-time
[80] High: Utilizes visual landmarks, real-time data

analysis, addresses limiting factors
High: Robust to superficial changes, requiring
updates only for major structural alterations.

• Moderate: Impacted by the number and type of
visual landmarks.

[83] High: Accurate localization and mapping
demonstrated through real-time indoor
experiments in static scenarios.

High: Hector SLAM ensures robustness in com-
plex indoor environments for accurate navigation
in static scenarios.

• Real-time

[84] High: <1m position error, <5°orientation error High: Integration of semantic SLAM, optimiza-
tion of semantic Point Clouds during loop clo-
sures

• Real-time (typically under 10 seconds, faster
near distinctive features)

[87] High: Cartographer SLAM and 360 LiDAR for
precise real-time mapping.

High: Cartographer ensures dynamic, real-time
LiDAR mapping with efficient updates in unfa-
miliar environments.

• Real-time

[88] High: SLAM algorithm and low-drift IMU en-
able precise user pose estimation and environ-
ment mapping.

High: With real-time updates and effective
threshold management.

• Short: Navigation completed within 45 seconds
on average, well under the 2.5-minute cut-off.

[89] High: Highly accurate in real-time testing High: Integrating ORB-SLAM and YOLO en-
sures stability and accuracy.

• Not mentioned

[90] High accuracy feature-based visual SLAM esti-
mation

Moderate: Acknowledging limitations while uti-
lizing effective techniques, indicating room for
improvement.

✓ Moderate: Accounting for variable GPU impact
and dependency on tracked objects.

in the study by [107], a Google Tango device was mounted
on the user’s chest while the user held a smart cane. These
prototypes are categorized as handheld devices because the
users’ hands are occupied. Robotic systems represent another
innovative factor. These can range from small mobile robots
in the shape of a suitcase that guides users through complex
environments to more substantial ride-on systems such as
autonomous wheelchairs or scooters.

d: Battery life

The battery life is a critical factor in assistive navigation
systems. These systems must be reliable to ensure contin-
uous assistance without frequent recharging interruptions.
The battery lives of the proposed solutions varied across the
reviewed studies. Some systems, such as those described by
[57], have reported a long battery life, which ensures that
the devices remain functional during extended use. However,
not all studies provide detailed information on battery life.
This lack of information can be a concern, as it leaves un-
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TABLE 29. Effectiveness of localization and mapping techniques in indoor environments as indicated by the literature. NM indicates that the
information is not explicitly mentioned in the paper. (Part II)

Ref. Localization & mapping accuracy level Robustness level Considers
dynamic object

Running time

[91] High accuracy (RMSE 0.269), surpassing VINS-
Fusion and VINS-RGBD.

High robustnesswith RGBD-VIO, enhancing ac-
curacy and efficiency for assistive navigation and
object manipulation.

• Not mentioned

[92] Achieving a 91% success rate in navigation tasks Demonstrating robustness, utilizing ORB-
SLAM2 algorithm enables real-time path
planning.

• Real-time

[93] Not specified Not specified • Not mentioned
[95] High: LiDAR and IMU data ensure precise lo-

calization and mapping.
High: Integratingmultiple sensors ensures robust
localization for accurate navigation and collision
avoidance.

✓ Not mentioned

[96] Lacking explicit discussion on accuracy, robustness, consideration of dynamic objects, and ML-based solutions.
[97] While numerical metrics are not mentioned, in-

dicators suggest potential accuracy.
High: OpenVSLAM framework ensures robust
real-time mapping and localization capabilities.

• Real-time

[98] High: Consistently achieves sub-1 meter local-
ization accuracy upon algorithm convergence.

High: Utilizing stable landmarks and a particle
filter ensures robust indoor localization.

• Real-time operation with accurate localization
post-algorithm convergence, demonstrating effi-
cient performance on smartphones.

[99] High: Achieving accurate pose estimation with a
position error of 0.2 meters.

High: Enhancing robustness with integrated VIO
and Human Intent Detection for accurate pose
estimation and mode selection.

• Short: Real-time pose estimation with updates
every 22 milliseconds.

[100] Moderate Based on validation conducted in real-
world scenarios

Low: Performance degradation observed in spe-
cific scenarios due to narrow corridor and orien-
tation estimation issues.

✓ Real-time

[102] High: 94-98% with relative errors of 1.6-2.6% High: Efficient integration of visual SLAM, ob-
ject detection, and depth measurements for pre-
cise, reliable indoor navigation.

• Real-time

[103] Not mentioned Not mentioned • Not mentioned
[106] High: Superior pose estimation accuracy (mean

End Point Error Norm (EPEN): 2.63%) com-
pared to a state-of-the-art VIO (mean EPEN:
6.06%).

