
This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation (ICRA), London, 2023. ©IEEE

Event-based Agile Object Catching with a Quadrupedal Robot

Benedek Forrai∗1, Takahiro Miki∗1, Daniel Gehrig∗2, Marco Hutter1, Davide Scaramuzza2

Fig. 1: Event-based agile object catching with a quadrupedal robot, using only onboard perception and control. By using the low latency of events, our
robot is able to catch objects at speeds up to 15 m/s with a 83% success rate.

Abstract— Quadrupedal robots are conquering various ap-
plications in indoor and outdoor environments due to their ca-
pability to navigate challenging uneven terrains. Exteroceptive
information greatly enhances this capability since perceiving
their surroundings allows them to adapt their controller and
thus achieve higher levels of robustness. However, sensors
such as LiDARs and RGB cameras do not provide sufficient
information to quickly and precisely react in a highly dynamic
environment since they suffer from a bandwidth-latency trade-
off. They require significant bandwidth at high frame rates
while featuring significant perceptual latency at lower frame
rates, thereby limiting their versatility on resource constrained
platforms. In this work, we tackle this problem by equipping
our quadruped with an event camera, which does not suffer
from this tradeoff due to its asynchronous and sparse operation.
In leveraging the low latency of the events, we push the limits
of quadruped agility and demonstrate high-speed ball catching
for the first time. We show that our quadruped equipped with
an event-camera can catch objects with speeds up to 15 m/s
from 4 meters, with a success rate of 83%. Using a VGA event
camera, our method runs at 100 Hz on an NVIDIA Jetson Orin.

MULTI-MEDIA MATERIAL

For visual results, see our video at https://youtu.
be/FpsVB8EO54M. Also check out open-source code
at https://github.com/uzh-rpg/event-based_
object_catching_anymal.

I. INTRODUCTION

Humans and animals can perform highly agile maneuvers,
which require a combination of fast and precise perception
and robust and accurate control. For years roboticists have

∗ Denotes equal contribution. 1Benedek Forrai, Takahiro Miki and Marco
Hutter are with the Robotic Systems Lab, Department of Mechanical
Engineering, ETH Zurich, Switzerland. 2Daniel Gehrig and Davide Scara-
muzza are with the Robotics and Perception Group, University of Zurich
Switzerland (http://rpg.ifi.uzh.ch). This work was supported by
the Swiss National Science Foundation (SNSF) through the National Centre
of Competence in Research (NCCR) Robotics, and the European Research
Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

been inspired by nature and aimed at emulating these capa-
bilities in robotic systems. Recently, quadrupedal robots are
reaching animal-like performance on challenging locomotion
tasks with exteroception — such as taking a hike in the Alps
[1] — and are capable of performing complex maneuvers like
recovering from a flipped position [2].

In addition to robust control, many animals also have
special retinas with which they perceive their environment,
enabling them to perform highly complex maneuvers like
a dog catching a frisbee in mid-air. Exteroceptive sensors
like LiDARs and RGB cameras have enhanced robots’ per-
ception capabilities and enabled more smooth and complex
behaviors. However, despite these advancements, current
quadruped robots are still far from achieving the same level
of agility as animals like cats and dogs. Indeed, high-speed
object catching with onboard sensing remains a significant
challenge for quadrupedal robots.

Object catching has been studied with standard RGB
cameras [3]. However, it still suffers from fundamental
limitations due to the bandwidth-latency tradeoff. High frame
rates are necessary to react quickly, but these incur high
bandwidths. By contrast, lowering the frame rate increases
perceptual latency and can severely impact the robot’s re-
action time and success rate. Animal vision systems do
not suffer from this tradeoff since they do not perceive
their environment as a sequence of frames. Event cameras
are neuromorphic sensors that try to emulate the working
principle of these systems, and are therefore also not affected
by this tradeoff. They only measure changes in intensity
which they transmit as asynchronous, binary spikes with
micro-second level latency. They have been successfully used
in high-speed object evasion with drones [4], [5]. However, it
remains unclear how policies devised for quadrotors can be
applied to different robotic platforms such as quadrupeds. In
this work, we fill this gap, by developing a modular approach
to high-speed object catching using an event camera on a
quadruped platform equipped with a net, seen in Fig. 1.

https://youtu.be/FpsVB8EO54M
https://youtu.be/FpsVB8EO54M
https://github.com/uzh-rpg/event-based_object_catching_anymal
https://github.com/uzh-rpg/event-based_object_catching_anymal
http://rpg.ifi.uzh.ch


Fig. 3: Worst-case total latency comparison of standard camera and event camera-based algorithms for object catching. Both algorithms rely on N ≥ 2
detection of 3D position to fit a ballistic parabola, after which they can infer the impact range for catching.