High: More stable performance (standard devi-
ation EPEN: 1.3%) than a state-of-the-art VIO
(standard deviation: 8.22%).

• Not mentioned

[107] Not evaluated Not evaluated • Real-time
[109] High: Precise self-positioning and mapping with

high accuracy in large-scale environments.
High: Superior robustness compared to conven-
tional monocular SLAM algorithms, ensuring
quick and reliable calculations.

✓ Real-time

[110] High: Assessed via quantitative metrics and real-
world tests, achieving low navigation error and
high success rate.

High: Utilizing robust visual-inertial SLAMwith
iOS ARKit for accurate real-time navigation and
obstacle avoidance.

NM Real-time per-frame pose estimation

[112] Not directly mentioned Moderate: Issues with mapping reflective or
transparent surfaces like glass windows.

• Not mentioned

certainty regarding the reliability of the device in real-world
scenarios. Additionally, some devices, such as those incor-
porating high-performance processors or multiple sensors,
may face challenges in maintaining a long battery life owing
to their higher power consumption. Systems such as those
described by [82], which use advanced components such as
theNvidia JetsonAGXXavier, may offer robust functionality,
but require careful management of power resources to ensure
adequate battery life.

e: Machine-learning approaches

Many systems leverage machine learning for functionalities,
such as object detection, scene understanding, and localiza-
tion. Algorithms such as YOLO, Faster R-CNN, and vari-
ous deep neural networks are commonly employed. These
machine learning-based solutions enhance the accuracy and
efficiency of the assistive systems. Table 42 categorizes the
machine learning approaches used in assistive devices, along
with their references. This categorization illustrates the diver-
sity of machine-learning techniques applied to improve the
functionalities of assistive systems for BVI navigation.

IV. FUTURE OPPORTUNITIES
An effective navigation system for BVI people needs to
meet mobility metrics, such as decreasing navigation time,
decreasing navigation distance, decreasing contact with the
environment, and increasing walking speed. These systems
must be highly accurate and efficient in complex situations,
such as crowded places and changing light andweather condi-
tions. At the same time, assistive aids should be comfortable,
easy to use, unobtrusive, cost-effective, lightweight, and re-
duce cognitive load.
In this review, we examined publications that employed

SLAM techniques in their navigation approaches. One of the
distinct advantages of SLAM is its applicability in diverse
locations without the need for pre-built maps or additional
infrastructure such as Bluetooth beacons or RFID tags. How-
ever, there is still room for improvement in various aspects of
these systems, including their ability to handle complex sce-
narios, provide accurate obstacle information, and seamlessly
transition between indoor and outdoor environments.
There is a notable lack of focus on adapting SLAM

to challenging situations especially dynamic environments,
specifically for visually impaired navigation. Studies in this
field typically employ SLAM as a pre-existing tool or use
it without any significant adaptation to effectively handle
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TABLE 30. Effectiveness of localization and mapping techniques in outdoor and mixed environments as indicated by the literature. NM indicates that
the information is not explicitly mentioned in the paper.

Ref. Localization & mapping accuracy level Robustness level Considers
dynamic object

Running time

Outdoor
[71] High: Superior accuracy demonstrated across

multiple indicators and challenging conditions.
High: Demonstrates superior robustness, espe-
cially in the presence of dynamic objects and
changing illumination.

✓ Moderate:Meets real-time requirements on pow-
erful devices, but slower on less capable hard-
ware.

[82] Moderate: Global pose estimation within 80 cm
radius of ground truth; verified in real-world sce-
narios.

Low: Navigation relies on SLAM-relative poses,
prone to instability with changing or occluded
features.

• Real-time

[101] SLAM used for localizing footage, creating spatial graphs, and generating realistic Deep Reinforcement Learning simulator data for pedestrian navigation training.
[105] Approximately 12cm error in localization accu-

racy
High: Robust in weakly textured environments • Not mentioned

Both (Indoor and Outdoor)
[56] Moderate: Support in measuring errors. Moderate: System evaluates errors reliably. • Not mentioned
[65] High: Precise ground truth trajectories, withmin-

imal absolute error
High: Reliable trajectory extraction with low ab-
solute error

✓ Not mentioned

[67] High: RMSE between 0.08 and 0.44 m, indicat-
ing high precision in indoor environments

High: SLAM-based system navigated complex
environments with precision and consistent suc-
cess across multiple trials

• SLAM operated at 1.4 Hz, which is sufficient for
real-time use

[68] Low: SLAM struggles with dynamic environ-
ments

Low: SLAM demonstrates vulnerability in dy-
namic environments, with unstable navigation
and orientation errors compared to UWB posi-
tioning

✓ High: Averaging 317 seconds for navigation
tasks in a dynamic environment

[74] High: Indoor localization with pre-built maps. High: VSLAM for indoor navigation enhances
robustness in GPS-degraded environments.

✓ A real-time performance (approximate 20 fps) on
a smartphone.

[85] High: With an error of less than 0.5 meter High: Integration object detection and visual
SLAM for accurate navigation support.

• Real-time (with initialization under 2 seconds
and trajectory estimation under 1 second.)

[104] High: Accurate obstacle detection, extended
range, minimal error in indoor mapping, inte-
grated sensor data for dynamic environments.

High: Dynamic adaptation, effective in complex
and crowded environments with moving obsta-
cles.

✓ Not mentioned

[108] High: Precise image feature extraction and mo-
tion trajectory reconstruction

High: Dependable for tracking position and ori-
entation.

NM Real-time

[111] Not mentioned Not mentioned ✓ Not mentioned

challenges. Researchers in this area can draw inspiration
from recent advancements in robotics to address this gap. By
leveraging cutting-edge techniques from robotic navigation,
SLAM systems that are more robust and suitable for assisting
visually impaired individuals in real-world scenarios can be
developed.

This section discusses the open problems and research
directions identified during the SLR.

Challenge scenarios and real-world studies Navigating
crowded environments remains a significant challenge for
the visually impaired and studies addressing this issue are
limited. Evaluations are often conducted in controlled settings
rather than real-world scenarios. This is problematic because
controlled environments may not accurately reflect the dy-
namic and unpredictable nature of real-world crowded spaces,
where visually impaired individuals face numerous obstacles
and safety risks. Future research should focus on developing
and testing solutions in high-traffic public places such as
train stations and shopping malls. This is crucial to ensure
that assistive navigation systems can effectively handle the
complexities of real-world crowded environments, including
the presence of numerous dynamic objects, varying crowd
densities, and unpredictable pedestrian behaviors.

Furthermore, addressing challenging conditions such as
changes in illumination, low-light scenarios, high-speed dy-
namic objects, and complex backgrounds can enhance the
robustness and versatility of navigation systems. These chal-
lenging conditions are common in real-world scenarios and
can significantly impact the performance and reliability of

SLAM-based navigation systems. By addressing these chal-
lenges, researchers can developmore robust and adaptable so-
lutions that can function effectively in diverse and demanding
environments.
Techniques such as image enhancement for ORB points

and LSD line feature recovery used in agricultural environ-
ments [116] can be adapted for visually impaired navigation.
Adapting these techniques from other domains can acceler-
ate the development of more effective solutions for visually
impaired navigation, leveraging existing knowledge and ex-
pertise to address the specific challenges faced by this user
group.
Long-term navigation The development of solutions that

are effective over extended navigation periods is critical to
achieve autonomous navigation. These solutions must ensure
accurate mapping and localization even when the maps are
updated over a longer navigation duration. This is important
because environments are not static; they change over time.
Obstacles may appear or disappear, and landmarks may be
altered. A SLAM-based navigation system that cannot adapt
to these changes will become increasingly inaccurate and un-
reliable over time, potentially leading to dangerous situations
for visually impaired users.
To address this challenge, researchers can leverage so-

lutions proposed in robotics, such as those presented in
[117], which introduced a novel long-term SLAM system
with map prediction and dynamic removal, thereby allowing
wheelchair robots to maintain precise navigation capabilities
over extended periods.
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TABLE 31. User satisfaction evaluation. This table includes studies that conducted user-based evaluations with actual participants to assess the
effectiveness and satisfaction of the proposed systems - Part I.

Ref. # Participants Method of evaluation Experimental site User satisfactionBVI Blindfolded User
study

Interview Survey

[56] 9 0 ✓ • ✓ A university campus Participants’ feedback varied on pleasantness,
annoyance, precision, quickness, and overall
appreciation of sonification.

[57] 2 3 ✓ • • Wearable Robotics and Autonomous Un-
manned Systems Laboratory at the University
of Science and Technology of China

No overall satisfaction score; details on task
success rates, completion times, and ver-
bal/haptic feedback.

[58] 5 3 ✓ • • Not mentioned Scores 6-9 out of 10
[59] 0 10 ✓ • ✓ Not mentioned Improved acceptance and trust levels noted
[60] 2 4 ✓ • • New York University Langone Ambulatory

Care Center (A Complex hospital environm-
net)

Not mentioned

[62] 0 8 ✓ ✓ • A room Moderate to high satisfaction: Users found
the system acceptable and useful for indoor
navigation

[67] 12 12 ✓ • ✓ Hallways constructed with cardboard, outdoor Novice and expert users noted usability chal-
lenges due to weight, but confidence and
workload improved

[68] 8 0 ✓ ✓ ✓ A hallway in the Boai Campus BIO–ICT
Building on the campus of National Yang
Ming Chiao Tung University, Taiwan

Participants found the proposed route easy to
navigate, with low perceived difficulty and
medium confidence. Most intend to use it
again.