Our approach works by first detecting independently
moving objects in the event stream, and then fusing these
detections to a ballistic parabolic trajectory estimate. This
estimate is then processed by a data-driven control policy
to perform the catching maneuver. By using events, our
approach enjoys a minimal latency, while benefiting from an
expressive data-driven policy for catching objects arriving at
different angles. Our contributions are the following:

• We present a method for high-speed ball catching from
event-based object trajectory estimations. By leveraging
the low latency of events we can track objects at up to
100 Hz on an NVIDIA Jetson Orin.

• We are the first to demonstrate successful event camera-
based high-speed object catching with a quadrupedal
robot equipped with a net. Our policy catches objects
flying at up to 15 m/s from 4 meters with an 83%
success rate.

• We extend the latency analysis in [6] to estimate object
trajectories from N detections, and the incurred laten-
cies for standard and event camera-based algorithms.

II. RELATED WORK

A. Dynamic Object Catching in Robotics

Early work on dynamic object catching focused on the
case where the object trajectory is fully observable and
known and has shown successful implementation on a variety
of robotics platforms ranging from robotic arms [7] to
drones [8]. Object trajectories in these cases were detected
by a motion capture rig using IR markers. Later work showed
successful object catching with onboard perception on a
drone [3], however, due to the use of a standard camera,
objects speeds were limited to 6 m/s, and the vision task was
simplified by mounting bright LED lights on the balls. To
date, the work by Falanga et al. [6] targets the fastest moving
objects, flying at up to 10 m/s with a drone. However, it
focuses on object evasion, instead of catching, which puts a
lower constraint on the robot policy. By contrast, high-speed
object catching, the target of this work, requires precise and

agile maneuvering of the robot. The work in [9] is the first
to address this task with a linear slider, showing promising
results with a learning-based detector. In this work, we take
the next step and apply this concept to a complex, legged
robot.

B. Advancements in Legged Robotics

In contrast to the highly maneuverable, lightweight, and
easily modeled quadcopters used for onboard catching sce-
narios in the previous section, legged robots pose a much
more sophisticated control problem due to its size and
more complex interaction with the environment. A typical
approach to control this is to use a model-based controller
to plan its motion through a physical model and minimize the
objective function such as target velocity error. This often re-
quires computational heavy planning, making it challenging
to achieve fast and reactive motion [10], [11], [12]. Recently,
a deep reinforcement learning method showed a great capa-
bility in complex and agile maneuvers without compromising
real-time performance [13], [14], [15], [16], [1]. Utilizing
the exteroceptive information was mostly from a separate
mapping pipeline which fuses information from the depth
sensors [17], [18], [19]. However, this approach poses large
latency and makes it difficult to handle dynamic environment.
Recently, the attempt of using raw depth images for locomo-
tion task is pursued [20], [21], however, achieving a high-
speed visual task in a dynamic environment such as catching
a flying object with on-board vision is still an open question.
Off-board approaches have already shown promising results:
a recent work demonstrated a small quadruped capable of
acting as a goalie using a hierarchical reinforcement learning
approach, choosing different behaviors based on incoming
ball trajectories [22].

III. WORST CASE LATENCY ANALYSIS

As stated in the introduction, event cameras do not suffer
from a latency-bandwidth tradeoff, as do RGB cameras.
In this section we will clarify this point, by studying the



Fig. 4: Overview of the approach to ball catching. A quadrupedal robot equipped with an event camera observes raw events of its surrounding. With IMU
measurements we compute the motion compensated mean timestamp image from these events, which we segment out moving object clusters. These clusters
are projected in 3D and a parabola is fit through them. We compute the impact point of this parabola in a gravity aligned coordinate frame centered at the
robot base. The robot policy uses this impact point Bpimp and proprioceptive states spt to compute target joint deviations φ∗

t .