[74] 20 0 ✓ • ✓ Office area and simulated outdoor scenario Positive feedback on usability and navigation;
desire for detailed tutorials; satisfaction with
daily use, challenges with multi-floor naviga-
tion.

[75] 4 0 ✓ • ✓ In a corridor All subjects found haptic instructions intu-
itive, enhancing safety and reducing hesitation
compared to audio, though some suggested
design improvements.

[77] 0 7 ✓ • ✓ Various indoor places Users find the wayfinding function useful, but
discomfort due to weight is a significant con-
cern.

[82] 3 0 ✓ ✓ • Two different crosswalks Intuitive, easy-to-understand verbal instruc-
tions, enhances street crossing safety

[87] 7 0 ✓ ✓ • In unfamiliar building High satisfactionwith PathFinder’s navigation
assistance, intersection detection, and audio
feedback.

[88] 0 6 ✓ • ✓ In a configurable 12ft × 17ft room High confidence, ease of use, and perfor-
mance rated positively; verbal overview and
haptics well-received for navigation assis-
tance.

Future research should focus on the development of robust
algorithms for continuous map updates and maintenance,
including strategies for handling environmental changes over
time. These strategies are essential to ensure that the navi-
gation system can maintain its accuracy and reliability over
extended periods, even in the face of environmental changes.
By continuously updating and refining the map, the system
can provide visually impaired users with up-to-date and rel-
evant information about their surroundings, enabling them to
navigate safely and confidently.

Deep learning integration The integration of deep learn-
ing with the SLAM algorithms for BVI navigation requires
further investigation. Deep learning offers a versatile ap-
proach for enhancing various aspects of SLAM such as pre-
cise pose estimation under challenging conditions, relocaliza-
tion, and loop-closure detection. This is important because
deep learning can potentially improve the accuracy and ro-
bustness of SLAM in complex and dynamic environments,

where traditional SLAM algorithms may struggle. For in-
stance, deep learning can be used to improve feature detection
and matching in low-light conditions or to predict and adapt
to changes in the environment. Despite challenges, such as
the need for large, accurately labeled datasets, the black-
box nature of deep-learning models, and the computational
intensity, the association between deep learning and SLAM
holds promise for advancing navigation solutions for the
visually impaired, particularly in challenging scenarios. The
potential benefits of deep learning for SLAM are substantial,
and overcoming these challenges could lead to significant
advancements in assistive navigation technology.

Future research should focus on developing more efficient
deep learning models that can operate effectively with limited
computational resources and real-time constraints. This is
crucial because visually impaired individuals need real-time
feedback and guidance to navigate safely and effectively.
Deep learning models that are computationally intensive or
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TABLE 32. User satisfaction evaluation. This table includes studies that conducted user-based evaluations with actual participants to assess the
effectiveness and satisfaction of the proposed systems - Part II.

Ref. # Participants Method of evaluation Experimental site User satisfactionBVI Blindfolded User
study

Interview Survey

[91] 0 5 ✓ • • In a laboratory The significant improvement in success rate
and task completion time, from 32% to 96%
and 29.1s to 15.6s respectively, demonstrates
the effectiveness of the proposed solution in
aiding wayfinding and object manipulation.

[95] 14 0 ✓ • ✓ A short route in a controlled and long route in
a real-world public space.

Participants expressed high levels of content-
ment with the system’s usability, effective-
ness, and overall user experience in the study.

[97] 0 1 ✓ • • Not mentioned Assessed through successful task completion,
yet occasional false positives slightly affect
confidence.

[110] 10 1 By sighted With
BVI

• In the Rhodes Research Center at Clemson
University

An online interview with 10 BVI individ-
uals via Zoom guided the choice of a 3D
perception-enabled mobile platform with a
speech-auditory interface.

require powerful hardwaremay not be practical for real-world
use. Additionally, creating large-scale, accurately labeled
datasets tailored for BVI navigation is crucial for training
robust models. The lack of such datasets is a major obstacle
to the development of effective deep-learning-based SLAM
systems for visually impaired navigation.

Addressing the interpretability of deep learning models
can also enhance the trust and transparency in these systems.
Collaboration among machine learning experts, roboticists,
and vision scientists can drive the development of innova-
tive algorithms that leverage deep learning to enhance the
reliability and accuracy of SLAM-based navigation aids for
the visually impaired. This collaboration is essential to bring
together the diverse expertise needed to develop effective and
practical solutions.

Indoor and outdoor navigation integration Seamless
transitions between indoor and outdoor environments are
crucial for enhancing the independence and mobility of BVI
individuals. However, most studies in our SLR have focused
primarily on indoor environments. This limitation arises be-
cause indoor environments are often more structured and
predictable than outdoor environments, making them easier
to map and navigate using SLAM. Outdoor environments, on
the other hand, present challenges such as varying lighting
conditions, weather changes, and a wider range of obstacles.

Future research should aim to develop solutions that pro-
vide unified and consistent navigation experience in both in-
door and outdoor settings. This is important because visually
impaired individuals need to be able to navigate seamlessly
between different environments in their daily lives. A nav-
igation system that only works indoors or outdoors would
be of limited use. Researchers should explore the integration
of robust sensor fusion techniques and adaptive algorithms
capable of handling the different conditions and challenges
of these environments. Sensor fusion can combine data from
multiple sensors, such as cameras, LiDAR, and IMUs, to
provide a more comprehensive and accurate understanding of
the environment. Adaptive algorithms can adjust the SLAM

system’s parameters in real time to account for changes in
lighting, weather, and other environmental factors.
Obstacle detection Achieving detailed knowledge of ob-

stacles and their characteristics is essential for BVI people.
Although some studies included in the SLR addressed obsta-
cle detection, the depth and accuracy of the obstacle informa-
tion provided may still be limited. This limitation stems from
the fact that traditional obstacle detectionmethods often focus
on identifying the presence and location of obstacles but may
not provide detailed information about their shape, size, or
material, which is crucial for visually impaired individuals to
make informed decisions during navigation.
To address the need for more detailed and accurate obsta-

cle information, future research should focus on advancing
SLAM algorithms to deliver context-aware obstacle detec-
tion. This involves integrating semantic understanding with
precise spatial measurements, allowing the system to iden-
tify and interpret the nature and significance of obstacles
accurately. By incorporating semantic understanding, SLAM
systems can differentiate between different types of obstacles,
such as curbs, stairs, or low-hanging branches, and provide
more relevant and actionable information to the user. Precise
spatial measurements are essential for accurately estimating
the distance, size, and shape of obstacles, enabling visually
impaired individuals to navigate safely around them.
In addition, it is crucial to develop algorithms that can

learn and adapt to various obstacle types and scenarios. Draw-
ing inspiration from the approaches used in robotics and
autonomous drones, such as the real-time metric-semantic
SLAM demonstrated by [118], can provide valuable in-
sights. These approaches have demonstrated the feasibility
and effectiveness of integrating semantic understanding with
precise spatial measurements in real-time SLAM systems.
Therefore, future research should prioritize improving both
the depth and accuracy of obstacle information, while ensur-
ing robust real-time performance and adaptability to various
real-world conditions.
Semantic information integration Integrating semantic
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TABLE 33. User satisfaction evaluation. This table includes studies that primarily conducted technical tests without direct user-based evaluations.

Ref. # Participants Method of evaluation Experimental site User satisfactionBVI Blindfolded User
study

Interview Survey

[61] The technical test was conducted in the corridor environment of a typical office building. Real-world user satisfaction was not directly assessed.
[63] 78 0 • • ✓ Surveyed BVI online using LymeSurvey

to understand social networking needs
Not mentioned; the focus is on system
development

[64] 0 1 ✓ • • A laundry room, H-shaped hallway, class-
room, and T-shaped hallway

Not mentioned; the focus is on system
development

[65] Not a user-based evaluation; the focus is on a technical test.
[66] Not explicitly mentioned; the focus is on a technical test.
[69] Not explicitly mentioned Laboratory Not mentioned
[70] The focus is on a technical test The Engineering East Hall of Virginia

Commonwealth University
Technical focus only

[71] Focuses on technical performance; real-world user satisfaction not directly assessed.
[72] The technical test was conducted in accommodation and office buildings. Real-world user satisfaction was not directly assessed.
[73] The technical test was conducted in a university lobby. Real-world user satisfaction was not directly assessed.
[76] Unspecified 0 ✓ • • Not mentioned Not mentioned
[78] The technical test was conducted on seven datasets collected internally. Real-world user satisfaction was not directly assessed.
[79] The test was conducted in the College of Computer and Information Sciences at King Saud University, but user satisfaction was not directly assessed.
[80] 1 5 Data was collected by participants to simulate indoor navigation, followed by offline analysis.
[83] The technical test was conducted in various indoor environments. Real-world user satisfaction was not directly assessed.
[84] The technical test was conducted in a corridor environment. Real-world user satisfaction was not directly assessed.
[85] The technical test was conducted in an office room and on the KITTI dataset. Real-world user satisfaction was not directly assessed.
[89] The technical test was conducted on the KITTI-02 dataset. Real-world user satisfaction was not directly assessed.
[90] The technical test included TUM RGB-D, Bonn RGB-D datasets, and real-life sequences, but didn’t directly assess user satisfaction.
[92] 3; Visual ability unspecified ✓ • • Not explicitly mentioned User satisfaction not directly assessed;

technical tests show high success rates and
accuracy.