worst-case latency incurred by algorithms A operating on
images or events. We will assume that the goal of A is to
find the parabola describing the ballistic trajectory of the
object to be caught, and that this parabola is estimated via a
sequence of 3D position and/or 3D velocity measurements.
We measure the latency of A as the worst-case waiting period
to collect a minimum number of measurements that describe
the parabola. In this work, we focus on two-shot methods,
that require two consecutive 3D position measurements but
discuss the potentially interesting class of one-shot methods
that measure 3D position and velocity simultaneously and
can therefore be even faster. We will discuss the latency
considerations for two-shot algorithms designed for standard
cameras and event cameras next, summarized in Fig. 3.
Standard camera Algorithms for processing standard im-
ages fall in the category of two-shot methods, since single
images do not carry motion information. We assume a
camera with inter-frame time interval ∆tFPS = 1

FPS and an
algorithm with processing time ∆tc. In the worst case the
robot has to wait a period max {∆tc,∆tFPS} before it can
execute a detection because it has to wait for the next frame
to arrive, or a previous detection cycle to terminate (see Fig.
3 middle). Then it can initiate two consecutive detections,
which together take max {∆tc,∆tFPS}+∆tc, where the first
and second term measure the latency for detecting on the
first and second frame respectively. If the computation time
is lower than the framerate, the detector still needs to wait
until the second frame arrives, so its latency is lower-bounded
by ∆tFPS. As a result, the algorithm has a worst-case latency

∆tl =

{
2∆tFPS +∆tc if ∆tc < ∆tFPS

3∆tc otherwise.
(1)

Event Camera For an event-based algorithm ∆tFPS ≈ 0,
so the initial waiting period before detection can start is
dominated by a previous detection cycle (see Fig. 3 bottom).

In that case, the total worst-case latency becomes

∆tl = 3∆tc (2)

However, since events also carry motion information, an
algorithm may try to simultaneously extract 3D position and
velocity, and thus this latency can be reduced to ∆tl = 2∆tc.
As a result, an event-based algorithm can have lower latency
when the following conditions are satisfied

∆tec < ∆tFPS for two-shot methods (3)

∆tec < ∆tFPS +
∆tic
2

for one-shot methods. (4)

In the next section we present a two-shot approach to
object catching, and thus our method will benefit more from
a fast execution time, outperforming RGB camera-based
approaches for similar inter-frame intervals. We leave the
study of one-shot approaches for future work.

IV. APPROACH

Our object-catching algorithm consists of two main com-
ponents: A visual frontend, which is tasked with object
trajectory estimation based on event-based visual input, and
a planning backend that converts the predicted trajectory to
low-level motor commands for the quadruped robot. Our full
method is illustrated in Fig. 4 and described further below.

A. Visual Frontend

Our trajectory estimator is inspired by the moving object
detector used in [4], followed by trajectory fitting and filter-
ing steps. For completeness, we will briefly summarize the
method below.
Moving Object Detection: Our estimator takes in mea-
surements by an Inertial Measurement Unit (IMU) and a
rolling buffer of asynchronous events E = {ei}N−1

i=0 from a
monocular event camera, where each event ei = (xi, ti, pi)
corresponds to a brightness change measurement at pixel xi,



time ti and sign pi. We then compute the motion compen-
sated mean timestamp image, T (x), using the average of the
angular rate measurements ω̄ by the IMU over the duration
of the event buffer. T is defined as

T (x) =

∑
i(ti − t0)δ(x− x′

i)∑
i δ(x− x′

i)
(5)

x′
i = K [I − [ω̄]×(ti − t0)]K

−1xi

Where the x′
i represent motion compensated coordinates,

with calibration matrix K. For events that are well explained
by a pure rotation, such as when events are triggered in the
background, T will be small, while for independently mov-
ing objects, T will feature higher values. By thresholding T
we can thus segment out independently moving objects in
the image plane resulting in the binary map:

B(x) =

{
1 for ρ(x) > θ0 + θ1∥ω̄∥
0 otherwise .