[93] 1; Visual ability unspecified ✓ • • In a laboratory User satisfaction not assessed
[96] Initiating target user testing was not feasible as the system was in the experimental stage.
[98] 5 0 ✓ • • Smith-Kettlewell building Not mentioned
[99] The technical test was conducted in the East Engineering Building at VCU. Real-world user satisfaction was not directly assessed.
[100] 0 1 ✓ • • In a laboratory The technical test was conducted. Real-

world user satisfaction was not directly
assessed.

[101] Paper develops a Reinforcement Learning environment to create a navigation assistant tailored for the BVI, without user-based evaluation.
[102] Technical tests conducted on the Karlsruhe dataset, indoor recorded dataset, and in a house; user satisfaction not assessed.
[103] Technical tests conducted in a research building; user satisfaction not assessed.
[104] Not explicitly mentioned; the focus is on a technical test.
[105] 1; Visual ability unspecified Not explicitly mentioned; the focus is on a technical test.
[106] The technical test was conducted on seven datasets collected in two buildings. Real-world user satisfaction was not directly assessed.
[107] 0 Unspecified ✓ • • In various indoor environments (university

campus, hotel, office building)
Not assessed

[108] The technical test was conducted in an office and pedestrian street. Real-world user satisfaction was not directly assessed.
[109] The technical test was conducted in a laboratory. Real-world user satisfaction was not directly assessed.
[111] Real-world user satisfaction was not directly assessed.
[112] Technical tests conducted in a corridor; user satisfaction not assessed.

information into SLAM algorithms can significantly enhance
the performance and robustness of navigation systems for
BVI individuals. This information can be used to refine the
mapping and localization processes and enhance the overall
reliability of navigation in complex environments. For in-
stance, semantic information aids in rejecting outliers during
loop-closure detection, which is a crucial SLAM step that
identifies and matches previously visited locations. To ad-
vance this area, future research should focus on developing
advanced techniques for semantic data extraction and integra-
tion within the SLAM frameworks. This is necessary because
current methods for semantic data extraction and integration
may not be efficient enough for real-time SLAM in complex
environments. By developing more advanced techniques, re-
searchers can improve the quality and reliability of semantic
information used in SLAM, leading to better navigation per-
formance.

Researchers should also explore methods to ensure real-
time performance while maintaining the accuracy and detail
of the semantic information. Real-time performance is crucial
for providing visually impaired users with timely and relevant
feedback during navigation. However, processing and inte-
grating semantic information is computationally expensive.
Therefore, it is important to develop methods that can bal-
ance real-time performance with the accuracy and detail of
semantic information.
Realistic dataset creation Another crucial area for future

research is the development of realistic and comprehensive
datasets tailored for BVI navigation. Although some datasets
exist for various SLAM applications, they often do not cap-
ture the unique challenges faced by the visually impaired,
such as the need to navigate crowded spaces and avoid
obstacles at different heights. Future research should focus
on creating large-scale, diverse datasets that include various
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TABLE 39. Classification of references based on functionalities

Functionality References
Localization [60], [61], [66], [72], [76], [78], [80], [82], [84], [90],

[93], [97], [98], [102]–[104], [106]
Mapping [64], [66], [69], [90], [104], [107]
Obstacle avoidance [64], [67]–[71], [73], [74], [76], [78], [79], [89], [90],

[95]–[97], [100], [104], [107]–[110], [112]
Object detection [63], [64], [72], [73], [77], [82], [83], [87], [89], [93],

[102]
Object localization [57], [67], [71], [85], [88], [91], [92]
Scene understanding [58], [63], [66], [71], [74], [75], [82], [97], [100]
Path planning [69], [75], [79], [82], [92], [96], [100], [107], [108],

[110]
Face recognition [57], [63]
Remote assistance [58], [63]
Social networking [63], [108]
Way-finding [57], [67], [70], [76]–[78], [80], [91], [99], [106],

[109], [111]
Dynamic object tracking [90]
Semantic mapping [72], [100]
Collision prediction [95]
Human intent detection [99]
Spatial risk mapping [59]

TABLE 40. Classification of papers based on HCI

HCI Mechanism References
Audio [56]–[60], [62]–[64], [66]–[70], [72]–[79], [82],

[83], [85], [87]–[92], [95]–[100], [102], [107],
[108], [110], [111]

Tactile [63], [64], [67], [70], [89], [95]
Haptic [57], [68], [75], [88], [91], [92], [107], [111]
Visual hints [76]
Motorized rolling tip [99]
Handle interface [87]
Steering control [104]
Virtual touch [85]
Grounded Kinesthetic [67]
Not Provided/Not mentioned [61], [71], [80], [84], [93], [101], [103], [105],

[106], [109]

indoor and outdoor settings, different lighting conditions, and
dynamic elements. This is important because the lack of such
datasets hinders the development and evaluation of SLAM
algorithms that are specifically designed for BVI navigation.
By creating datasets that reflect real-world challenges faced
by visually impaired individuals, researchers can develop
more effective and reliable navigation solutions.