(6)

Where ρ(x) = T (x)−T̄
∆T is a suitable normalization of the

mean timestamp image by its mean, and time window. We
use an adaptive threshold, which depends on the angular rate
since higher angular rates will cause a higher average ρ.
Having identified pixels of moving objects, we fit maximal
rectangles around them by employing the DBSCAN cluster-
ing algorithm [23]. DBSCAN works by minimizing a dis-
similarity score between pixels assigned to the same cluster.
We use the same formulation as in [4] which minimizes

C(x,y) = wp∥x− y∥+ wv∥v(x)− v(y)∥ (7)
+wρ|ρ(x)− ρ(y)|

where x and y are pairs of pixels. Similar to [4] we also
use optical flow similarity as a criterion. We compute it by
using dense Lucas Kanade optical flow on consecutive mean
timestamp images T . The resulting output of DBSCAN is
a set of clusters that we circumscribe with bounding boxes
before going to the trajectory estimation step.
Trajectory Estimation Our next step consists of finding
the impact point of the object in the plane perpendicular
to the robot, which is used by the planner to execute the
catching maneuver. To do this we continuously estimate the
ballistic trajectory of the object, from noisy 3D position
measurements during observation. While the bounding boxes
described above provide us with direction estimates for
each point along the parabola, the depth is unobserved for
monocular setups. We, therefore, assume a known object size
with which we can calculate the object depth according to

Z = f
Wmetric

W
, (8)

where Wmetric and W are the width of the object in the
real world and image plane respectively, and f is the focal
length of the camera. As a result, we can recover the 3D
positions Cpi of the objects in the camera frame C by back-
projecting the ray of the center of the bounding box by a
depth Z, and transform it to the fixed world frame W with

Fig. 5: Simulation environment for tracking the impact point pimp. The
agents try to track the yellow spheres with the simulated nets mounted on
their base, while avoiding the robot from falling in the presence of random
pushes, randomized friction, mass and terrain.

a known transformation from the robot’s odometry. We next
fit a parabola of the form

Wp(t) = Wp0 + Wv0t+
1

2
Wgt2 (9)

through these 3D points. In the world frame, gravity is Wg =
[0, 0,−9.81ms−2]T . Since these points contain outliers, we
use RANSAC to remove them. We successively select ran-
dom pairs of 3D points, for which we find a solution for Wv0

and Wp0. For each solution we construct the parabola and
count the 3D points within a weighted euclidean distance of
the parabola, i.e. inliers, satisfying

i ∈ inliers ⇐⇒ ∥Wpi − Wp(ti)∥Λ ≤ θ (10)

with Λ = RWCdiag
{
σ2
xy, σ

2
xy, σ

2
z

}−1
RT

WC (11)

where θ is the inlier threshold, RWC rotates vectors from
camera to world frame, and σ2

x/y/z correspond to variances
in x, y, and z direction respectively. Since our 3D object
detector exhibit higher noise in the camera z-direction, we
select σ2

x = σ2
y = 1 and σ2

z = 5. We select the minimal
solution that yields the highest number of inliers, and then fit
a p0 and v0 which minimizes the square euclidean distance
to the inlier points.

Wp0,Wv0 = arg min
Wp0,Wv0

∑
j∈inliers

∥Wpj − Wp(tj)∥2 (12)

which has a closed-form solution.
Impact Point Estimation The backend controller expects an
estimate of the target position of the net which can catch the
object. To estimate this position, we calculate the intersecting
point of the parabola trajectory and a plane P which is
spanned in the gravity vector and the y-axis of the robot
base. The base frame B is centered on the body of the robot
and visualized in Fig. 4. We choose P to share the origin of
B. Points p on this plane satisfy the relation

Bnimp · Bp = 0 (13)

with Bnimp
.
= Bey × Bg Substituting the parabola equa-

tion (9), expressed in body frame B and solving for t, we
can find the time to impact, and the impact point as:

Bpimp = Bp(timp) with timp = −Bnimp · Bp0

Bnimp · Bv0
(14)



To further improve robustness, we apply a median filter to
the series of impact point detections, until the robot initiates
the catching maneuver.