Computing resources and battery life The development
and deployment of SLAM-based navigation systems for the
visually impaired face significant challenges related to com-
puting resources and battery life. SLAM algorithms, par-
ticularly when integrated with deep learning models, often
demand substantial computing power that can quickly drain
battery life and generate heat in mobile devices. This is a crit-
ical issue because visually impaired individuals need portable
and comfortable navigation aids that can operate for extended
periods without overheating or frequent recharging.

Additionally, intensive computations and continuous sen-
sor usage drain the battery life quickly, limiting the usability
of the system in real-world daily scenarios. This limitation
can significantly hinder the adoption and effectiveness of
the SLAM-based navigation systems. Future research should
focus on optimizing SLAM algorithms and deep learning
models for low-power devices without compromising the
accuracy or real-time performance. This is essential for devel-

TABLE 41. Classification of papers based on assistive tool

Assistive Tool References
Smartphone-based [56], [60], [63], [74], [75], [80], [98], [102], [108],

[110]
Glass-based [57], [71], [73], [74], [76], [90], [92], [93], [97]
Cane-based [64], [67], [70], [77], [78], [83], [88], [89], [99],

[106], [107]
Robotic systems [59], [68], [79], [87], [95]
Ride-on systems [104], [112]
Wearable sensor [85], [100], [105], [109], [111]
Head-worn sensor [58], [62], [66], [82], [91], [105]
No specific device/ Unspecified [61], [72], [84], [96], [101], [103]

oping energy-efficient solutions that can operate on portable
devices with limited battery capacity, ensuring that visually
impaired individuals can rely on these systems for extended
periods without interruption. Exploring edge computing solu-
tions, developing more efficient neural network architectures,
and enhancing battery management techniques could help to
address these challenges. These approaches can collectively
contribute to reducing the computational burden and power
consumption of SLAM-based navigation systems, making
them more practical and sustainable for real-world use.
Human-computer interaction for SLAM-based assis-

tive devices An important area for future research is to
improve the human-computer interaction (HCI) aspects of
SLAM-based assistive devices for BVI individuals. Although
SLAM techniques have shown great potential in gathering
and processing environmental information, effectively com-
municating this information to BVI users remains a signif-
icant challenge. Future research should focus on developing
intuitive and non-intrusivemethods to convey complex spatial
data and navigational instructions to BVI users. This includes:

• Multi-modal feedback systems: Exploring combinations
of audio, haptic, and other non-visual feedback methods
to provide rich contextual information without over-
whelming the user.

• Adaptive interfaces: Developing interfaces that can ad-
just the level and type of information provided based on
the user’s preferences, familiarity with the environment,
and the current situation.

• Natural language processing: Improving the ability of
systems to understand and respond to natural language
queries, allowing for a more intuitive interaction be-
tween the user and device.

• Cognitive load optimization: Investigating ways to bal-
ance the provision of detailed environmental informa-
tion, ensuring that users receive the necessary guidance
without cognitive overload.

• Real-time situational awareness: Developing methods to
effectively communicate dynamic elements of the envi-
ronment, such as moving obstacles or changing traffic
conditions in real-time.

Addressing these HCI challenges will be crucial in trans-
lating the technical capabilities of SLAM into practical, user-
friendly assistive devices that can significantly enhance the
mobility and independence of BVI individuals. Future re-
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TABLE 42. Categorization of machine learning techniques used in
assistive solutions

Technique References
Object detection

YOLO [64], [89]
YOLOv2 [73], [80], [83]
YOLOv3 (Tiny) [67], [95], [100]
YOLOv4 (Tiny) [93], [111]
YOLOv5 [85], [87]
Yolact obstacle detection [59]
(Faster) RCNN [63], [108]
Bisenet & HarDNet: crosswalk and signal detection [82]
Detectron2 [88]
TensorFlow Lite API [91]
MobileNetV3-Yolov4-Lite [92]
ACF detector [102]
CNN for text detection [103]
RCNN [108]

Object recognition
Multi-target recognition [57]
Inception-v3 [72]
PeleeNet + SDD [74]
EasyOCR: sign recognition [87]

Face recognition
OpenCV ObjDetect Module Face Recognition [59]
Neurotechnology’s Verilook 12.2: face recognition [63]

Semantic segmentation and scene understanding
LSTM RNN: scene description [63]
PSPNet: segment scene semantics [65]
ENet: pixel-level semantic segmentation [66]
MobileNetV2: constructing semantic point cloud [84]
Mask RCNN [88]
PanopticFCN [90]
RFNet: generating semantic labels [97]
Scene parsing using [124], [125] [108]
ResNet: scene-graph map construction [110]

Image captioning
Google Tensorflow im2txt [63]
Classical model with LSTM and ResNet [123] [93]

Visual odometry and localization
NetVLAD: global descriptors [60], [71]
SuperPoint: local descriptors [60]
GAN-based localization [61]
Monodepth2: estimating depth from RGB frame [65]
Transformer-based model: trajectory forecasting [65]
Deep Descriptors [71]
ConvNet: location inference [72]
Places365: place recognition [100]

Reinforcement learning & other techniques
Reinforcement learning [68], [101], [110]
Speech recognition [59]
OpenPose: Pedestrian detection [59], [90]
Scene Graph Generation [62]
LSTM RNN [63]
Imitation-learning DNN [63]
AlphaPose: detecting and tracking pedestrians [65]
Linear regression model: distance estimation [67]
Optical Character Recognition [108]
Currency recognition [108]
SFSpeechRecognizer from iOS [110]
EnvDrop: path exploration [110]

search in this area should involve close collaboration with
BVI users to ensure that the developed interfaces meet their
needs and preferences.

Product development and collaboration Notably, all re-
viewed approaches were prototypes in the early stages of
research and are not yet practical. This might be due to the
absence of a unified community or group dedicated to solving

the BVI navigation challenges. Much of the work in this
domain has been conducted by academic groups or small
companies that often fail to produce feasible final products.
This underscores a significant future opportunity to develop
collaboration and to bridge the gap between research and
practical implementation.
Additionally, efforts should be made to develop standard-

ized evaluation metrics and protocols to ensure that the de-
veloped systems meet real-world needs and can be effec-
tively transitioned from prototypes to market-ready solutions.
Standardized evaluation metrics and protocols are essential
to ensure that assistive navigation systems are evaluated con-
sistently and objectively. This can help identify the strengths
and weaknesses of different approaches and guide the devel-
opment of more effective solutions. Encouraging partnerships
with technology companies can also accelerate the commer-
cialization process. These partnerships provide the necessary
support to bring innovative solutions to the market.
In conclusion, the future of SLAM for the visually impaired

navigation is promising. Continued research efforts have the
potential to develop SLAM algorithms tailored for BVI navi-
gation, empowering visually impaired individuals with a safe
and independent means of navigating their surroundings.

V. CONCLUSION
This study presents a systematic literature review of recent
studies on SLAM-based solutions for BVI navigation. Ex-
cluding papers published before 2017, this review focused
on the latest advancements, innovations, and considerations,
resulting in amore relevant and comprehensive understanding
of the current state of research. The insights provided by this
systematic literature review are intended to guide researchers
in the academic and research communities. They inform the
existing gaps and future opportunities to address the chal-
lenges faced by SLAM-based assistive solutions.
Relevant data were extracted from 54 selected studies that

adhered to the SLR selection criteria to address the research
questions. By analyzing the selected papers based on their
SLAM techniques, we observed that the majority of the stud-
ies utilized visual SLAM techniques, such as ORB-SLAM3,
owing to their advantages for visual sensors.
Several studies have introduced novel strategies for ad-

dressing localization and mapping challenges tailored to the
specific requirements of their research, whereas certain stud-
ies have employed existing spatial tracking frameworks to
develop navigation solutions. We also investigated the advan-
tages and limitations of the SLAM techniques, as highlighted
in the studies under review. Notably, most studies have lever-
aged accurate localization features of SLAM.
We investigated the challenging scenarios encountered by

SLAM-based navigation systems, which have been addressed
in the literature. Additionally, we discussed practical chal-
lenges and considerations that affect the usability and adop-
tion of these systems. Furthermore, we analyzed how the
proposed SLAM-based solutions improve the mobility and
navigation of visually impaired individuals. We evaluated
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the effectiveness of these solutions in real-world scenarios
and assessed the user satisfaction to understand their prac-
tical impact on BVI mobility. Finally, we identified gaps,
opportunities, and areas of interest that could be explored
further in future research, such as addressing challenges in
crowded environments, improving real-world applicability,
integrating deep learning, and ensuring long-term navigation
effectiveness in SLAM-based solutions for visually impaired
navigation.

Given the widespread application of SLAM in robotic,
autonomous drones, and auto-driving car navigation, these
techniques can be adapted to ensure safe and independent
BVI navigation. This is particularly important in dynamic
and challenging environments, including those with vary-
ing lighting conditions where research opportunities remain
abundant. The potential of integrating these techniques into
the navigation of visually impaired individuals continues to
be an open and promising avenue.
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