B. Robot Locomotion Backend

For object catching, we train a policy that controls each
joint of a quadrupedal robot to reach pimp with a net
mounted on the robot as fast as possible. We model this
catching problem as an Markov Decision Process (MDP)
and use reinforcement learning to solve it in order to achieve
agile behavior with low calculation latency. The objective of
reinforcement learning is to maximize a discounted sum of
rewards over a finite time horizon, i.e. finding

π∗ = argmax
π

T∑
t=0

γtRt (15)

with discount factor γ < 1, termination time T , and re-
ward function Rt. We used Proximal Policy Optimization
(PPO) [24] to train the policy.
States, Action space and Policy We use ANYmal C [25]
as a quadrupedal robot model and use the actuator net [13]
which simulates the dynamics of the actuator. A policy π
outputs joint level action φ∗

t that is the differences between
the desired and nominal joint position. At each discrete time
step t it takes as input the state st ∈ R48 defined as

st = [Bpimp spt ]. (16)

It comprises the impact point expressed in the body frame
of the robot, and proprioceptive states spt ∈ R45 defined as

spt = [Bg Bv Bω φ φ̇ φ∗
t−1], (17)

where Bg is the gravity expressed in the base frame, Bv and
Bω represents body linear velocity and angular velocity, φ
and φ̇ are the joint position and velocity respectively, and
φ∗

t−1 is the previous action.
Environment setup We use Isaac gym [26] to build the
simulation environment and leverage the highly parallelized
implementation on a Graphics Processing Unit (GPU) [27].
In the simulation environment, we spawn a quadrupedal
robot equipped with a net on terrain and randomly sample
target net position (Fig. 5). The target net position is ran-
domly sampled around the current net position within the
range of ±30 cm on the x-axis, ±80 cm on the y-axis, and
±15 cm on the z-axis in the robot base frame. We resample
the target net position every 1.0 seconds with a probability of
0.2. To make the policy robust to noisy sensor readings and
unexpected foot trapping, we add noise to the observation
and a slight roughness to the terrain as seen in Fig. 5. The
maximum episode length is 20 sec and we terminate the
episode when the robot base or thigh hits the ground.
Rewards To make the policy track the target net position,
we used the following rewards.

Target tracking : rtr = exp(−10∥Bpimp −B pnet∥2)
In addition, we have the following penalty rewards to make
the motion smooth.

Base linear velocity: rlv = v2z

Base angular velocity: rav = ω2
x + ω2

y

Joint velocity: rv = ∥φ̇∥2
Joint acceleration: ra = ∥φ̈∥2
Joint torque: rt = ∥τ∥2
Action difference: rac = ∥φ∗

t−1 −φ∗
t ∥2

Base orientation: ro = ∥Bgxy∥2
The final reward is defined as follows by checking the
behavior of the policy.

r = 4rtr − 0.1rlv − 0.05rav − 3 · 10−6rv − 5 · 10−7ra

−2 · 10−5rt − 0.03rac − 0.2ro (18)

V. EXPERIMENTS

Hardware setup We directly deploy the policy learnt in
simulation on the real robot, finding that it required no
additional fine-tuning to run in the real world. We use the
ANYmal C quadruped robot [25], coupled with a VGA
resolution event camera, an IniVation DVXplorer [28], fitted
with a 90◦ field-of-view (FoV) objective. For catching, a
landing net with a diameter of 0.3 m was mounted on the
quadruped with its center being 0.5 m above the base frame.
The detection algorithm runs on an NVIDIA Jetson Orin
developer kit and the catching policy was deployed on the
robot’s onboard PC, an Intel core i7 8850H with 6 cores
and 12 threads. To display the debugging visualization,
two Ethernet cables were attached to the laptop PC, but
all compute necessary to execute the catching maneuver
is running on board. With this hardware setup, our vision
algorithm is capable of running at up to 100 Hz.

We test the catching pipeline by throwing balls manually
in a cluttered environment. To test texture generalization,
two different rubber balls were used, each with a diameter
of 10cm. The balls were thrown manually at average speeds
between 5 − 15m/s, with net center deviations in the range
of 0.6 m. At these speeds, the incidence angle of the ball
was around 90 ± 15◦ with respect to the net. A preview
of the experiments, including event camera and parabola
visualization can be viewed in Fig. 6
Evaluation Proceedure We validate our method by measur-
ing two forms of success rate, one for the vision algorithm,
and one to evaluate the overall performance of the system.
In the first, we measure the percentage of impact point
measurements that have an error lower than the net radius and
report the results of this experiment in Tab. II. To evaluate the
overall performance we report the percentage of successful
catches within a working range of 0.6 m from the initial net
position and study the success rate for different throw speeds
and deviations from the initial net center. We selected this
working range, since beyond it, ANYmal needs to perform
significant sideways locomotion, instead of lunging, which
slows down the maneuver. These results are summarized in
Tab. I. We collect data for a total of 22 throws, for which the
ball enters the feasible range of 0.6 m from the robot. While
estimated impact points were measured in our visualization
(see Fig. 6), measurements of ball speeds and impact points



(a) observed events (b) estimated parabola (c) catching maneuver

Fig. 6: Real world experiments with ANYmal. The DVXplorer event camera (a) observes incoming objects. Our moving object detector produces object
detections in 3D, to which we fit a parabola (dark green, b). We then use the recovered impact point (blue circle, b), to execute the catching maneuver (c).

Fig. 7: Image sequence illustrating two successful catches by our method.
As can be seen, the robot is required to perform highly agile tilting and
side walking behaviors to catch the ball. The maximum ball speeds in both
columns are 11.5 m/s and 10 m/s respectively.

in the real world were measured using footage from a 60 fps
external camera.
Results We find from Tab. II that our vision algorithm only
degrades at speeds > 9 m/s and deviations from the net
position of > 0.4m. At 15 m/s and 0.6 m deviation, we
still capture 50.25% of the impact points within a reasonable
accuracy for catching. The degradation can be explained by
two factors: as speed increases, fewer samples are collected
to fit a parabola, reducing its overall accuracy. Similarly,
throwing the ball further out, means that the ball quickly
leaves the FoV, resulting in fewer observations. In Tab. I we
find that catching success rate remains above 80% reaching
a maximum at 12 m/s. Two examples of successful catching
maneuvers can be found in Fig. 7. We found that too high
speeds cause vision to fail more often due to too few samples
being recorded. Additionally, the robot cannot react fast
enough to catch the objects. Conversely, at too low speeds,
our vision algorithm can correctly identify where the robot
should go, but the low speeds cause higher variability in the
range of the trajectory and the impact angle at which the
ball trajectory reaches the robot becomes steeper. If objects
arrive at steep impact angles, the effective area with which

Object Speed [m/s]
<8.0 <10.0 <12.0 <15.0
81% 88% 92% 83%

TABLE I: Success rate of ball catching for different object speeds.

Distance from
Net Position [m]

Object Speed [m/s]
<9 <15

<0.4 93, 33% 88, 88%
<0.6 73, 68% 50, 25%

TABLE II: Success rate of our vision algorithm. Successful impact point
detections are within a net radius from the ground truth position.

the robot can catch the object is reduced. The impact angle
is not directly observed by our policy, which reduces its
robustness to this factor.

VI. DISCUSSION

The current work demonstrates agile catching of high-
speed objects between 5 − 15 m/s with a quadruped robot
using an event camera for estimating the ballistic trajectories
of the flying objects. Being the first example of catching
with a quadruped robot using onboard sensing, our pipeline
demonstrates agile catching skills and catches balls coming
at a 0.4 m deviation from the current center of the landing
net. Importantly, as shown in II, the onboard event-based
ball-tracking pipeline performs reliably on a larger range
of 0.6m, making sure that the estimations provided to the
rather dynamic motion policy will always be adequate. While
this approach was enough for the first working demo of
quadruped catching with onboard sensing, improvements
could be made to improve the robot’s "range" to the side by
for example using a higher FoV camera. Since our method
is monocular, it requires knowledge of the object size.
However, this requirement could be easily lifted by using
a stereo setup, which would also reduce depth uncertainty
making us less reliant on filtering. Also, the current control
strategy was simply reaching the target position as quickly
as possible. By taking into account the ball movement,
sensor property and detection pipeline during the training, the
trained policy could further improve its capability. Finally, to
eliminate failure cases due to steep impact trajectories, which
reduce the effective net area, we may consider augmenting



our policy input by the velocity vector at the impact point.

VII. CONCLUSION

On the quest toward animal-like agility and robustness,
current quadruped robots have reached a high degree of
versatility through the use of both proprioceptive and ex-
teroceptive sensors. However, commonly used sensors such
as RGB cameras or LiDARs currently suffer from major
limitations due to the bandwidth-latency trade-off, meaning
that both low-latency and low-bandwidth cannot be achieved
with current systems. In this work, we break this cycle
by outfitting a quadrupedal robot with an event camera,
which does not have this tradeoff. We design a method that
combines a high-speed visual frontend with a learning-based
planner to perform the complex task of agile ball-catching.
Thanks to the low latency of the event camera, as well as
the robustness of the planner we reach an 83% success rate
while catching objects thrown at up to 15 m/s.

REFERENCES

[1] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[2] J. Lee, J. Hwangbo, and M. Hutter, “Robust recovery controller for a
quadrupedal robot using deep reinforcement learning,” Jan. 2019.

[3] K. Su and S. Shen, “Catching a flying ball with a vision-based
quadrotor,” in International Symposium on Experimental Robotics.
Springer, 2016, pp. 550–562.

[4] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoid-
ance for quadrotors with event cameras,” Science Robotics, vol. 5,
no. 40, p. eaaz9712, Mar. 2020.

[5] N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam,
C. Fermüller, D. Scaramuzza, and Y. Aloimonos, “Evdodgenet: Deep
dynamic obstacle dodging with event cameras,” in IEEE Int. Conf.
Robot. Autom. (ICRA). IEEE, 2020, pp. 10 651–10 657.

[6] D. Falanga, S. Kim, and D. Scaramuzza, “How fast is too fast? the role
of perception latency in high-speed sense and avoid,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1884–1891, 2019.

[7] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Trans. Robot., vol. 30, no. 5, pp. 1049–1065, 2014.

[8] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” in IEEE Int. Conf. Robot. Autom. (ICRA). IEEE, 2012, pp.
279–284.

[9] Z. Wang, F. C. Ojeda, A. Bisulco, D. Lee, C. J. Taylor, K. Daniilidis,
M. A. Hsieh, D. D. Lee, and V. Isler, “Ev-catcher: High-speed object
catching using low-latency event-based neural networks,” IEEE Robot.
Autom. Lett., vol. 7, no. 4, pp. 8737–8744, 2022.

[10] P. D. Neuhaus, J. E. Pratt, and M. J. Johnson, “Comprehensive sum-
mary of the institute for human and machine cognition’s experience
with LittleDog,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 216–235, 2011.

[11] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter,
“Perceptive locomotion in rough terrain–online foothold optimization,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370–5376,
2020.

[12] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model predictive control,”
Aug. 2022.

[13] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Sci Robot, vol. 4, no. 26, Jan. 2019.

[14] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

[15] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,”
Robotics: Science and Systems, 2020.

[16] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” arXiv preprint
arXiv:2105.08328, 2021.

[17] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
2464–2470.

[18] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 5761–5768.

[19] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
GPU,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2022.

[20] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans,
S. Ha, J. Tan, and T. Zhang, “Visual-locomotion: Learning to
walk on complex terrains with vision,” in Proceedings of the
5th Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol.
164. PMLR, 08–11 Nov 2022, pp. 1291–1302. [Online]. Available:
https://proceedings.mlr.press/v164/yu22a.html

[21] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang,
“Learning vision-guided quadrupedal locomotion end-to-end
with cross-modal transformers,” in International Conference
on Learning Representations, 2022. [Online]. Available: https:
//openreview.net/forum?id=nhnJ3oo6AB

[22] X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng,
and K. Sreenath, “Creating a dynamic quadrupedal robotic goalkeeper
with reinforcement learning,” arXiv preprint arXiv:2210.04435, 2022.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, 1996.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[25] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2016, pp. 38–44.

[26] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and Gavriel State,
“Isaac gym: High performance GPU-Based physics simulation for
robot learning,” Aug. 2021.

[27] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conf. on Robotics Learning (CoRL). PMLR, 2022, pp. 91–100.

[28] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB 15
µs latency asynchronous temporal contrast vision sensor,” IEEE J.
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

https://proceedings.mlr.press/v164/yu22a.html
https://openreview.net/forum?id=nhnJ3oo6AB
https://openreview.net/forum?id=nhnJ3oo6AB

	Introduction
	Related Work
	Dynamic Object Catching in Robotics
	Advancements in Legged Robotics

	Worst Case Latency Analysis
	Approach
	Visual Frontend
	Robot Locomotion Backend

	Experiments
	Discussion
	Conclusion
	References

